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Potential energy surfaces (PESs) play a central role in our understanding of chemical re-

actions. Despite the impressive development of efficient electronic structure methods and

codes, such computations still remain a difficult task for the majority of relevant systems.

In this context, artificial neural networks (NNs) are promising candidates to construct the

PES of a wide range of systems. However, the choice of suitable molecular descriptors re-

mains a bottleneck for these algorithms. In this work, we show that a principal components

analysis (PCA) is a powerful tool to prepare an optimal set of descriptors and to build an

efficient NN: this protocol leads to a substantial improvement of the NNs in learning and

predicting a PES. Furthermore, the PCA provides a means to reduce the size of the input

space (i.e. number of descriptors) without losing accuracy. As an example, we applied this

novel approach to the computation of the high-dimensional PES describing the keto-enol

tautomerism reaction occurring in the acetone molecule.
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I. INTRODUCTION

Potential energy surfaces (PESs) play a central role in our understanding of chemical reactions.

For example, molecular dynamics (MD) simulations are currently the most employed methods

to investigate the dynamical behaviour of atomic and molecular complex systems. However, the

results of these simulations strongly depend on the quality of the PESs on which the propagation

is performed1. The computations of accurate PESs represent a difficult task for the majority of

relevant systems. Furthermore, MD simulations require single point energy calculations for a very

large number of molecular geometries. Therefore, ab initio MD2 are generally limited to systems

with a small number of atoms using density functional theory3,4 (DFT). A good alternative can

be found in the accurate interpolation of the PESs. However, PESs are complex hypersurfaces for

which it may be difficult to find a physics-based analytical description.

An elegant and promising approach to fit a PES is provided by artificial neural networks5 (NNs)

which are popular Machine Learning (ML) algorithms. Ideally, the resulting PES should be accu-

rate, rapid to evaluate, analytically differentiable, scalable, and applicable to bond-breaking/bond-

formation problems6,7. Moreover, it should be transferable between different systems and config-

urations. Unfortunately, a ML algorithm that would fulfill all these requirements does not exist

yet7,8. Several NN architectures have been developed, such as the High-Dimensional NN (HDNN)

introduced by Behler and Parinello in 20079, the Deep Tensor NN10 (DTNN) and the SchNet archi-

tecture11 both developed by Schütt et al.. While the HDNNs are perfectly optimized and efficient

to describe the configuration space of a given molecular system, they are not transferable across

the chemical space7. Inversely, the DTNN or the SchNet are well defined to describe the chemical

space but usually these methods do not reach high accuracy in the configurations space8 – i.e.

within the chemical accuracy (< 1 kcal/mol or 0.05 eV). Obtaining a high accuracy in both spaces

simultaneously remains an active research topic8.

Another difficulty in applying NNs to the computations of PES is the choice of suitable molec-

ular descriptors. In our study, we have developed an original protocol to prepare an optimal set

of descriptors and to build an efficient NN. Using a principal component analysis12 (PCA) a sin-

gle feedforward neural network (FNN) architecture5,6,12,13 can be employed to compute a reactive

high-dimensional PES below the chemical accuracy. PCA has been used in the prediction of phys-

ical properties, like exciton transfer times14 for example. In this context, PCA improves signifi-

cantly the prediction accuracy14,15. Preprocessing NNs using PCA was investigated in the context
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of diffraction tomography16. We mention also that PCA have been employed to select the most

relevant degrees of freedom along a reaction path17,18. However, PCA has never been exploited

in the fitting of high-dimensional PES. We show that this method i) improves the accuracy of the

NN to learn and predict a PES and ii) may be used to reduce the size of the input space. This

dimensionality reduction is essential to overcome the “curse of dimensionality”19. In fact, a large

input space induces a large volume where the sampling density may be small. In other words, the

data are described in an empty space and are strongly scattered. This can lead to a poor fitting

of the PES if the training set is not large enough. Because computing points of the PESs for the

training set is a demanding task, it is therefore essential to optimize the dimension of the input

space. PCA allows us to select the most relevant principal components in order to maximize the

sampling density12.

We demonstrate the efficiency of this novel approach with the development of a FNN for fit-

ting a high-dimensional PES which describes the tautomerism reaction occurring in the acetone

molecule. When the PCA conditioning is used, a fitted PES below the chemical accuracy is ob-

tained. Furthermore, our results suggest that a significant improvement of the NN thanks to the

PCA protocol is generally achieved. PCA could therefore be employed to improve other NN

architectures such as the HDNN, DTNN and SchNet ones.

The NN architecture and the learning process that we have implemented are given in sec-

tions II A and II B. In section II C, we present in details the PCA algorithm. Finally, in section III

we discuss our sampling of the PES for the tautomerism reaction in the acetone molecule and we

report the results of the PCA conditioning for two types of molecular descriptors defined by the

Coulomb matrix: its eigenvalues and its off-diagonal elements.

II. METHODS

A. Feedforward Neural Network Architecture

In this work, we use a feedforward neural network5,6,12,13 composed of three layers (see Fig-

ure 1). The first one is formed by a set of descriptors xi, the second one is a hidden layer composed

by N neurons and the last one is an output layer consisting of a single value energy. The energy

computed by the FNN is given (in matrix form) by:

E = w2 · s(W1 ·x+b1)+b2 , (1)
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where x represents the input vector, W1 the matrix of the weights between the input layer and the

hidden layer, and w2 the vector of the weights between the unique neuron of the output layer and

the neurons of the hidden layer. Finally, b1 and b2 are, respectively, the bias vector of the hidden

layer and the bias of the output layer. The activation function s(x) is chosen to be a sigmoid

function:

s(x) =
1

1+ e−x . (2)

In the following, a neural network is denoted as X-Ns-E, where X is the number of descriptors, N

the number of neurons in the hidden layer and E is the energy given in the output layer.

•
•
•
x1

•
•
•
xX

xi

b2 Output bias

E

b1Bias vector aN

aN−1

•
•
•

aj

a1

a2

a3

a4

•
•
•

In
p
u
t
la
y
er

x

Hidden layer a

O
u
tp
u
t
lay

er
E

Weig
hts

W1

W
eights

w
2

FIG. 1. Architecture of the feedforward neural network (FNN) used in this work. The input layer is

composed of X descriptors represented by a vector x. The hidden layer is described by a vector a where

the N components are neurons activated by a sigmoid function s(x). The output layer is a unique neuron E,

which yields the energy of a particular geometry on the PES.

B. Feedforward Neural Network Training

The FNNs are trained to reproduce a set of geometries and energies, denoted as :

E =
{

R̄(n),Eref(n)
}Nref

n=1 (3)
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where n is an element of the training examples. Each element n is characterized by a molecular

geometry R̄(n), which is associated with an energy Eref(n) (the computations of Eref(n) are de-

scribed in section III A). In the training process, we have scaled these energies such that they are

restricted to the interval [0;1]:

Ẽref(n) =
Eref(n)−Emin

ref

Emax
ref −Emin

ref
(4)

The training consists in the minimization of a cost function. We have chosen a batch learning

model12 in which the entire training set is fitted simultaneously through the quadratic error be-

tween the predicted energies E(n) and the reference energies Ẽref(n) averaged on the training set:

Γ =
1

2Nref

Nref

∑
n=1

(
E(n)− Ẽref(n)

)2
. (5)

In the above equation, Γ is the cost function, which depends on the weights W1 and w2, as well as

on the biases b1 and b2,

Γ(W1,w2,b1,b2) =
1

2Nref

Nref

∑
n=1

(
(w2 · s(W1 ·x(n)+b1)+b2)− Ẽref(n)

)2
. (6)

The cost function was minimized with respect to these parameters using the L-BFGS20 optimizer

selected in the library NLOpt21 patched on Python. To initialize the learning process, we have

started with a randomly determined set of initial parameters {W1,w2,b1,b2}. They were selected

through a central normal distribution function strongly squeezed around the average (standard

deviation σ ∼ 0.01).

In order to avoid overfitting, the parameters are checked using a test set whose size is half the

one of the training set (the procedure to build the two sets is described in section III A). Further-

more, the quality evaluation of the learning and of the accuracy of the FNNs have been done using

the root mean square error (RMSE) of the energies on the training and test sets, respectively:

RMSE =

√√√√ 1
Nref

Nref

∑
n=1

(
E(n)− Ẽref(n)

)2
. (7)

C. Principal Component Analysis

One of the bottlenecks of machine learning algorithms lies in the representation of the input

data x(n)22. We propose here to use a principal component analysis12 (PCA) to prepare the input

vectors – i.e. the descriptors of molecular structures. While PCA is largely employed in image
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processing and other domains23,24, to our knowledge it has never been used in the computation of

PESs. As shown below, this conditioning improves substantially the learning process.

x1
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x′2

X I

Mean Remove

x′′1

x′′2
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D
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FIG. 2. Illustration of the three steps of the PCA method12.

The PCA method is based on a statistical treatment of the data and particularly on the use of

the covariance matrix of the input vectors x(n) defined from the training set E .

We recall that x(n) is a vector of the input space describing a set of descriptors xi,n for a

molecular structure R̄(n) of the training set:

x(n) = (x1,n,x2,n,x3,n, . . . ,xi,n, . . . ,xX ,n)
T , (8)

where X is the number of descriptors in the input layer (Figure 1).

1. The first step of the PCA consists in setting the mean value of each descriptor to zero. We

therefore define a new set of descriptors as:

x′(n) = x(n)− x̃ , (9)

where x̃ represents the mean vector of the descriptors. This leads to a new set of vectors

denoted as X I = {x′(n)}Nref
n=1 (see Figure 2).
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2. The second step is the calculation of the covariance matrix D. This matrix is built as the

average, over the entire set X I , of the outer products of vectors x′(n) with themselves:

D = E
[
x′x′T

]
. (10)

The off-diagonal elements Di j are the covariances of the descriptors x′i,n and x′j,n. The off-

diagonal elements of D are non zero due to linear correlations between the descriptors. The

aim of the PCA is to remove these correlations. This is achieved by diagonalizing the matrix

D:

Dqi = λiqi . (11)

The eigenvectors matrix Q:

Q = [q1,q2,q3, . . . ,qi, . . . ,qX ] , (12)

is then used to define a new space, called feature space. The vectors x′(n) of the input space

can then be represented without correlation (see Figure 2):

x′′(n) = Q−1x′(n) . (13)

If some eigenvalues λi are close to zero or small compared to the other ones, the correspond-

ing descriptors do not contain useful information. They can be excluded from the feature

space, thus reducing its size. The eigenvectors matrix Q can be rewritten as:

Q̃ = [q1,q2,q3, . . . ,qi, . . . ,qX ′] , (14)

where X ′ is the number of relevant eigenvalues (usually X ′ is smaller than X).

3. The final step, called standardization (see Figure 2), ensures that all descriptors have equal

importance in the learning process. In other words, no descriptor is more important than

another. It consists in fixing the variance of each descriptor to unity:

x′′′i,n =
x′′i,n√

λi
. (15)

As a result, the weights learn at the same rate25, which makes the training of the NNs faster.
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III. RESULTS AND DISCUSSION

A. Training And Test Sets

The geometries and energies used in the training and test sets were obtained as follows: the

transition state (TS) of the reaction was determined with the Climbing-Image Nudged Elastic Band

(CI-NEB) method introduced by Henkelman et al.26,27 as implemented in VASP 4.628,29. We used

DFT with the projector augmented-wave30 (PAW) method and generalized gradient approximation

(GGA) in Perdew-Wang31 (PW91) parametrization. It should be mentioned that the VASP is a

periodic code based on the use of plane waves. We have therefore selected a large cubic unit

cell (lattice parameter a = 10 Å) with the unique Γ-point to consider an isolated molecule. Eight

images in the elastic band were used to reach a good convergence of the forces. Note that the

Quick-Min algorithm was applied to perform the CI-NEB relaxation of the band. The intrinsic

reaction coordinate (IRC) is computed from this TS at the DFT/B3LYP/6-31G level (see below).

To ensure, the TS found in the CI-NEB calculations are also that at the DFT/B3LYP/6-31G level,

we have performed a frequency analysis from the transition state geometry at the PAW/PW91/PW

and at the DFT/B3LYP/6-31G levels. An unique imaginary frequency was obtained, this ensure

that the latter is caracteristic of a saddle point in both DFT levels. Furthermore, as shown in Table I,

our results agree well with previous works32,33. We employed a similar approach to investigate

the tautomerism reaction in acetylacetone (see Ref.34 and Ref.35 for further details).

To construct the training and test sets, we performed a steepest descent relaxation along both

IRC directions from the transition state geometry to recover the full minimum energy path (MEP)

at the DFT/B3LYP/6-31G level of theory. After this, we selected 11 geometries along the obtained

MEP and a normal modes analysis was done for each of them. The PES is then sampled by

computing the geometries – as linear combinations of normal modes – and energies at randomly

chosen points around these reference geometries (see Figure 3). From this set of structures, we

selected a subset of geometries with energies less than or equal to 5.0 eV relative to the most

stable structure – i.e. the keto form. These energies are above the transition state located at 3.18

eV above the keto form and thus describe properly the PES of the reaction. All the energies were

computed at the DFT/B3LYP/6-31G level of theory using GAMESS-US36. Finally, 1500 and 850

points approximately were taken around each of the 11 reference points along the MEP to build

the training and test sets, respectively.
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FIG. 3. (a) Geometries of the enol and keto forms and of the transition state. (b) Minimum energy path

(MEP) along the intrinsic reaction coordinate (IRC) obtained at the DFT/B3LYP/6-31G level – The IRC is

given with mass-weighted coordinates in atomic unit. (c) Schematic illustration of our sampling along the

MEP to build the training and test sets.

Imaginary frequency (cm−1) Energy ∆E‡ (eV)

PAW/PW91/PW i 1958 2.57 (2.4733)

DFT/B3LYP/6-31G i 2188 3.18 (2.8232)

TABLE I. Imaginary frequencies and activation energies ∆E‡ obtained by CI-NEB (PAW/PW91/PW)

and IRC path (DFT/B3LYP/6-31G). The values in brackets come from the literature: Cucinotta et al.33

(UPP/BLYP/PW) and Kaweetirawatt et al.32 (DFT/B3LYP/6-31G*).

B. Choice of the descriptors

The choice of suitable descriptors is one of the bottlenecks of any machine learning algorithm

development. As noted in a recent review22, the search of descriptors has fed the literature for the
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last twenty years. Nevertheless, a consensus is reached that the descriptors must respect two prin-

cipal features. First, an unambiguous correspondence must exist between the descriptors and the

molecular structures. In other words, each unique structure must have a unique set of descriptors.

Second, the descriptors must be invariant to translation and rotation of the molecular structures

and to permutation of any atoms8,22.

A molecular system is uniquely defined by its nuclear charges ZI and atomic positions RI
37,38.

The information contained in {ZI,RI} is sufficient to write down the non-relativistic Hamiltonian

which corresponds to the energy of the system for a given geometry. The nuclear charges and

the atomic positions can therefore be employed to uniquely map a given geometry onto the corre-

sponding energy as: f : {ZI,RI} 7→ E. Based on this relationship, we used the Coulomb matrix to

define molecular descriptors37,38. The Coulomb matrix is given by:

MIJ =

 0.5Z2.4
I , for I = J

ZIZJ
|RI−RJ | , for I 6= J

(16)

The dimension of this matrix is equal to Nat×Nat for a system composed of Nat atoms. The

diagonal elements represent a polynomial fit of the atomic energies to the nuclear charge ZI and

the off-diagonal elements take the form of the Coulomb repulsive potential between the nuclei38,39.

Through these considerations the Coulomb matrix provides a global descriptor for the molecular

structure. However, as reported in Ref.22, the Coulomb matrix has not been used so far in the

construction of PESs. We show below that this matrix combined with PCA can be efficiently

employed to build an accurate FNN-PES.

1. Eigenvalues of the Coulomb matrix as descriptors

The eigenvalues of the Coulomb matrix are invariant with respect to rotation, translation and

permutation. They were successfully used to predict molecular properties through the chemical

space37,38,40. We first employed them as descriptors to illustrate the importance of using the PCA

conditioning. However, as shown below, these descriptors alone do not lead to a sufficiently ac-

curate PES to be used in practice. The main issue is that for a system with Nat atoms, the Nat

eigenvalues represent only a subset of the information in the 3 ·Nat− 6 dimensional conforma-

tion space22 and this loss of information does not allow to correctly distinguish between different

geometries.
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FNNs RMSE training set (eV) RMSE test set (eV)

Without PCA

10-44s-E 0.400 0.370

With PCA

9-42s-E 0.320 0.320

TABLE II. Lowest RMSEs of the training and test sets without and with PCA using the eigenvalues of the

Coulomb matrix as descriptors. (Training set: 17021 points ; Test set: 9257 points)

The blue line in Figure 4 represents the RMSE of the training set at the end of the learning

process relative to the number of neurons N in the hidden layer using as descriptors the 10 eigen-

values of the Coulomb matrix (for the acetone C3H6O, Nat = 10). We can observe that the value

of the RMSE strongly oscillates with respect to the number of neurons in the hidden layer. The

lowest RMSE value was obtained for the 10-44s-E architecture (44 hidden neurons). The other

architectures lead to RMSE values larger than 0.40 eV (see Table II and Figure 4). The learning

process is therefore poorly achieved.

We then applied the PCA conditioning on the training set. One eigenvalue of the D matrix

is always null, indicating that one of the Nat descriptors can be removed. This observation is a

consequence of the trace invariance of the Coulomb matrix associated to molecular structure of

the same composition. In fact, the sum of the eigenvalues is equal to the trace of the matrix, thus

there are only Nat−1 independent variables. Hence, the pertinent information can be just included

in Nat−1 new descriptors leading to a reduction of the input space.

The RMSEs obtained after applying the PCA on the training and test sets are shown in Fig-

ure 4. The RMSEs decrease smoothly with increasing number of neurons. Furthermore, the PCA

conditioning leads to a much smaller RMSE for a given number of neurons. The PCA therefore

improves significantly the learning process. It is worth noting that the RMSE associated with the

test set is constant above 42 neurons and that the difference between the RMSE of the training

and the test sets increases. This is characteristic of overfitting – i.e. the machine begins to be over

parametrized. Hence, the best architecture is obtained for 42 neurons in the hidden layer.

Figure 4b represents the predicted energies according to the reference energies of the test set.

Ideally, the blue points should be aligned along the red linear curve. Unfortunately, the points are

strongly dispersed along this line revealing a large set of molecular structures with wrong energies,
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particularly for the energies higher than 3.0 eV – i.e. the activation barrier of the tautomerism pro-

cess. Hence, despite a substantial improvement of the learning process through the PCA method,

the PES is still not accurate enough. These results confirm that the eigenvalues of the Coulomb

matrix cannot be used to build a reactive PES, even if PCA is applied.

2. Off-diagonal elements of the Coulomb matrix as descriptors

In what follows, we show that the Coulomb matrix can be exploited to build a PES if one

considers the upper off-diagonal elements (MIJ with I > J) as descriptors. In fact, these elements

represent the full connected molecular graph through the inverse distances between atoms and

include the nature of the nuclei in interaction. Hence, these descriptors can be used to describe

any structures on the PES. Moreover, the number of these descriptors is larger or equal to the

degrees of freedom of the PES. In the case of the acetone molecule there are 45 elements, thus

each geometry can be distinguished6. To our knowledge, this is the first time the off-diagonal

elements of the Coulomb matrix have been used as descriptors to fit a PES.

Figure 5a represents the RMSEs of the training and test sets at the end of the learning process

relative to the number of neurons N in the hidden layer. First of all, we can observe that the RM-

SEs are in general smaller when the off-diagonal elements are used as descriptors compared to the

eigenvalues of the Coulomb matrix. Nevertheless, when the training data are not conditioned by

the PCA method, the RMSE reported as a function of the number of neurons presents some oscil-

lations. However, their amplitudes are less important compared with the use of the eigenvalues.

As in the latter case, we observe that the behavior of the RMSEs is smoother and that their values

are in general smaller when PCA is applied compared to no PCA conditioning. For example, the

quality of the PES is improved by a factor of ten with the optimal number of neurons for each

machine using 45 descriptors (see Table III). In fact, the best trained FNNs provides a RMSE of

the test set below the spectroscopic accuracy (∼ 0.01 eV). Figure 5b illustrates the accuracy of our

FNN obtained through the off-diagonal elements of the Coulomb matrix and the PCA protocol:

the predicted energies of the test set are correctly aligned along the red linear curve, over the whole

energy range. We note that beyond 38 neurons overfitting is observed: the difference between the

RMSEs of the training and the test sets increases (Figure 5a). 38 neurons in the hidden layer is

therefore an optimal choice.

We now show that PCA allows us to reduce the size of the input space by removing the de-
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FIG. 4. (a) RMSEs of the training and test sets relative to the number of neurons N. The blue line shows

the RMSEs obtained for the 10 eigenvalues of the Coulomb matrix without PCA. The red and purple lines

are the RMSEs of training and test sets obtained with the PCA method. (b) Representation of the pre-

dicted energies obtained with our PCA-FNN 9-42s-E as functions of the reference energies computed at

DFT/B3LYP/6-31G level for the test set. (Training set: 17021 points ; Test set: 9257 points)

scriptors for which the eigenvalues of the D matrix are comparatively small to the other ones. We

demonstrate as well that this reduction does not lead to a loss of accuracy of the PES. Figure 6a
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FIG. 5. (a) RMSEs of the training and test sets relative to the number of neurons N. The blue curve shows

the RMSEs obtained for the 45 off-diagonal elements of the Coulomb matrix without PCA. The red and

purple lines are the RMSEs of training and test sets obtained with the PCA method. (b) Representation of the

predicted energies obtained with our PCA-FNN 45-38s-E as functions of the reference energies computed

at DFT/B3LYP/6-31G level. (Training set: 17021 points ; Test set: 9257 points)

represents the RMSE of the test set (9257 points) relative to the number of neurons N in the hidden

layer for different number of descriptors. We first discuss the case of 9 descriptors and compare
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with the results obtained with the eigenvalues of the Coulomb matrix: the RMSE of the test set is

0.211 eV for the optimal neural network 9-48s-E (Table III). The RMSE has therefore the same

magnitude than in the case with 9 eigenvalues. Hence, this supports our conclusions that more

descriptors are needed to distinguish between the different geometries. We then investigate the

case of 24 descriptors. The current feature space is therefore described by the same dimension

as the physical PES (3 ·Nat− 6). This was done by removing the independent components i for

which the eigenvalues λi are less than 10−4. In this case, we see that the RMSE decreases ac-

cording to the number of neurons without oscillation and reaches the value of 0.030 eV beyond 40

neurons (Table III). This RMSE is smaller than that obtained in the case without PCA. However,

the RMSE is higher than the chemical accuracy. Therefore, to recover the same accuracy as with

45 descriptors, one needs to increase the number of principal components.

We have selected the 26 highest principal components. The green line in Figure 6a shows that

in this case the lowest RMSE is found to be 0.010 eV (which equals the chemical accuracy). The

quality of the fit is thus greatly improved. Now, if we select the 30 highest eigenvalues λi, we

observe that the behavior of the RMSE relative to the number of neurons recovers the behavior

obtained for 45 descriptors with PCA. In this case, a similar accuracy is reached for the same

number of neurons into the hidden layer, but with less descriptors (Table III).

The reduction of the number of descriptors can be quantified by the amount of variance ac-

counted for, or in other words, by taking the percentage of remaining eigenvalues with respect to

the sum of all eigenvalues. In all cases considered above, the percentage of variance accounted for

is more than 99%.

Moreover, note that the reduction of the number of descriptors allows us to use less free param-

eters in the FNN – their number is around O(XN), where X is the number of descriptors and N the

number of neurons. For example, for 45 descriptors and 38 hidden neurons we have 1710 parame-

ters, while with 30 descriptors we have 1140. This is particularly relevant since it was shown that

a smaller number of descriptors leads to a better generalisation of the fit12: the error estimate on

the test set is bounded by the ratio of the total number of free parameters to the number of training

data points12. To illustrate the impact of the size of the feature space on the "curse of dimension-

ality" we show in Figure 6b the RMSE of the test set (9 257 points) obtained for different sizes

of training set (20%, 60% and 100% – where 100% = 17 021 points). As shown before, when 24

descriptors are used for the feature space the RMSE is rather large. This is true for any size of the

training set. When 45 descriptors are employed, the chemical accuracy is only reached for a large
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FNNs RMSE training set (eV) RMSE test set (eV)

Without PCA

45-45s-E 0.070 0.050

With PCA

45-38s-E 0.005 0.007

9-48s-E 0.256 0.211

24-46s-E 0.034 0.027

26-45s-E 0.012 0.010

30-38s-E 0.007 0.007

TABLE III. Lowest RMSEs of the training and test sets without and with PCA for the 45 off-diagonal

elements of the Coulomb matrices. The three last rows provide the lowest RMSEs for different feature

spaces obtained with PCA and 24, 26 and 30 descriptors, respectively. (Training set: 17021 points ; Test

set: 9257 points)

training set (i.e. 60% case and above) owing to the small density of points in this large feature

space. When the latter is reduced to 30 descriptors, the RMSE is the lowest for any size of the

training set. Comparing the results with 45 and 30 descriptors, a smaller training set in the latter

case can therefore be used while providing a similar accuracy. This is a relevant result because

the computation of the training data points represents the most costly part of the development of

PESs. We mention here that the cost of the PCA step is negligible compared with that of the NN

training. As an example, for a 30-38s-E NN with 17021 training points, the training part takes

about 1h while the PCA step takes 12sec (i.e. less than 0.4%). Moveover, our calculations suggest

that the PCA cost scales approximately linearly with the size of the training set.

IV. CONCLUSION

In this work we have demonstrated the efficiency of a principal component analysis protocol

to fit a high-dimensional PES. Our results demonstrate that this approach is a powerful tool to

improve the learning and predicting of the NN and to reduce the size of the input space through a

new feature space.

Both advantages were illustrated with two kinds of molecular descriptors: the eigenvalues of the
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FIG. 6. (a) RMSEs of the test set according to the number of neurons N for different feature spaces obtained

by PCA (Table III). (Training set: 17021 points ; Test set: 9257 points) (b) RMSEs of the test set according

to the size of the training set for different sizes of feature space (Test set: 9257 points).

Coulomb matrix and its off-diagonal elements. We showed that in both cases the PCA improves

the representation of the molecular structures encoded and hence the quality of the fit of the PES.

Furthermore, our results indicate that the off-diagonal elements of the Coulomb matrix provide

suitable descriptors to obtain fits of high-dimensional PESs below the chemical accuracy.
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The efficiency of our approach was illustrated on the example of a feedforward neural network

with a single hidden layer for fitting a high-dimensional PES describing the tautomerism reaction

of the acetone molecule. However, we think that this novel method can be used for different

systems and other neural network architectures. For example, a neural network using two hidden

square unit augmented layers and 25 000 training geometries was recently employed to describe

the hydrogen transfer between two oxygen atoms in the malonaldehyde7. A RMSE of 0.021 eV

was thus obtained. In our work, we have achieved a lower RMSE with a simpler neural network

architecture and fewer training points. Furthermore, HDNN is an elegant and efficient method

to fit a PES but is currently limited to systems containing about three to four chemical elements,

owing to the use of too many so-called symmetry functions. Using our approach, it should be

possible to reduce the number of symmetry functions while maintaining the performance of the

algorithm. Such achievement would expand the current HDNNs to other chemical environment.
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