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Abstract. A new particle tracking algorithm is derived based on consolidated

methods with the aim to overcome the current limits encountered with high particle

density flows. The proposed method consists in an integration of the relaxation

algorithm based on match probabilities into vision-based features association concepts.

Hybridization with PIV pre-analysis is suggested to help with parameters estimation.

A dual calculation strategy is also developped in order to reduce the amount of

spurious vectors. Simulation tests using synthetically generated images are carried

out to evaluate the sensitivity of the proposed method to the particle image density,

the background noise and the nature of the flow. Three flow configurations with a

growing degree of complexity are successively considered: a 2-D flow over a moving-

wall, a steady 2-D Lamb-Oseen vortex ring, and a 3-D unsteady homogeneous isotropic

turbulence. The ability of the new tracking algorithm to provide better matching

performances with high reliability than conventional techniques out of a dense particle

image field is demonstrated.

Keywords: PTV, particle tracking, relaxation algorithm, vision-based technique, high

particle density
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1. Introduction

Velocity measurements based on image analysis is one of those dynamic fields with

about three decades of tremendous contributions which totally turned experimental

flow motion characterization from flow-visualization to robust and efficient quantitative

measurements. This is largely true as long as the flow to be characterized is without

large changes in enthalpy, density or composition. For example, planar measurements

allow the physical phenomena coupled with the medium and largest scales of the

turbulent flows to be retrieved. As high-Re flows develop across a spectrum of scales of
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considerable span, they still suffer from inherent limitations which put the small scales

caracteristics quantities of the turbulent flow beyond the reach of direct measurements.

The inherent averaging effect over the so-called interrogation window proscribes

Particle Imaging Velocimetry (PIV) from measuring the maximum velocity gradients

(Scarano 2003, Nogueira et al. 2005). Therefore, small-scale characteristic quantities of

the turbulent flows, such as the mean energy dissipation rate, are still challenging to

be determined from the direct differentiation of the data (Saarenrinne & Piirto 2000,

Krawczynski et al. 2010). As for Particle Tracking Velocimetry (PTV), its spatial

resolution mostly relies on the spacing between individual particles it tracks and the time

interval, t between frames. Therefore, the spatial resolution increases a priori together

with the particle image density, Nppp defined as the number of particles per image area.

Unfortunately, Nppp is a major limiting factor for PTV reliability since large particle

density prevents an optimized particle identification and localization: promoting large

density results in particle images overlapping, i.e. indistinguishable patches of high-

intensity pixel. This is formalized as the speckle phenomenom which is likely to occur

when the source density, defined as the average number of imaged particles multiplied

by the squared equivalent diameter of the particle image, exceeds one (Adrian 1984).

Should we see it as a consequence yet, most of the previous PTV dedicated

studies did not (or failed to) consider the detection of individual particles in a high-

Nppp context. To the authors knowledge, most of the efforts were oriented towards

the design of robust and efficient tracking algorithms at moderate Nppp: very few

studies dealt with Nppp > 0.06 particles.pixel−1. Brevis et al. (2011) proposed to

combine the consolidated cross-correlation method (Yamamoto et al. 1993, Ishikawa

et al. 2000) with an iterative relaxation algorithm based on match probabilities (Baek

and Lee 1996, Ohmi & Li 2000, Pereira et al 2006). The proposed approach aimed

at attenuating the limitations of both methods: the unability of the cross-correlation

method to track features in the presence of strong velocity gradients due to the loss

of similarity in the particles patterns, and the difficulty of the relaxation method to

match particles embedded in low-information neighborhood. The integration of both

methods was designed as a two-steps process: the cross-correlation method was the

pre-processing stage of the relaxation method, and the weighting was controlled by the

user-defined correlation threshold level. Particle matching based on vision principles was

also proposed with the aim at dealing with “severely” overlapped particle image field

(Lei et al. 2012). It relied on the principle of proximity, which favored short matches over

long ones, and also on the principles of exclusion and similarity. The cross-correlation

algorithm was added as an additional term in the so-called proximity matrix, and the

weighting was in this case auto-adaptive. Displacement-shifted methods utilizing the

guidance of PIV were designed as a modification of the proximity matrix in order to

favor the particles that lie at the “expected location” (Paul et al. 2014).

This work subscribes in the earlier inquiry of our group specifically dedicated to

the particle identification and localization issue under high-density particle conditions

(Cheminet et al. 2018). The approach was based on the particle position reconstruction
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through the inversion of a linear model connecting the PTV signal with a particle-

based representation of the 3-D to 2-D projection. Much better detection performances

with higher reliability than conventional techniques was demonstrated at particle image

density as high as Nppp = 0.10. We now propose to address the tracking issue under

similar conditions.

The paper is organized as follows. The proposed tracking algorithm is

mathematically detailed in section 2 and further details about its computational

implementation are given in section 3. A description of the synthetic database is

presented in section 4. The performances of the new algorithm are thoroughly compared

to those of consolidated methods in section 5. Conclusions are made in section 6.

2. Algorithm

The proposed algorithm derives from the adaptation of the vision-based feature

association concept (Scott and Longuet-Higgins 1991) to PTV (Lei et al. 2012), the

relaxation method-based PTV (Baek and Lee 1996, Brevis et al. 2011) and the dual

calculation method (Baek and Lee 1996, Jia et al. 2015). Its implementation is

hybridized with PIV results in order to drastically reduce the use of arbitrary chosen

parameters. In the following, a description of the new algorithm is given.

Let I and J be two short time-delayed frames with a grayscale intensity distribution

resulting from the in-plane projection of illuminated particles. Let xi (i = 1...m) and

xj (j = 1...n) be the locations of the particles in both frames which the PTV algorithm

aims to put in a one-to-one correspondence. The algorithm consists of four steps.

Step 1. Build a correlation-weighted proximity matrix G ∈Mm,n of the two sets of particle

locations. The underlying concept is intimately related to the visual correspondence

principles outlined by Ullman (1979) : the principle of similarity, the principle of

proximity and the principle of exclusion (only one-to-one matchings are allowed).

Scott and Longuet-Higgins (1991) proposed a simple method to satisfy both the

proximity and exclusion principles by exploiting some properties of the singular

value decomposition (SVD) to a Gaussian-weighted distance matrix Gd

Gd
ij = e−

rij
2

2σ2 i = 1...m, j = 1...n (1)

where rij = ‖xi−xj‖ is the Euclidean distance in the reference system of the frame

between two sets of features, or points of interest, to be matched and σ is a user-

defined parameter related to a characteristic distance: a small value of σ enforces

short-distances pairings, while a large value permits large-scale displacements.

Pilu (1997) proposed to incorporate a normalized cross-correlation coefficient C,

further modified as a Gaussian weighted correlation coefficient by Lei et al. (2012),

into the proximity matrix in order to embed the similarity principle:

Gij = e−
rij

2

2σ2 · e−
(Cij−1)2

2γ2 i = 1...m, j = 1...n (2)
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where γ is a user-defined parameter to control the decay of the similarity weighting

term. While in the original work of Scott and Longuet-Higgins (1991) and in later

modifications (Pilu 1997, Lei et al. 2012) the singular value decomposition is directly

performed to the proximity matrix, we here propose an alternative procedure in

which G is used as an initialization of the second step described hereafter.

Step 2. Perform an iterative relaxation labelling technique (Baek and Lee 1996). This

method consists in computing a matching probability Pij ∈Mm,n of a displacement

dij (therefore, of a correspondence between features) and its associated no-

match probability P∗
i ∈ Mm based on an iterative procedure which relies on

the displacements of selected neighbours dk(i)l(k). By definition, a neighbour

particle is a particle located within a radius Tm with respect to xi whereas the

selected neighbours are those located at xk(i) that satisfy the quasi-rigidity condition

‖dij − dk(i)l(k)‖ < Tq (Baek and Lee 1996).

The iterative probability update process was extensively presented in Baek and Lee

(1996). It is briefly summarized in the following. The updated matching probability

and no-match probability at the tth iteration step are calculated as:

P
(t)
ij =

AP
(t−1)
ij +BQ

(t−1)
ij

N
(t−1)
ij

(3)

P
∗(t)
i =

P
∗(t−1)
i

N
(t−1)
ij

(4)

where A and B are positive constants equal to 0.3 and 4 (Brevis et al. 2011)

respectively, Qij is the sum of the neighbours’ probabilities

Q
(t−1)
ij =

m∑
k(i)=1

n∑
l(k)=1

P
(t−1)
k(i)l(k), (5)

and Nij is a normalization term,

N
(t−1)
ij =

n∑
j=1

(
AP

(t−1)
ij +BQ

(t−1)
ij

)
+ P

∗(t−1)
i (6)

in order to enforce at every iteration step:
n∑
j=1

Pij + P∗
i = 1. (7)

The interested reader is invited to refer to the works of Baek and Lee (1996)

and Brevis et al. (2011) for more information on the relaxation method and its

implementation.

Step 3. Determine a forward pairing matrix Mf ∈Mm,n that maximizes the inner product,

M f : P = trace
(
(M f )TP

)
. Here, the upperscript f refers to the forward

computation, i.e. from the image I to the image J . We here go back to the

approach proposed by Scott and Longuet-Higgins (1991) but instead of performing
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the singular value decomposition of the proximity matrix (Gd or G), we propose

to find the SVD of P ∈Mm,n, such that

P = TDUT (8)

where T ∈ Mm and U ∈ Mn are orthogonal matrices and the diagonal matrix

D ∈ Mm,n contains the singular values in a descending numerical order along its

diagonal elements. The matrix D is then converted to a new matrix E ∈ Mm,n

by replacing every diagonal element Dii with 1. The pairing matrix Mf is finally

obtained by computing

Mf = TEUT (9)

This final step enables the algorithm to embed the exclusion principle which arises

from the orthogonality of the matrix Mf . Mathematical proof of the optimized

pairing process is given in Appendix A.

Step 4. Repeat Step 1., Step 2. and Step 3. in the backward direction, i.e. from the

“second image” J to the “starting image” I. Therefore, a backward pairing matrix

Mb ∈ Mn,m is obtained (the upperscript b refers to the backward computation).

The final pairing matrix M ∈Mm,n is computed as (Jia et al. 2015)

M =
(
Mf ·

(
Mb
)T)1/2

(10)

where (·) is the Hadamard product operator.

This algorithm is referred to as Vision-Based Relaxation-Method, VBRM for brevity.

3. Outline of the methodology and Computational implementation

The whole process is outlined as follows:

1 Extract centers of the detected particles, xi (i = 1...m) and xj (j = 1...n) from two

successive images of particles. This initial (and crucial) step which usually refers

to the detection and localization of the particles in PTV is actually left aside from

this study. Here, we choose instead to only focus on the matching/tracking step.

Hence, the evaluation of the proposed algorithm is performed over synthetic images

of known-locations particles.

2 Select candidates and identify neighbours. The term candidate particles refers

to a set of particles located at the second frame that potentially are in one-to-

one correspondence with a given particle in the first frame. They are generally

found with some user-defined selection criteria, such as the expected maximum

displacement. In the present work, the expected maximum local displacement is

estimated after an initial guess of the displacement field through a PIV analysis.

The term neighbour particles refers to a set of particles in the first frame located

within a radius Tm with respect to xi. Tm is an estimation of the size of the flow

structures in which the particles exhibit similar motion. In this study, Tm is set to

15 pixels for all the test-cases discussed.
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6

3 Build I ∈Mm,L and J ∈Mn,L of L-dimensional features. Features consist of images

patches (i.e. pixels intensities) with L pixels centered around the particle positions.

Therefore, row i (resp. j) of I (resp. J) is the row vectorization of a patch around

the ith (resp. jth) feature-point of the first (resp. second) image. Moreover, every

row of I and J is normalized to zero mean and unit norm. As a consequence, the

inner product of I and J is nothing else than the correlation coefficient matrix in

relation (2)

C = JIT (11)

The computation of the correlation-weighted proximity matrix G according to

relation (2) is then trivial. The parameter γ is set to 0.12 for the present

implementation and σ is a flow-dependent parameter estimated as a characteristic

length scale of the displacement vectors field from the PIV analysis (Lei et al. 2012).

The rows of G are then set to zero, except for the jth column corresponding to a

candidate of the ith particle. The resulting G matrix is sparse. It is to be noticed

that no other filtering procedure is performed up to this stage.

4 Initialization of the iterative relaxation method. In an attempt to integrate the

classical cross-correlation (CC) and relaxation (RM) algorithms, Brevis et al. (2011)

proposed to convert to initial probabilities the correlation levels calculated during

their initial CC stage. Here, we choose instead to use the information embedded in

G as,

P
(0)
ij =

Gij∑n
j=1 (Gij) + (1−maxj=1...n Gij)

(12)

P
∗(0)
i =

1−maxj=1...n Gij∑n
j=1 (Gij) + (1−maxj=1...n Gij)

. (13)

In the work of Brevis et al. (2011) the matrix G in relations (12) and (13) was

replaced by an equivalent form of matrix C and a matching probability equal to 1

was set for the particles matched by their CC step.

5 Iterate with the probability update according to relations (3) and (4). The iterative

process is stopped when the difference between the probabilities in the previous and

current iterations is less than a certain threshold λ. In the present implementation,

a value of λ = 0.01 is used.

6 Compute the forward pairing matrix Mf according to relations (8) and (9).

7 Eventually, in a similar manner as Jia et al. (2015) a dual calculation method is

applied, i.e. steps 2-6 are repeated by considering the backward tracking from the

“second image” to the “starting image” to compute the backward pairing matrix

Mb. The final pairing matrix, denoted M for simplicity is computed according to

relation (10).

The code of our tracking algorithm, denoted VBRM in the rest of the paper, is

implemented in Matlab and makes use of its high vectorization level and its optimized

built-in functions.
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4. Synthetic set-up

The matching capabilities of the proposed algorithm are evaluated against well-known

particle locations obtained from three characteristic flow simulations. The interest of

using synthetic images is twofold: (a) the exact position of the particles is known; (b)

a direct comparison between the matches given by the proposed algorithm and those

by other referenced methods is possible. For every flow simulation, double-exposure

snapshots of Nx × Ny = 512 × 512 pixel at 8-bit grayscale are synthetized. While the

particles’ locations of the first frames are systematically randomly distributed within

the entire image, their time-delayed positions within the second frame are computed

with the velocity field obtained from the flow simulations. Details of the particle images

generation together with the simulated flow characteristics are given in the following.

4.1. Particle images generation

The full procedure detailed in Cheminet et al. (2018) is used to synthetize the images

of particles. It is briefly summarized as follows. The image formation of the projected

seeded particles in the illuminated volume onto the image plane is monitored by the

so-called point spread function (PSF) modeling the formation of the Airy-spots. The

PSF is written as a 2-D integrated Gaussian intensity distribution characterized by

its standard deviation σpsf . Considering monodisperse particles of diameter dp = 1µm

within the illuminated volume and a camera of focal length f = 200 mm placed at 1 m

orthogonally to the laser sheet plane, we choose to set σpsf = 0.6 in order to obtain an

averaged particles diameter of 2.4 pixels (except for the first test-case (i) presented in

section 4.2 where the particle diameter is fixed to 4 pixels). The maximum intensity of

the 8-bit grayscale images is assumed to be an exponentially decreasing function of the

particles in-depth position in the laser sheet (set to 1 mm) only. Let us notice that the

particles are systematically generated on a larger domain than the frames dimension in

order to control the particle seeding density, Nppp despite the inter-frame excursions of

the particles due to the flow of interest.

To mimic experimental measurement noise conditions and to evaluate their

influence on the tracking method efficiency, dedicated series of particle images are

generated. To this end, a Gaussian noise with zero-mean and a standard deviation

of 5 % is added to each image of specific series.

Some of the relevant parameters describing the synthetic images are summarized

in table 1.

4.2. Simulated flows

Three flow configurations with a growing degree of complexity are successively

considered: (i) a 2-D flow over a moving-wall, (ii) a steady 2-D Lamb-Oseen vortex

ring, (iii) a 3-D unsteady homogeneous isotropic turbulence (HIT).
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(i) 2-D flow over a moving-wall. We intentionally reproduce a referenced test case

(Lei et al. 2012). The synthetic time-delayed images are generated according to the

analytical velocity profile derived from the Stokes’ first problem,

u = U ×
(
1− erf(y/2

√
µt)
)

(14)

with U = 10, µ = 5, and t = 75. The particle seeding density Nppp is fixed to 0.03

particles.pixel−1 and the particle diameters are equal to 4 pixels.

(ii) 2-D steady Lamb-Oseen (L0) vortex ring. This test case relies on an exact solution

of the two-dimensional Navier Stokes equations. The simulated flow consists of two

steady counter-rotating vortices. Each of them is described as follows in a uniform

cartesian meshgrid:

uθ = uθmax

(
1 +

1

2α

)
r0
r

(
1− exp

(
1− α

(
r

r0

)))
(15)

where uθ is the angular velocity component, r is the distance from the vortex center,

r0 (set to 1/5 of the image width) is the core radius defined as the distance where the

maximum angular velocity uθmax = 5 pixel.s−1 is reached and α = 1.26 (Devenport

et al. 1996). The Oseen vortices are symmetrically placed at (Nx/2, +Ny/5) and

(Nx/2,-Ny/5) within the image, respectively. As an illustration, figure 1 (left)

displays the steady velocity vectors field superimposed onto the velocity modulus.

(iii) HIT flow. The homogeneous and isotropic Johns Hopkins Turbulence Database

(JHTDB) is used to design a more realistic test case (Li et al. 2008). This 3-D

database was recently used for the validation of tracking algorithms in the context

of 3-D PTV (Clark et al. 2018, Kozul et al. 2019), yet never to our knowledge in a

2-D PTV context. The DNS was performed on a spatial domain of 2π × 2π × 2π

corresponding to a regular mesh of 10243 grid points. For the present investigation,

an instantaneous 3-D velocity field is extracted from a sample volume V , with a

regular mesh of 576× 576× 7 grid points along the (x, y, z) directions respectively.

The z-symmetric plane of V is supposed to be illuminated with a laser sheet of

Gaussian intensity profile characterized by a standard deviation of 5%. Note that

for this particular test case, the synthetic image generation accounts for the in-plane

Gaussian intensity profile of the illumination, i.e. that is brighter in the center of

the image and dimmer at the left and right edges. Because of the intrinsic three-

dimensionality of the flow, the entire V volume is initially randomly seeded with

particles. Advection of each particle is performed within V by the instantaneous

velocity field interpolated from the DNS database to account for the inter-frames

excursions in the transverse direction z.

The resulted 2-D measurement plane is discretized on a 512× 512 pixel meshgrid.

As an illustration, figure 1 (right) displays an instantaneous velocity vectors field

superimposed onto the velocity modulus.
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9

Figure 1: Left: 2-D Lamb-Oseen vortex ring. Velocity vectors field superimposed onto

the velocity modulus. Right: HIT test case. Instantaneous fluctuating velocity vectors

field superimposed onto the velocity modulus. Velocity modulus is color-coded in pixel/s

units.

Table 1: Particle images parameters.

Flow description moving wall LO vortex ring HIT

Image size (pixel × pixel) 512 × 512 512 × 512 512 × 512

# pairs of images 20 20 20

Mean dp (pixel) 4 2.4 2.4

Min Nppp (particles.pixel−1) 0.03 0.02 0.10

Max Nppp (particles.pixel−1) 0.03 0.12 0.10

Min # particle 7711 4937 25850

Max # particle 8135 31482 26410

Min IFPC ratio (%) 99.85 99.77 81.98

Max IFPC ratio (%) 99.99 99.97 83.08

Min N∗
ppp (particles.pixel−1) 0.0298 0.0197 0.081

Max N∗
ppp (particles.pixel−1) 0.0298 0.1195 0.083

dp is the particle image diameter, IFPC is the inter-frame particles correspondence ratio,

N∗
ppp is particle density corrected for the inter-frame excursions.

4.3. Performance metrics

The performance of our tracking method is quantified and compared with those obtained

by other referenced methods by computing two characteristic metrics initially introduced

in the context of point tracking methods (Yilmaz et al. 2006):

recall =
# of correct correspondences

# of actual correspondences
(16)
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10

precision =
# of correct correspondences

# of established correspondences
(17)

where actual correspondences refer to the correspondences available in the ground truth.

Indeed, as stated above, the actual amount of particle match depends not only on the

total amount of particles in two successive frames (therefore to the seeding density) but

also on the flow configuration. When 3-D flows are considered as in the HIT test case,

out-of-plane excursions of the particles are inherent to the flow. They consequently

leave us with fewer pairs of particles than particles themselves. We thus defined the

particle density corrected for the inter-frame excursions, N∗
ppp = IFPC × Nppp as the

number of particles per image area that are effectively in one-to-one correspondence

between two successive frames, see table 1. For 2-D flow cases, the slightly reduced

N∗
ppp compared to Nppp accounts for the particles excursions accross the left-right and

top-bottom boundaries of the images. As for 3-D flows, the out-of-plane excursions of

the particles possibly account for the largest contribution to the decrease in IFPC ratio.

For the present investigation, the mean value of the IFPC ratio (computed from 20

pairs of images) is set to 82.5 % by an appropriate choice of the time-step between two

successive frames.

A correspondence is considered as correct if it satisfies simultaneously two

conditions:
1

π
cos−1 vmeas · vref

||vmeas|| · ||vref||
< 0.05 (18)

||vmeas − vref||
||vref||

< 0.05 (19)

where vmeas is the velocity vector obtained with a tracking algorithm and vref is the

referenced vector at the same location obtained either analytically, test-cases (i) and

(ii), or by interpolation, test-case (iii). Most of the previous studies only considered a

condition based on the norm evaluation (19), furthermore with a weaker tolerance of

either 1- or 0,5- pixel than (19). The directional condition (18) was rarely evaluated.

We thus consider that the proposed quantification of the correct matches enables a finer

discrimination between the tested tracking methods.

5. Results

Let us now attempt to assess the robustness and the efficiency of our tracking

method within representative experimental conditions. To this end, numerical tests are

performed on synthetic particle images for three flow configurations. Apart the inherent

influence of the flow towards the quality of the results, the effect of particle density, Nppp

and the effect of the background noise in the particle images is also evaluated. Most of

the forward analysis relies on the evaluation of the performance metrics introduced in

section 4.3. To ensure statistical convergence of the results discussed bellow, sets of 20

pairs of synthetic images are generated for every Nppp, see table 1. The performances of
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the VBRM method introduced in this study are compared to those of the consolidated

ICCRM (Brevis et al. 2011) and VB-PTV (Lei et al. 2012) methods. The PTVlab

software (Brevis et al. 2011) is used as a Matlab implementation of the ICCRM tracking

algorithm. Our tracking algorithm and the tracking part of VB-PTV, as recommended

in Lei et al. (2012), are guided by PIV results. The open source PIV algorithm (Thielicke

and Stamhuis 2014) is used to compute initial guess of the velocity fields and to help

with user-defined parameters estimation, as noted in section 3. An outlier removal

algorithm (Duncan et al. 2010) is applied to all the PTV data.

5.1. Case (i): Flow over a moving wall.

Table 2 shows the performance metrics values as obtained by the three tested algorithms

from this Stokes’ first problem test case. All the matching algorithms are capable of

excellent accuracy. Although our 5% over the norms criteria for the metrics evaluation

(section 4.3) are, over the whole velocity profile, always more severe than the 0.5 -

pixel maximal tolerance retained in Lei et al. (2012), similar global mean performances

are evidenced on this simple configuration between the three tracking methods and

those reported in Lei et al. (2012). A further insight is given to the results of these

simulations with the (local) representation of the velocity profile as computed from a

pair of moving wall 512× 512 pixel images by ICCRM, VB-PTV and VBRM, see figure

2. This illustrates the capability of our tracking method to generate smaller dispersions

than referenced algorithms with respect to the analytical profile. Similar behaviours are

obtained independantly of the considered couple of images (not shown here).

Table 2: Performance metrics of each tracking algorithm from the moving-wall flow case.

Algorithm recall precision

ICCRM (Brevis et al. 2011) 99.69 99.83

VB-PTV (Lei et al. 2012) 97.98 99.15

VBRM (present work) 99.05 99.93

5.2. Case (ii): 2-D Lamb-Oseen vortex ring

We aimed into gaining some insight into our tracking methods performance in a high-

density of neighborhood particles and into the impact that measurement noise can

have on PTV results. Particle image density, Nppp is a major limiting factor for

PTV reliability since large density inhibits an optimized particle identification and

localization. Severely overlapped particles which signal is discretized on a coarse

meshgrid also result in non-distinguishable intensity patches for the classical cross-

correlation algorithm. As for the background noise, it is generally associated with

non-uniform variations of grey levels in the image not related to the particle. Hence
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Figure 2: Velocity profile of the moving-wall flow. Scattered PTV data deduced from

each algorithm, VB-PTV (black ×), ICCRM (blue ◦) and VBRM (red +), superimposed

onto the analytical profile (solid black line).

it alters the ability of any tracking method based on constant intensity illuminated

patterns to accurately match particles, even though they remain in the same plane of

constant illumination. Synthetic images without additional noise are first considered

and the performances of each tracking algorithm against the influence of the particle

density are discussed in section 5.2.1. The impact of the background noise on the same

performance criteria is then assessed in section 5.2.2.

5.2.1. Effect of Nppp

We now turn our analysis towards the sensitivity of the VBRM method to the particle

density, Nppp. The mean performance metrics are presented in figure 3 as a function of

the particle density, Nppp for the three tracking methods. Averaging is performed over

every Nppp. In the simulations of this test, the particle image density is varied from

Nppp ≈ 0.02 to Nppp ≈ 0.12.

The number of valid matches as recovered by VBRM remains at a very high level

(actually very close to the exact amount of simulated correspondences), even at large

particle density. This statement is emphasized by the recall values which are quasi

constant and very close to 1 for all the investigated Nppp. The capability of our method

to recover a large amount of valid correspondences is further illustrated by the precision

coefficient which also remains very close to 1, for all the investigated particle densities.

This result shows that, not only VBRM is efficient as it “finds” a quasi-maximal amount

of correspondences, but also accurate as it is not prone to produce large amount of

outliers. Therefore, the improvement of the particles correspondences with our method

is evidenced when compared to referenced algorithms in the same conditions. Indeed,

ICCRM and VB-PTV fail at recovering a large amount of matches whenNppp is increased

as illustrated by the clear drop of their recall ratio.
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Figure 3: Quality of the tracking as given by VB-PTV (black ×), ICCRM (blue ◦) and

VBRM (red +) as a function of the particle density, Nppp. Synthetic images without

additive noise. Left: recall ; Right: precision.

5.2.2. Effect of background image noise

The high efficiency of VBRM is further emphasized with an insight on its sensitivity

to the presence of an additive background noise. The mean performance metrics are

presented in figure 4 as a function of the particle density, Nppp for the three tracking

methods.

Whatever the tracking method, only a slight decrease of the performance metrics

is observed respectively to the previous test case, section 5.2.1. The above statements

are therefore confirmed by the results of this simulation test: over the investigated Nppp

range, the recall and precision values obtained with VBRM remain very close to 1. For

comparison, at Nppp ≈ 0.12, the recall mean values are 99.70%, 92.51% and 81.73%

and the precision mean values are 99.96%, 94.34% and 93.19% for VBRM, ICCRM and

VB-PTV respectively. Although good performances are obtained with the referenced

ICCRM and VB-PTV methods, the improvement of the particles-matching procedure

with our method is again clearly evidenced, particularly within the medium-to-large

Nppp range.

An illustration of the velocity-vectors field computed by each of the three algorithms

is presented in figure 5 for a pair of images at Nppp = 0.12. From a qualitative

perspective, the reconstruction of the velocity-vectors field is satisfactory for such a

2-D flow test-case. However, the reconstructions as given by the ICCRM and VB-PTV

algorithms exhibit more visible outliers than VBRM in a reduced number of locations.

To further refine this qualitative analysis, a zoom-in view of the same velocity-

vectors field is depicted in figure 6 aside with the corresponding synthetic first-frame

on which the particle centroids (of the two successive frames) are superimposed. Such

a representation emphasizes that ICCRM and VB-PTV methods fail to retrieve one-

to-one correspondences when multiple particle centroids are close all together, and also

when the particle centroid is located at a low-intensity pixel. The superiority of VBRM
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Figure 4: Quality of the tracking as given by VB-PTV (black ×), ICCRM (blue ◦) and

VBRM (red +) as a function of the particle density, Nppp. Noisy synthetic images. Left:

recall ; Right: precision.

Figure 5: Zoom-in view (140×140 pixel) of a reconstructed velocity-vectors field from a

pair of noisy image at Nppp = 0.12. From Left to Right: ICCRM, VB-PTV and VBRM.

Figure 6: Qualitative comparison of reconstructed vector fields obtained by the three

tested methods. Zoom-in views of 10×20 pixel. From Left to Right: particles centroids

(blue ◦ : first image ; red + : second “time-delayed” image) superimposed on a particle

image ; ICCRM, VB-PTV and VBRM velocity vectors field reconstruction.

is particularly observed when two particle centroids are located at the same pixel.
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5.3. Case (iii): 3-D unsteady HIT flow

The results presented in item (ii) have demonstrated the VBRM algorithm ability to

efficiently track particles over a wide range of realistic parameters. So far, the simulation

tests were carried out on particles seeded in two-dimensional flows. Meanwhile, the

implementation of this new tracking method in realistic problems demands an evaluation

of its ability to reconstruct velocity vectors field of three-dimensional flows. The non-

negligible out-of-plane excursions of particles between two consecutive frames are related

to a reduction of the ratio of the possible amount of correspondences to the total amount

of particles, as indicated by the IFPC parameter in table 1. Therefore, the solitary

particles can be seen as a non-additive noise contribution, which impact on the tracking

performances must be evaluated. Let us remark that the time step between successive

frames is adjusted in order to set the maximum amount of out-of-plane particles to

20%, i.e. an IFPC parameter no smaller than 0.8. Therefore, for this specific test case

based on synthetic particle images at Nppp = 0.1, the true particle-density corresponding

to the amount of particles that can effectively be put in one-to-one correspondence is

N∗
ppp = 0.082.

A comparison of the performance of our tracking method with those of the

referenced ICCRM and VB-PTV is presented in table 3. The high efficiency and the

superiority of the novel VBRM tracking algorithm is clearly indicated. VBRM provides

recall and precision values both equal to 94.5%, which means that our algorithm permits

a robust and an accurate velocity-vectors estimation in the measurement plane, despite

the inherent complexity of the three-dimensional nature of the flow.

Both the reference velocity field interpolated from the available DNS database and

the resulted vector field computed by VBRM are represented as a full-size illustration

in figure 7. Their superimposition on a zoom-in view further emphasizes the great

efficiency and accuracy of the VBRM algorithm.

Table 3: Performance metrics of each tracking algorithm from THI-3D database.

Algorithm N∗
ppp Nppp recall precision

ICCRM (Brevis et al. 2011) 0.082 0.102 82.40 72.01

VB-PTV (Lei et al. 2012) 0.082 0.102 76.30 73.62

VBRM (present work) 0.082 0.102 94.52 94.45

6. Conclusion

A novel algorithm for particle matching in PTV was proposed. The approach presented

derived from vision-based features association concepts with their underlying principles

of similarity, proximity and exclusion. The principle of proximity and similarity were

classically embedded in the construction of a proximity matrix between features to
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Figure 7: Illustration of the VBRM velocity vectors reconstruction. Left: (512 × 512

pixel image) Reference velocity field (interpolated from the DNS database) at the tracked

particle position. Centre: (512× 512 pixel image) VBRM Reconstructed velocity field.

Right: zoomed view, 250 × 250 pixel area) Superimposition of the reference and the

VBRM reconstructed velocity fields.

be put in one-to-one correspondence. The novelty of this approach was to use this

proximity matrix as an initialization of an iterative relaxation labelling technique based

on matching probabilities. The singular value decomposition usually performed on the

proximity matrix was instead applied to the matching probability matrix accounting

for the similarity of the local flow structure in this study. The principle of exclusion

embedded in this former step was further guaranteed by the dual calculation approach

implemented in our algorithm. Hybridization with PIV pre-analysis was also suggested

to help with parameters estimation.

Performance tests were conducted with synthetically generated particle images and

against an exploration of the generating conditions (particle density, background noise,

2-D or 3-D flow configuration).

Overall, the proposed technique was robust and efficient yet in noisy conditions,

and the comparison with other conventional tracking methods demonstrated its ability

to reliably match significantly more particles out of a dense particle image field

(Nppp > 0.08) and/or with large particle intensity pixels variation.
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Appendix A. Determination of the nearest matrix to an orthogonal matrix

This demonstration is adapted from Schonemann, P. H. (1966) to this specific vision-

based problem.
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Statement problem

Let G ∈ Mm,n denote an orthogonal real matrix, the nearest matrix (in a statistical

sense) of G is an orthogonal matrix, A ∈ Mm,n satisfying A = TEUT (T indicates the

transpose matrix).

E ∈ Mm,n is a matrix of same size as G satisfying Eij = 1 if i = j and Eij = 0

otherwise.

T ∈ Mm,m,U ∈ Mn,n are orthogonal matrices. The columns of T and U are the

orthogonal eigenfunctions of GGT and GTG respectively. Therefore G = TDUT

with D a rectangular matrix of same size as G and with diagonal elements which are

eigenvalues of G.

Proofs

Mathematically, one has to minimize tr(ETE) with the following constraints: E = A−G

and ATA = I.

Let g1 = tr(ETE). Then g1 = tr((A−G)T (A−G)) = tr(ATA− 2ATG + GTG). As

ATA− I = 0, whatever L ∈ Rm,n, L(ATA− I) = 0.

Let g2 = tr(L(ATA− I)) and g = g1 + g2. The real function g(A) has an extremum if
∂g

∂A = 0. After calculation, one obtains

∂g

∂A
= 2A− 2G + A(L + LT ) (A.1)

This implies that an extremum is reached if G = A + AQ with Q = (L + LT )/2.

Immediately, Q is a symmetric matrix Q = A−1G−I = QT with A−1 = AT (orthogonal

matrix). Then one obtains: ATG = (ATG)T = GTA leading to

GTG = ATGGTA or GGT = AGTGAT (A.2)

The diagonalization of both symmetric GGT and GTG matrices having the same

eigenvalues, leads to GGT = TDpT
T and GTG = UDpU

T where T and U are

orthogonal matrices and the diagonal entries of Dp are the eigenvalues of both matrices.

Following equation A.2, TDpT
T = AUDpU

TAT that means T = AU and A = TEUT .

If the singular value decomposition of G provides V and W matrices such as G =

WDVT , then GGT = WD2WT with D =
√

Dp and W = T. Following the same

reasoning, one has V = U.

The demonstration is achieved and the best correlated matrix A with G is the one

satisfying A = TEUT , with G = TDUT .
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