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Abstract

In the insurance broker market, commissions received by brokers are closely related

to so-called “customer value”: the longer a policyholder keeps their contract, the more

profit there is for the company and therefore the broker. Hence, predicting the time at

which a potential policyholder will surrender their contract is essential in order to optimize

a commercial process and define a prospect scoring. In this paper, we propose a weighted

random forest model to address this problem. Our model is designed to compensate for the

impact of random censoring. We investigate different types of assumptions on the censor-

ing, studying both the cases where it is independent or not from the covariates. We compare

our approach with other standard methods which apply in our setting, using simulated and

real data analysis. We show that our approach is very competitive in terms of quadratic

error in addressing the given problem.
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1 Introduction

In insurance brokerage, an important problem is to evaluate what is known as “prospect value”.

Roughly speaking, this represents the rentability of a potential policyholder. More effort could

then be dedicated to attract a prospect with probable high profitability. A first approach to eval-

uate this prospect value is to predict how long a given current customer will keep their contract.

To investigate this, brokers now have access to large databases of potentially relevant informa-

tion. In the present paper, our aim is to discuss an extension of the random forest algorithm

which takes into account specific details of this framework. Among these, a crucial issue is to

deal with right-censoring, which is a common problem when dealing with duration variables.

Due to the temporal phenomenon that we study, a significant number of observations are incom-

plete and require particular care to counterbalance the corresponding lack of information. The

method we propose consists of an appropriate weighting of the observations to compensate for

censoring. We discuss different approaches and compare them using simulation and real data

analysis.

The random forest algorithm was first proposed in Breiman (2001). The underlying aim is

to estimate E[φ(T )|X] with the help of bootstrap data augmentation and aggregation of regres-

sion trees. In our case, T is a right-censored variable, X a vector of covariates, and φ a known

gain function, namely the value of a customer remaining a time T in the portfolio. In the pres-

ence of censoring Hothorn, Bühlmann, et al. (2006) proposed a generalization extending the

random forest algorithm. Using the inverse probability of censoring weights (IPCW) approach,

described in Van der Laan & Robins (2003), they introduce weights to compensate for censor-

ing. Additionally, Steingrimsson et al. (2016, 2018) combined doubly robust estimators with

survival trees. The novelty of our approach is to compute IPCW in situations where censoring

depends on the covariates, as it was suggested in Molinaro et al. (2004), and we will discuss

its performance compared to other weighting strategies. The IPCW technique is a very general

one: once the weights have been determined, any regression technique can be generalized to

this framework – see for example Koul et al. (1981) for linear regression, Goldberg & Kosorok

(2017) for support vector machines, and Lopez et al. (2016) for classification and regression

trees (CART). The difficulty in defining appropriate weights is in determining which identifia-

bility assumption is reasonable given the situation. The weights may be considerably different

if censoring is allowed to depend on covariates X (see e.g., Lopez et al. (2013)), or not (see e.g.,

Stute (2003)), and, as we will show on real data, this has important consequences on the results

of the procedure.

Another modification of random forests to the presence of censoring is the random sur-
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vival forest (RSF) of Ishwaran et al. (2008) (see also Ishwaran & Kogalur (2007)). In this

procedure, a log-rank test is used to split the observations at each computational step of the the

regression trees. This type of procedure for growing a survival tree was previously proposed in

Ciampi et al. (1986) and Segal (1988). It was also studied in LeBlanc & Crowley (1993) and

in Hothorn, Hornik, & Zeileis (2006) in the context of conditional inference trees. Moreover,

Zhu & Kosorok (2012) have studied the impact of recursively fitted RSF models on prediction

quality. LeBlanc & Crowley (1992) introduced the relative risk tree (RRT) algorithm, where a

proportional hazard likelihood is used as the criterion at the splitting step. Forests of relative

risk trees were investigated in Hothorn et al. (2004) and Ishwaran et al. (2004). The exten-

sion to left-truncation of this approach was considered in Fu & Simonoff (2016). Additional

splitting criteria examined in the literature include the exponential log-likelihood in Davis &

Anderson (1989), and splits determined through analysis of residuals of the Cox model (Ahn

& Loh (1994)). More recently, Zhu (2013) and Zhu et al. (2015) proposed the reinforcement

learning trees (RLT) algorithm which consists in fitting an embedded model at each step of the

tree construction to improve the selection of the splitting variable, while Li & Bradic (2019)

explored censored quantile regression using random forests.

While the theoretical properties of tree and forest-based learning algorithms are not fully

understood yet, the consistency of RSF was first investigated in Ishwaran & Kogalur (2010) un-

der the assumption that X takes a finite number of values. These properties were further studied

in Cui, Zhu, & Kosorok (2017) and Cui, Zhu, Zhou, & Kosorok (2017) which provided a the-

oretical framework to consider the consistency of survival forests, and established consistency

under specific conditions that include random splitting rules and splitting rules with marginal

signal checking. Cui, Zhu, Zhou, & Kosorok (2017) also underlined the problem of non opti-

mal split selection for usual survival tree methods. The method we study in this article does not

suffer from such problem since it requires less assumptions. Finally, a review of the literature

on survival trees can be found in Bou-Hamad et al. (2011).

The rest of the paper is organized as follows. In Section 2, we present the specific details of

the types of observations we examine here, and describe the relevant random forest algorithm

we have adapted to censoring. A simulation study is performed in Section 3, while the real-

world behavior of our procedure is illustrated in Section 4, where we present an application of

this weighted random forest to model the churn behavior of health insurance policy holders.

Further results as well as explanations about the choice of the random forest parameters are

provided in supplementary material.
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2 Description of the method

2.1 The survival regression setting

To study the termination risk, we introduce the lifetime of a contract, denoted T . This duration

is not directly observed due to the presence of right-censoring (which is a classical issue in

survival analysis). Instead of observing T , we observe a pair of variables (Y, δ) defined as

Y = min(T,C),

δ = 1T≤C.

The need for the censoring variable C is due to the fact that some contracts may not have been

terminated at the end of the observation period. Additionally, a vector of covariates X ∈ X ⊂

Rp is available, in order to identify certain characteristics that may influence the termination

time. Observations correspond to i.i.d. replicates (Yi, δi, Xi)1≤i≤n of this set-up. For the sake

of simplicity, we consider the case where T and C are continuous random variables. For any

continuous random variable U, we will denote by S U(t) = P(U > t) its survival function.

Our aim is to estimate the function f (x) = E[φ(T )|X = x]. In our application, φ is a pricing

function that associates a unitary profit with a customer remaining a time T with the portfolio

in question.

Since T is not directly observed because of censoring, classical estimators of f (random

forests, as developed below, or any other regression estimator) are biased if no attempt is made

to correct for this phenomenon. The procedure we propose is based on the inverse probability

of censoring weighting (IPCW, see e.g., Van der Laan & Robins (2003)) which, through an

appropriate weighting of the observations, aims to suppress this bias. This general method is

described in Section 2.2 below.

2.2 Inverse probability of censoring weighting

2.2.1 Introduction

IPCW is a general principle which consists of correcting the bias introduced by censoring.

Given a continuous random variable V (possibly multidimensional), the key task is to determine

which weights should be put on an uncensored observation in order to retrieve the distribution

of the variable of interest.
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Proposition 1 (The IPCW principle) Let γ =

 1 if V is not censored

0 if V is censored
and V ′ = γV.

Let p(v) = P(γ = 1|V = v) and assume that ∀v, p(v) > 0.

Then for any function ψ,

E
[
W · ψ(V ′)

]
= E

[
ψ(V)

]
, with W =

γ

p(V ′)
.

This result states that given a random variable V that is not always observable, it is still

possible to estimate its distribution based on the observations (V ′i , γi)i=1,..,n. This is done by

attributing weights γi
p(V′i ) to the observations, with p(v) the probability of V being non-censored,

given V = v.

In our setting, we can apply the IPCW routine to the vector (T, X). This results in the

equality:

E
[
W · ψ(Y, X)

]
= E

[
ψ(T, X)

]
, (1)

where W = δ
p(Y,X) and p(t, x) = P(δ = 1|T = t, X = x) = P(t ≤ C|T = t, X = x).

In the survival setting, it is generally impossible to infer values for p(t, x) since – as it is

well known – the identifiability of the model requires assumptions on the dependence between

T and C that cannot be statistically verified (see Section 4.1 in Lagakos (1979)). However, with

assumptions on the dependence between T and C, it is possible to compute p(t, x).

Let H1 and H2 denote the following hypotheses:

H1 : P(t ≤ C|X = x,T = t) = S C(t),

H2 : P(t ≤ C|X = x,T = t) = S C(t|X = x),

with S C(·|X = x) the conditional distribution function of C given X = x. Sufficient conditions

for these hypotheses to be satisfied are, respectively, (T, X) y C (H1) and T y C conditionally

on X (H2).

Clearly H2 is more general than H1, but requires estimation of a conditional survival func-

tion, which is more tricky. Hence, if the strongest assumption H1 is reasonable, it may be

interesting to use it instead of H2, in order to facilitate computation of the appropriate weights.

The obvious drawback is that, if the censoring is dependent on the covariates, H1 does not hold.
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In what follows, we consider these two assumptions as separate cases, but both are handled

simultaneously. Depending on the hypothesis we make, we note W = δ/S C(Y) (H1) or W =

δ/S C(Y |X) (H2), so that in both cases equation (1) holds. We also note for all i ∈ {1, .., n},

Wi = δi/S C(Yi) (or Wi = δi/S C(Yi|X = Xi)) the exact IPCW weights. However, the function S C

(resp. S C(·|X)) is unknown and we have to estimate it in order to compute the weights W.

2.2.2 Computation of the weights

Computation of the IPCW weights requires us to estimate the survival function of the censoring

variable. In many applications, the roles of the variables T and C are symmetric, and the

censoring variable needs to be studied using survival models. In our work, we have used three

strategies to estimate S C (resp. S C(·|X)):

• S C estimated with the Kaplan-Meier (KM) estimator (Kaplan & Meier (1958)):

Ŝ C(t) =
∏

Yi≤t

(
1 − (1 − δi)/

∑n
j=1 1Y j≥Yi

)
.

• S C(·|X) estimated with the Cox model (Cox (1972)). This model assumes that the hazard

rate has the form: λC(t|X = x) = λ0(t) · e
tβ·x with β a vector of coefficients, and for some

random variable U, λU = −S ′U/S U .

• S C(·|X) estimated with the random survival forest (RSF) algorithm (Ishwaran et al. (2008)).

An alternative idea for estimating S C(·|X) would be to use a kernel estimator such as the

conditional Kaplan-Meier estimator of Beran (1981) and Dabrowska (1989). Nevertheless, this

would rely on kernel smoothing whose behavior deteriorates when the dimension of X increases

(i.e. p > 3) as noted in Lopez et al. (2013). This dimensional constraint is the reason for

imposing a stronger assumption on the conditional distribution of the censoring as a feasible

compromise.

Given estimators Ŝ C (resp. Ŝ C(·|X)) of S C (resp. S C(·|X)), the weights (Ŵi)i=1,..n are com-

puted using the formula Ŵi = δi/Ŝ C(Yi) (resp. Ŵi = δi/Ŝ C(Yi|Xi)). Therefore, each method

used to estimate S C leads to different IPCW weights, then to different estimators of the joint

distribution of (T, X). In the following section, the weights (Ŵi)i=1,..n refer to any collection of

weights computed with one of the three methods.
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2.3 A weighted random forest algorithm for the regression of right-censored
data

Random forest is an ensemble learning algorithm which consists of an aggregation of elemental

regression trees (base learners), see e.g., Breiman (2001) and Biau & Scornet (2016). A regres-

sion tree (see Breiman et al. (1984)) produces a partition of a dataset using successive binary

splits based on values of the covariates. In each subset obtained (called a leaf ), the observa-

tions correspond to a homogeneous group. The key behind group formation is the choice of the

splitting criterion (e.g., least squares) which aims to reduce heterogeneity at each step.

The random forest algorithm is a combination of two methods: a classification and regres-

sion tree (CART) algorithm to compute each tree, and a bagging algorithm (bagging means

bootstrap aggregating, see Breiman (1996)) to introduce randomness into partition formation

by building bootstrap samples. Compared to a single regression tree approach, tree aggregation

in random forests stabilizes results by making them less sensitive to changes in the database.

The rest of this section is devoted to adapting the random forest algorithm to the presence of

right censoring. In Section 2.3.1, we propose a modification of the splitting criterion to work in

our framework. Computation of predictions given a tree is shown in Section 2.3.2. An overall

description of the algorithm is given in Section 2.3.3, and we discuss its parameters in Section

2.3.4.

2.3.1 Split selection

In the building of a binary tree, the main interest is in the way splits are determined. Here, we

describe the split selection procedure used at each node of the tree, for the growing of one tree

of the forest. This tree is built using a bootstrap sample of the initial data.

Let Dn be a list of indices in {1, . . . , n} which represents a bootstrap sample of size n

of the initial data, drawn uniformly with replacement. Given a set B ⊂ X, let nDn,w(B) =∑
i∈Dn

Wi1Xi∈B be the weighted number of observations of Dn that belong to B, and φ̄Dn,w
B =

1/nDn,w(B)
∑

i∈Dn
Wiφ(Yi)1Xi∈B the weighted mean of φ(Yi) for the observations within B (we set

φ̄Dn,w
B = +∞ if nDn,w(B) = 0).

Let A ⊂ X be a node of a tree, j ∈ {1, . . . , p} a variable, and u real number. Define:

Lw(u, j, A,Dn) =
1

nDn,w(A)
·
∑
i∈Dn

Wi ·

(
φ(Yi) − φ̄

Dn,w
Al

1X( j)
i ≤u − φ̄

Dn,w
Ar

1X( j)
i >u

)2
· 1Xi∈A,

where Al = A ∩ {X( j) ≤ u} and Ar = A ∩ {X( j) > u}.
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We also define nDn,ŵ(B), φ̄Dn,ŵ
B and Lŵ(u, j, A,Dn) as the same quantities with the weights Wi

replaced by the weights Ŵi.

The binary split chosen at node A is A = A∗l ∪A∗r , with A∗l = A∩{X( j∗) ≤ u∗}, A∗r = A∩{X( j∗) >

u∗}, and (u∗, j∗) given by:

(u∗, j∗) = argmin
j ∈ {1, .., p}

u ∈
{
X( j)

i : i ∈ Dn s.t. Xi ∈ A
}

Lŵ(u, j, A,Dn).

For a heuristic understanding of the algorithm, consider a fixed set A. We abusively assume

that A is independent from the data, which is not correct in practice since A is selected from

the data. Under this assumption, we can study the asymptotics of Lw(u, j, A,Dn) since the

observations (Yi, Xi)i∈Dn which belong to A are i.i.d. and follow the conditional distribution

L ((Y, X)|X ∈ A). Until the end of this section, we assume that A is independent from the data.

With Az standing for either Al or Ar, we have from the law of large numbers and equation

(1),

φ̄Dn,w
Az

−→
n→+∞

E
[
W · φ(Y)|X ∈ Az

]
= E

[
φ(T )|X ∈ Az

]
,

and

1
nDn,w(Az)

·
∑
i∈Dn
Xi∈Az

Wi ·
(
φ(Yi) − φ̄

Dn,w
Az

)2
−→

n→+∞
E

[
W ·

(
φ(Y) − E[W · φ(Y)|X ∈ Az]

)2∣∣∣∣X ∈ Az

]

= E
[(
φ(T ) − E[φ(T )|X ∈ Az]

)2∣∣∣∣X ∈ Az

]
.

Then, by splitting the sum in Lw(u, j, A,Dn) between Al and Ar, we get:

Lw(u, j, A,Dn) −→
n→+∞

L∞(u, j, A),

with

L∞(u, j, A) =
P(X ∈ Al)
P(X ∈ A)

· E
[
(φ(T ) − E[φ(T )|X ∈ Al])2

∣∣∣∣X ∈ Al

]
+

P(X ∈ Ar)
P(X ∈ A)

· E
[
(φ(T ) − E

[
φ(T )|X ∈ Ar

]
)2
∣∣∣∣X ∈ Ar

]
.
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Therefore we observe that, at the cost of replacing Ŵi by Wi, the selected split is asymptoti-

cally the one which minimizes the sum of the within variances of the two child nodes, weighted

by their relative importance.

It is also important to see that given Dn and the splitting criteria L, the growing of a tree is

deterministic. Therefore we can define a function T (D, L) which outputs a tree given a sample

and a splitting criterion.

2.3.2 Tree prediction

The growing of a binary tree T results in a partition (Xk)k=1,..,K of the input space. In order to

predict the mean value of the target variable, a natural estimator is mŵ(x) =
∑K

k=1 φ̄
Dn,ŵ
Xk

1x∈Xk .

Under H1/H2 we have for the denoised version mw,

mw(x) −→
n→+∞

K∑
k=1

E
[
φ(T )|X ∈ Xk

]
1x∈Xk ,

which shows that mŵ approximates a piecewise constant estimator of f .

However, though the growing step is done using a least-square criterion – which is well-

adapted to mean regression – the prediction made in the terminal leaf may not necessarily be a

sample mean (e.g., it may be a quantile – see Meinshausen (2006)). We can formalize this by

defining a functionM(T ,D,m) which outputs a predictor given a binary tree, a sample, and a

type of terminal leaf-based estimator. In the following section, we propose a second terminal

leaf estimator for the mean within a leaf.

Both for tree prediction and split selection, note that the method we propose is a generaliza-

tion of the classical CART regression algorithm. Indeed, setting the weights Wi all equal to 1

results in Breiman’s original algorithm. We note L and m the split criteria and the terminal leaf

estimator obtained when setting the weights Wi all equal to 1.

2.3.3 Description of the algorithms

The tools we developed in previous sections can be used in different random forest algorithms.

We have studied three survival weighted random forests (swRF) in this article: swRF1, swRF2

and swRF3. These algorithms differ in the way weights Ŵi are introduced.

In swRF1 the weights Ŵi are taken into account in the bootstrap part of the random forest.
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Based on the whole training set, we build Ŝ C (or Ŝ C(·|X)) and deduce (Ŵi)i=1,...,n. Then, all

bootstrap samples of the forest are drawn with replacement and with sampling probabilities

proportional to the weights (Ŵi)i=1,...,n. A CART tree is then grown on each bootstrap sample,

using the classical algorithm (i.e. with L and m which denote the splitting criterion and the

terminal leaf estimator with uniform weights).

In algorithms swRF2 and swRF3, bootstrap samples are drawn uniformly with replacement,

as it is done in the classical random forest algorithm, and the weights are computed on the boot-

strap samples. This means that the weights of a given observation may vary from tree to tree.

The only difference between swRF2 and swRF3 is the terminal leaf estimator used. In swRF2,

mŵ is used as described in Section 2.3.2, whereas in swRF3 we use mŵloc(x) =
∑K

k=1 φ̄
Dn,ŵloc
Xk

1x∈Xk .

In fact, mŵloc is similar to mŵ except that the weights used in each terminal leaf are computed

using a Kaplan-Meier estimator inside the leaf.

Pseudocode of the three algorithms we study is shown in Algorithms 1 and 2 below.

Algorithm 1: swRF1
Input : Data : (Yi, δi, Xi)i=1,..,n, M > 0 : number of trees
Output: Ensemble predictor swRF1

1 Compute weights (Ŵi)i=1,..,n : Ŵi = δi/Ŝ C(Yi) (or Ŵi = δi/Ŝ C(Yi|Xi))
2 for j = 1, . . . ,M do
3 DrawDn, j : sample n observations w.r.t. weights (Ŵi)i=1,..,n, with replacement
4 Build T j = T (Dn, j, L)
5 m̂ j =M(T j,Dn, j,m)
6 end

return : m̂swRF1 = 1
M

∑M
i=1 m̂ j

Algorithm 2: swRF2 & swRF3
Input : Data : (Yi, δi, Xi)i=1,..,n, M > 0 : number of trees, mode ∈ {1, 2} : type of

terminal leaf estimator
Output: Ensemble predictor swRF2 (or swRF3)

1 for j = 1, . . . ,M do
2 DrawDn, j : sample n observations uniformly with replacement
3 Compute weights (ŴDn, j

i : i ∈ Dn, j) : ŴDn, j

i = δi/Ŝ
Dn, j

C (Yi)(
or ŴDn, j

i = δi/Ŝ
Dn, j

C (Yi|Xi)
)

4 Build T j = T (Dn, j, Lŵ)
5 m̂ j =M(T j,Dn, j,mŵ) if mode = 1 (m̂ j =M(T j,Dn, j,mŵloc) if mode = 2)
6 end

return : m̂swRF(2,3) = 1
M

∑M
i=1 m̂ j
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Remark 1 For each of swRF1, swRF2 or swRF3, we can build three models which correspond

to the three ways to estimate the weights (Wi)i=1,...,n developed in Section 2.2.2.

A practical limitation of the weighted random forest algorithm is that for a large non-

censored observation Yi, the corresponding weight tends to be very big (Cui, Zhu, & Kosorok

(2017)). This is even more so in the conditional case if X is multidimensional, since the esti-

mated survival function Ŝ C(·|X = x) may decrease quickly for some values of x. Overly-large

weights may give too much importance to a single observation, both in terms of split selection

and terminal leaf estimation.

We propose two ways to deal with this problem. The first is to threshold the weights Ŵi so

that the maximum ratio between two nonzero weights does not exceed some value. Let rmax be

the maximum ratio allowed between two nonzero IPCW weights. The choice of the value for rmax

corresponds to a typical bias-variance trade-off. Indeed, thresholding the weights introduces

bias in the swRF procedure since large non-censored observations get smaller weights, and thus

predicted values tend to be lower, but on the other hand this lowers the estimator’s variance,

which is high when some observations have very large weights.

The second strategy is to use swRF to model the time T ′ = min(T,Tmax) and not the original

time T . This is natural because we are working on the estimation of the expected value for T ,

and the problem of estimating the average of a right-censored time is generally hard to solve;

indeed, there is high variance in the estimation of the tail of the distribution, which causes

fluctuations in the estimated mean.

In the following, we will combine the two strategies to achieve good accuracy using swRF.

2.3.4 Parameters of the random forest algorithm

In our earlier presentation of random forests, we made no mention of the parameters which need

to be specified to build them. Since there is a large number of parameters, and since parameters

may differ according to the random forest implementation in question, we only mention the

most common ones – those which have been shown to have the strongest impact on the resulting

model.

The main parameters in a random forest are summarized in Tab. 1. The parameters minlea f

and maxdepth impact tree size in the forest, and we discuss their influence on the performances

of the algorithms in supplementary material. As for the parameter mtry, it is especially impor-

tant in high dimensional settings.
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Parameter Description

minlea f
minimum value for the number of observations that should be present in a
leaf; a split that would result in a leaf of less than minlea f observations
cannot be selected

maxdepth
length of the longest downward path from the root node to a leaf of the tree; a
tree only consisting of the root node has depth 0.

mtry
number of candidate variables that are randomly sampled at each node when
choosing the best split

Tab. 1: Parameters of the random forest algorithm.

2.4 Assessing the quality of a model’s fit

In the applications which follow, our strategy to evaluate a fitted model relies on train-test

approaches: letDtr andDte be train and test sets of indices. However, due to the right censoring,

the usual accuracy criterion used in regression settings cannot be computed on the test set.

In fact, since the problems of bias on the test and train samples are similar, we can use for

model validation the same sample fitting method with IPCW that we use for model training.

Let (Ŵi)i∈Dte be the estimated IPCW and f̂ the predictor function of a fitted model. Then, the

quantity 1/nte ·
∑

i∈Dte
Ŵi · (φ(Yi)− f̂ (Xi))2 is an estimator of the mean squared error (MSE) of the

model f̂ (with nte = Card(Dte) the number of test observations). This is the method suggested

in Gerds & Schumacher (2006) and the one we adopt in this article. One disadvantage is that

again this approach raises the question of the choice of weights to consider for IPCW; in the

same way as for training, we choose here to compute the validation error corresponding to three

types of weight: KM, Cox and RSF. Therefore, we use not one but three criteria to compare

model performance. Computation of the IPCW weights is performed separately on the training

and test sets.

The problem of model validation in the presence of censoring has received considerable

attention in the literature, and other performance measures exists. The C-index (Harrell et al.

(1982)), which generalizes the Kendall tau for right-censored data and is related to the area

under the ROC curve (Heagerty & Zheng (2005)), is very popular, so we also compute it when

comparing models.
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3 Simulated data example

3.1 Technical details

3.1.1 Data simulation

In our simulations, the covariates X are distributed as marginal uniform distributions on [−1, 1]

linked through a Gaussian copula with covariance given by an AR(1) covariance matrix with

coefficient ρ, i.e., a matrix Kρ such that Kρ
i, j = ρ|i− j|. The coefficient ρ is random and uniformly

distributed on [0, 0.6].

We investigate three experimental settings which correspond to three different models for

L (T |X), the distribution of T given X. In the following description of the three cases, λT and kT

are constants that will be specified later, and Weibull(λ, k) refers to the distribution with density

g(u) = k/λ · (u/λ)k−1e−(u/λ)k
1u≥0:

• Case 1 (Weibull): T |(X, βT ) ∼ Weibull(λT e−
tβT ·X, kT ), with βT ∼ N(µ = 0, σ2 = 0.04 · Ip)

and βT y X.

• Case 2 (Independent mixture of Weibulls): T |(X,G, (βT, j) j=1,...,4) ∼ Weibull(λT e−
tβT,G ·X, kT )

with:

– G ∼ Uni f {1, 2, 3, 4} and G y X, (βT, j) j=1,...,4,

– (βT, j) j=1,...,4 i.i.d. with ∀ j ∈ ~1, 4�, βT, j ∼ N(µ = 0, σ2 = 0.09 · Ip) and (βT, j) j=1,...,4 y

X.

• Case 3 (Covariate-dependent mixture of Weibulls, p ≥ 2):

T |(X,G, (βT, j) j=1,...,4) ∼ Weibull(λT e−
tβT,G ·X, kT )

with:

– G = 1X1≥0,X2≥0 + 2 · 1X1≥0,X2<0 + 3 · 1X1<0,X2≥0 + 4 · 1X1<0,X2<0,

– (βT, j) j=1,..,4 i.i.d. with ∀ j ∈ ~1, 4�, βT, j ∼ N(µ = 0, σ2 = 0.04 · Ip) and (βT, j) j=1,...,4 y

X.

The nature of L (C|X) is the same in every setting: C|X ∼ Weibull(λCe−
tβC ·X, kC) with λC

and βC fitted to satisfy certain conditions (see Algorithm 3).
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In each setting, we test the algorithm for two different functions φ: φ(t) = t and φ(t) =

log(t + 1). We also assess the sensitivity of the results to the censoring rate of the simulated data

(q = 0.1, 0.3 or 0.5) and to the strength of the dependence between C and X (measured in terms

of percentage of explained variance: R2C = 0.05 or 0.1).

The process of data simulation is detailed in Algorithm 3.

Algorithm 3: Simulated data generation
Input : n : number of simulated observations

p : dimension of X
q : proportion of censored observations
R2C : proportion of explained variance for C|X
kC : shape parameter of C
(λT , kT ) : scale and shape parameter for T
Tmax : threshold for T

Output: Dataset of generated data
1 Draw ρ uniformly on [0, 0.6]
2 Simulate (Xi)i∈1,...,n i.i.d. with X ∼ GaussianCopula(Kρ) and marginals Uni f [−1, 1]
3 Generate (Ti)i=1,...,n from case 1, 2 or 3
4 Draw βC0 ∼ N(µ = 0, σ2 = 0.04 · Ip), let βC = η · βC0 , and calibrate η so that the

empirical estimate of the explained variance R̂2C satisfies R̂2C ≈ R2C

5 Calibrate λC so that the empirical proportion of censored observations q̂ satisfies q̂ ≈ q
6 Generate (Ci)i=1,...,n with ∀i, Ci ∼ Weibull(λCe−

tβC ·Xi , kC)
7 Check on the simulated (Ci)i=1,..,n that R̂2C ≈ R2C and q̂ ≈ q
8 Build ∀i = 1, . . . , n, Yi = min(Ti,Ci), δi = 1Ti≤Ci

9 Build ∀i = 1, . . . , n, T ′i = min(Ti,Tmax), Y ′i = min(T ′i ,Ci), δ′i = 1T ′i ≤Ci (cf. Section 2.2.2.
Remark: q̂ at step 5 is derived from T ′ and not T )

return : Dataset with columns X, T , C, Y , δ, T ′, Y ′, δ′

We take n = 2000, p = 6, λT = 100, kT = 1, and kC = 0.8 as parameters for the data

simulation. The parameter Tmax is set to 1000.

3.1.2 Different models

In our experiments, we compare the performance of sixteen models. First, we have three swRF1

models, associated with Kaplan-Meier (swRF11), Cox (swRF12) and random survival forest

(swRF13) weights, respectively.

For swRF2 and swRF3, many weight computations are necessary since weights are com-

puted on the bootstrap samples. The use of RSF to compute the weights is thus computationally

intensive, so for these two models we only use KM (swRF21 and swRF31) and Cox (swRF22

and swRF32) weights.
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We also test five other algorithms to compare with swRF. They all follow the same idea:

first, fit a model to estimate S T (·|X) (which gives an estimator Ŝ T (·|X)), and second, integrate

Ŝ T (·|X) to get an estimator of E[φ(T )|X = x]: f̂ (x) = −
∫
φ · dŜ T (·|X = x). Five different

models are used to estimate S T (·|X) at the first step : the Cox model, the RSF algorithm, the

forest of relative risk trees (RRT) algorithm of Ishwaran et al. (2004), and two versions of the

reinforcement learning trees (RLT) algorithm described in the Section 4 of Zhu (2013) (one

which uses reinforcement learning and one which does not). This gives five benchmarks for

swRF that we call respectively RSFr, Cr, RRTr, RLTr (with reinforcement) and nRLTr (without

reinforcement).

Since here we are working with simulated data, it is interesting to consider, as a baseline

indicator, the performance of the random forest algorithm as if there was no censoring in the

data. This random forest is trained on the non-censored data (Xi,Ti)i=1,..n, and the associated

model is denoted RF. Similarly, it is interesting to consider the exact IPCW weights Wi, as de-

scribed in Section 2.2.1, for the use of swRF. The exact IPCW weights correspond to theoretical

weights computed using the true conditional survival function of the censoring S C(·|X) which is

known in our simulated data application. This gives three additional comparison models called

swRF14, swRF24 and swRF34.

So that the different random forest models involved are comparable, all of the random forests

in the simulations are set with the same values for the three parameters we evoked in Section

2.3.4. The parameter mtry is set to 6 so that mtry = p and there is no randomness involved in

split selection. We also take maxdepth = 4 and minlea f = 50, as justified in supplementary

material.

The swRF models are trained on the threshold data (Y ′, δ′, X) with Y ′ = min(T ′,C), setting

rmax = 50 (see the definitions of T ′ and rmax in the Remark 1 of Section 2.3.3). RF is trained on

the data (T ′, X), whereas Cr, RS Fr, RRTr, RLTr and nRLTr are trained on the data (Y, δ, X). For

the latter models, we then compute the prediction at the point x with f̂ (x) = −
∫
φ·dŜ T ′(·|X = x),

where Ŝ T ′(t|X) = Ŝ T (t|X) · 1t≤Tmax .

3.2 Results and analysis

3.2.1 Performance of the models

To compare the models, we generated 100 simulated datasets of 2000 observations with Algo-

rithm 3. For each iteration, we train all models on the same 1000 observations, and evaluate

them on the 1000 remaining ones. Model accuracy is measured in terms of the mean squared
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error (MSE), which can can be computed in the simulated data context since we have access to

all of the φ(Ti) values. The means of the MSE over the 100 i.i.d. replicates of the simulation

process are given in Fig. 1. To keep the figure visually understandable, we chose to represent in

the main text only the results for the most illuminating models. Nevertheless, we emphasize that

the following analysis is consistent with the complete results, obtained for the sixteen models,

that are given in supplementary material.

The results on simulated data help us to learn more about the various models. An initial

observation is that the results are quite affected by the φ function being considered, and less

by changes in the distribution of L (T |X). Of course, RF is generally the best model, except

when the constrained form of the Cox model is well-suited to the problem, whereby Cr may

outperform RF. Recall that the RF algorithm should only be seen as a benchmark that cannot

be used in practice, since it relies on the complete (uncensored) observations. For q = 0.1, the

performance of the swRF models is very close to that of RF, which is natural since swRF is

equivalent to RF in the non-censored case (i.e., q = 0).

We can also see that swRF models are more sensitive to an increase in censoring rate than

the comparison methods which model directly S T (·|X), namely: Cr, RS Fr, RRTr and RLTr.

The swRF models perform well for q = 0.3 and 0.1, but the MSE is much larger when q = 0.5.

For φ(t) = t, RS Fr and Cr perform very well overall, but for φ(t) = log(t +1), the swRF models

are usually more accurate, especially when q = 0.1 and q = 0.3, or the data is simulated as a

covariate-dependent mixture (Case 3).

We can also compare the swRF models with each other. We first remark that the swRF

scores are organized in terms of the groups of swRF (swRF1 and swRF3). While for φ(t) = t

and q = 0.5 swRF3 models achieve high MSE due to particular iterations where swRF3 does

not work well, the results for φ(t) = log(t + 1) are very different for swRF1 and swRF3. The

difference is mostly due to the terminal leaf estimator used (this is confirmed by the results of

swRF2 in supplementary material). Indeed, we can see that the results of swRF3 are closer to

the results of RS Fr, RRTr and RLTr, and the terminal leaf estimators used in these models are

almost the same; swRF3 relies on a within leaf nonparametric estimation of the distribution of

T using a KM estimator (i.e. mŵloc), whereas the other models rely on a Nelson-Allen estimator

(Aalen (1978)) as explained in Ishwaran & Kogalur (2007). Also, the type of weights we

consider has a second-order impact on the results, which becomes more significant with larger

censoring rates. However, it is interesting to note that comparing the results of swRF11 and

swRF13, we see that conditional weights computed with RSF tend to give better results than

the Kaplan-Meier ones. By comparing the results of swRF32 and swRF34, we observe that
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Fig. 1: Results on simulated data.

For each setting, the mean of the MSE values over 100 i.i.d. replicates of the simulation process is shown. The
censoring rate q is equal to 0.1, 0.3, or 0.5, while the percentage of explained variance of C given X: R2C , is set to
0.05 or 0.1.
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Cox IPCW and exact IPCW lead to very close MSE. This shows that Cox IPCW (but also RSF

IPCW as we will see in the next section) are good proxies for exact IPCW.

3.2.2 Correlations between weighted MSE (IPCW) and MSE

The results shown in Fig. 1 are estimated MSE which do not suffer from the effects of censoring.

Since such estimators are not available for real data studies, in practice we rely – as explained in

Section 2.4 – on weighted estimators (involving KM, Cox, RSF, or uniform weights) when com-

paring models. Therefore, it is of interest to compute, in the simulated data case, correlations

between the non-censored MSE and weighted approximations of it. We added to the results the

correlations with the exact (theoretical) weights which are available in the simulated data case.

The average values of these correlations are displayed in Tab. 2. These results show that RSF

and Cox weights better replicate the non-censored MSE than the KM ones, and therefore offer

better comparison criteria for model selection. Let us note that RSF and Cox weights are even

more accurate than exact weights. Such type of phenomena have already been observed in other

censored regression models. For example, in the case of linear regression, Koul et al. (1981)

noticed that the asymptotic variance of their slope estimator was smaller using KM weights

rather than the true distribution function of the censoring (see their Remark 4.5 p. 1280). As

a possible interpretation, as pointed by Koul et al. (1981), one may claim that the information

contained in the censored observations would be completely lost if we were using exact weights,

while estimation of the distribution of the censoring relies on the censored observations. On the

other hand, the criterion based on uniform weighting of the non-censored observations has little

correlation with the non-censored criterion, so we should not rely on it.

q R2C RSF weights Cox weights exact weights KM weights unif. weights
0.10 0.05 0.91 0.91 0.90 0.90 0.70
0.10 0.10 0.92 0.92 0.91 0.91 0.70
0.30 0.05 0.78 0.77 0.72 0.74 0.20
0.30 0.10 0.76 0.75 0.70 0.66 0.18
0.50 0.05 0.72 0.71 0.66 0.65 0.14
0.50 0.10 0.61 0.64 0.59 0.49 0.09

Tab. 2: Correlations between weighted MSE (IPCW) and MSE.

Mean Spearman correlations between the non-censored and weighted (IPCW) MSE, as a function of q and R2C .
For each of the six cases, we have 600 calculations of the MSE and weighted MSE (2 choices for φ × 3 choices for
L(T |X) × 100 iterations), and we calculate correlations between different fitting criteria.
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4 Real data application

4.1 Modeling the churn behavior of policy holders

The problem of predictive modeling has gained interest in recent years in the insurance com-

munity, and optimization of underwriting is one relevant application (Frees et al. (2014)). For

insurance contract brokers, forecasting customer value represents an opportunity to improve

margins in a competitive environment (Cummins & Doherty (2006), Maas (2010)). Moreover,

churn modeling is important for the estimation of customer value, as described in Verhoef &

Donkers (2001). Here, we focus on applying the methodology developed in Section 2 to build a

predictive model of the impact of churn on prospect value (as defined in Section 1) as predicted

by insurance brokers.

A broker’s approach to estimate the prospect values is given by the following multiplicative

formula, where the hats indicate we are referring to estimated quantities:

v̂alue = p̂sub · p̂r · f̂ew · f̂ch,

with p̂sub the probability of subscription, p̂r the predicted premium, f̂ew the early withdrawal

factor, and f̂ch the churn factor. We are only interested in modeling fch here. In this factorization,

the churn factor only depends on the termination time of the contract via a function φch as shown

in Fig. 2.

The data that we study here is the customer base of an insurance broker from 1st October

2009 to 31st July 2016, and we focus in particular on complementary health insurance con-

tracts. Data are available about the effective dates of the contracts, current states of contracts

(active, terminated), and termination dates of contracts (if terminated). Before the underwrit-

ing, prospective information is given as 6 variables: age (8 levels starting from 18 years old),

gender (2 levels: female, male), number of children insured (5 levels: 0, 1, 2, 3, ≥ 4), social

security regime (7 levels: agricultural employee, employee, retired, retired self-employed, self-

employed, student, unemployed), level of insurance (3 levels: low, medium, high), geographi-

cal zone (4 levels: Ile-de-France region, north, southern, other). Other client characteristics are

available in the database but are only known after subscription occurs, hence it is impossible to

use them to evaluate prospects.

We use this information to predict churn factors, which correspond to the variable φ(T ).

This variable is censored for a contract which is still active on January 15th, 2016. The censoring
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Fig. 2: The churn factor as a function of termination time.

Here, φch is the broker’s commission, expressed per unit of annual premium. It divides into two parts: a withholding
part during the first year – which reaches 50% of the annual premium after one year – and a subsequent part, starting
after one year, equal to 10% of annual premiums (taking into account annual resets of the premium).

variable C is the age of the contract, i.e., the duration between the date of effect of the contract

and January 15th, 2016. The 6 variables above constitute the covariate vector X.

4.2 Additional details about the experiments

The same models as in the simulated data application (see Section 3.1.2) are compared in this

real data application, excluding RF and the swRF models based on the exact weights (swRF14,

swRF24, and swRF34), which cannot be used in the real data case. Also, Tmax is set at 1465

days; this makes sense from the point of view of this application since we are then estimating

the expected return of a prospect within the four years following subscription. All swRF, RS Fr,

RRTr and RLTr models are set with the parameters mtry = 6, maxdepth = 5, and minlea f =

100. For swRF models, rmax is set to 50.

We test the various models with four different φ functions: φ = φch (Fig. 2), φ(t) = log(t+1),

φ(t) = t, and φ(t) = 1t>380. For the latter function, the choice of the threshold 380 is related to the

willingness to consider churns that occur in the first contract year. Most of these churns occur

before 365 days, but a significant number is reported a few days later, explaining the margin of

15 days that we take (Tmax was set to 381 in this case since, from 381 days on information on

φ(T ) is not censored).
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4.3 Results and analysis

As in the simulated data case, we use a train-test approach (5000 observations each) for model

testing, with 100 repetitions. Each training and testing set are drawn uniformly without replace-

ment from the original dataset in such a way that the training and test sets do not overlap. The

results in terms of MSE computed with KM, Cox and RSF weights, and on the C-index, are

shown in Fig. 3. We give the results for the same models as in Section 3.2.1 except for RF

and swRF34 which are not usable anymore with real data, and for swRF22 that we choose to

incorporate into the figure. The results for the other models are given in supplementary material.

We first observe that the results for φ = φch, φ(t) = log(t + 1), and φ(t) = t look very similar,

especially for φ = φch and φ(t) = log(t+1). Hence, the strong influence of the function φ that we

noticed for the simulated data does not carry over to the real data. Moreover, there is a tendency

in the results that swRF models fitted using a certain type of weights perform very well with

the MSE computed using the same type of weights. This is especially clear for the Cox and

KM weights (swRF11 and swRF22 models), indicating that the type of weights considered has

a real impact on the estimated distribution of (T, X).

We choose to consider the RSF weighted estimation of the MSE as the reference criteria

for comparing the models. Indeed, we saw in Section 3.2.2 that Cox and RSF weights give ap-

proximations of the MSE that are the most correlated with the MSE computed on non-censored

data. In addition, there is a risk of overfitting the type of weights we use, and since RSF weights

are only involved in the model swRF13, they constitute a good choice. In Fig. 4 and Tab. 3, we

show the performance of each model, calculated with RSF weights and for φ = φch. Fig. 4 indi-

cates the model swRF32 achieves on average the lowest error, followed by RLTr, an ordering

confirmed by the table of rank statistics.

The C-index’s statistic (Harrell et al. (1982)) corresponds to the proportion of ordered pairs

in the test set which are well-ordered by the model f̂ , i.e. :

Card
(
{(i, j) ∈ D2

te : f̂ (Xi) > f̂ (X j),Yi > Y j, δ j = 1}
)

Card
(
{(i, j) ∈ D2

te : Yi > Y j, δ j = 1}
) .

We can see in Fig. 3 that RS Fr, Cr, RRTr and RLTr achieve the best C-index out of the set of

models. This illustrates that it is important to consider a quadratic error criterion rather than a

rank one when the goal is to estimate a mean value. It is the case in our situation since we are

interested in getting the best prediction for the churn factor fch = φch(T ′). The C-index values

nevertheless show the benefit of using conditional weights within the swRF algorithm in order

to get models that rank the observations well.
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Fig. 3: Results on real data.

Left : the mean of the MSE values over 100 i.i.d. replicates of the simulation process, computed with KM, Cox or
RSF weights. Right : the mean of the C-index over 100 i.i.d. replicates.
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Fig. 4: Boxplot of the performances (MSE) of
the models; φ = φch, with RSF weights.

model mean rank
swRF11 9.0
swRF13 4.8
swRF22 9.6
swRF32 2.8
RS Fr 5.9
Cr 6.9
RRTr 6.9
RLTr 3.7

Tab. 3: Mean ranks of the models; φ = φch,
with RSF weights.

5 Conclusion

In this paper, we have considered a class of weighted random forest algorithms, where the

weight put on each observation is designed to compensate for censoring. A classical issue in

censored regression models is the identifiability assumption that defines the dependence struc-

ture between the censoring and the variables involved in the model. Therefore, we have dis-

tinguished between two situations, namely the case where censoring is independent, and the

case where this variable is allowed to depend on the duration variable T through the covariates.

The latter case is the more general of the two, but leads to difficulties in computing appropriate

weights, due to the strong impact of the dimension of the covariate vector. For this reason, we

have proposed a compromise by modeling the conditional censoring distribution using a Cox

model or a RSF model. We showed on simulated data that our method is competitive with other

statistical methods in terms of accuracy. Also, this approach appeared to give the most accurate

results in our application to modeling the commission received by an insurance broker, which

is a non linear function of the time at which an insurance policyholder surrenders their contract.

Moreover, it gives more accurate results than competing approaches such as random survival

forest, relative risk forest, and reinforcement learning trees, in the setting we have considered.

Finally, the weighting strategies we have proposed easily generalize to other regression-based

approaches such as, to give one example, quantile regression.
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As future work, it would be interesting to investigate the performances of the weighted

random forest method in a setting where the dimension of the covariate vector is higher, which

is an important application case (Zhu (2013), Ishwaran et al. (2010)). Indeed, in this situation

the estimation of the conditional IPCW is hard and may require to adapt the algorithm. A

suitable method might be to sample, for each tree of the forest, a subset of covariates to take

into account in the computation of the conditional IPCW. Also, doubly robust survival trees

studied in Steingrimsson et al. (2016) seems to be a great research direction. Promising results

are already presented in Steingrimsson et al. (2018) using a relative risk tree to estimate S C(·|X),

and we might wonder if we could observe the same phenomenon in the results as we obtain in

our work regarding the influence of the estimation of S C(·|X): i.e. an improvement when using a

conditional estimator instead of the KM estimator, and a benefit of using ensemble models such

as RSF. Finally, theoretical work may be of interest as well; since the weighted random forest

generalizes the (non-censored) random forest for regression, it may be possible to transpose

consistency results obtained in the non-censored case (e.g. in Scornet et al. (2015)) to the

weighted case.

Software

All analyses were performed with the R package sword (github.com/YohannLeFaou/sword)

which was developed for the purposes of this article. The code used for producing the results is

available at the address: github.com/YohannLeFaou/impact-churn-health-insurance.
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