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AbstractWe study the convergence in rough path topology of a certain class of discrete pro-

cesses, the hidden Markov walks, to a Brownian motion with an area anomaly. This area anomaly,

which is a new object, keeps track of the time-correlation of the discrete models and brings into

light the question of embeddings of discrete processes into continuous time. We also identify

an underlying combinatorial structure in the hidden Markov walks, which turns out to be a

generalization of the occupation time from the classical ergodic theorem in the spirit of rough

paths.
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1. Introduction

1.1. The context

Rough paths theory was introduced by T. Lyons in 1998 (see, for example, [18, 17]) in
order to provide a deterministic setting to stochastic differential equations (SDEs) of the
type

dyt = f(yt)[dxt]

where (yt)t is a path in a finite-dimensional vector space V ′, (xt)t is a path in another
finite-dimensional vector space V with Hölder regularity α < 1 (which is often the case
for stochastic processes) and f : V ′ → Hom(V, V ′) is a smooth map. Whenever the
classical Young integration [19] fails (which is the case for α < 1/2), paths may be lifted
(in a non-unique way) to a larger more abstract space, the rough path space, for which
existence, uniqueness and continuity of the solution map hold and become easier to prove.

The rough path space of level k ≥ 1 corresponds to paths with values in

T
(k)
1 (V ) = V ⊕ V ⊗2 ⊕ . . . V ⊗k

and a finite-variation path x : [0, T ] → V is lifted to a path S(γ) : [0, T ] → T
(k)
1 (V ),

called the step-k signature of the path, through the formulae:

S(x)(t) = (S1(x)(t), . . . , Sk(x)(t))

Sj(x)(t) =

∫

0<s1<...<sj<t

dxs1 ⊗ dxs2 ⊗ . . . ⊗ dxsj

The coefficients of the signature satisfy a set of algebraic relations (shuffle product and
concatenation product) and of analytic bounds (depending on the Hölder regularity 1/2 <
α of x), which will be detailed below. For a regularity α < 1/2, some of the integrals
above are not well-defined any more but the algebraic relations and the analytic bounds
are kept as a new definition of the signature, and therefore also defines formally the
iterated integrals.

Some examples of rough paths. The space of rough paths of level 2, for example,
contains the enhanced Brownian motion [9, 4]

t 7→ (Bt, (1/2)Bt ⊗ Bt + ALévy
t ) (1)

where (Bt)t is a V -valued Brownian motion and ALévy
t its Lévy area (with values in

V ∧ V ). The Brownian motion has regularity 1/2− and its Lévy area is defined through
the usual stochastic calculus by

ALévy
t =

1

2

∫

0<s1<s2<t

(dBs1 ⊗ dBs2 − dBs2 ⊗ dBs1 )

where the stochastic integration may be either in the Itô or Stratonovich sense.



Area anomaly for hidden Markov walks 3

The space of rough paths also contains less trivial objects such as two-dimensional
area bubbles [14], defined as the limit signature of the sequence of paths

xn(t) =
1√
n

(cos(nt), sin(nt))

which turns around (0, 0) faster as n increases. The signature is given by ((0, 0), (t/2)e1 ∧
e2) (where (e1, e2) is the canonical basis of R2): the first level is constant at (0, 0),
which corresponds to a constant path at (0, 0), whereas the second level corresponds
to an accumulation of area at constant speed. This shows that the rough path space
contain more information than the usual path space about the microscopic structure of
approximations.

A quick look at the rough path space also shows that a combination of the two previous
examples, i.e. the signature

S(B)(t) =
(

Bt, (1/2)Bt ⊗ Bt + ALévy
t + tΓ

)
, (2)

where (Bt) is a two-dimensional Brownian motion and Γ is a fixed element of V ∧ V , is
a valid rough path. From the point of view of stochastic integration however, this object
is new since the construction of the Lévy area does not depend on the choice of Itô
or Stratonovich integration and thus the Γ term is not an artefact of the choice of the
stochastic integral. Thus, one may wonder whether this type of objects is relevant for
applications and continuous time limits of discrete models.

Continuous time limit of discrete models in the rough path space: existing

results. A first result is the generalization of Donsker theorem for i.i.d. random vari-
ables by Breuillard et al. [4], which, without surprise, gives the convergence in rough path
topology to the enhanced Brownian motion (1) under suitable finite moment hypotheses.

A first result of convergence to (2) with non-zero Γ was obtained in [16]. It relies
mostly on a geometric construction of periodic graphs and a non-reversible random walk
dynamics on the graph. The idea is the following: at the scale of the period of the graph,
the dynamics looks like the one of a random walk but, at the smallest scale of the periodic
pattern, windings may occur and contribute to the area anomaly Γ.

The generalization to hidden Markov walks. The present paper presents a much
more general construction of discrete time models converging to (2) in the rough path
topology. In particular, the construction does not rely anymore on geometric properties,
is purely probabilistic and the emergence of a non-zero Γ relies only on probabilistic short
time correlations of the discrete time model.

Many discrete models may enter the present settings and exhibit a non-zero area
anomaly in the limit. It was indeed a surprise to us that no such result have been previ-
ously considered in the literature, despite the vast literature about stochastic integration,
continuous-time limits and rough paths.

The motivation for considering hidden Markov walks as defined below is multiple.
When considering limits such as (2), it is very tempting to consider ad hoc models
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obtained by a discretization of the limit but it does not shed any new light on the
model and one of our purposes was to avoid such an approach. The central limit theorem
and its process extension, Donsker theorem, show that obtaining anomalous behaviour
around a normal law/Brownian motion from Markov models requires a fine tuning of
the correlations at the discrete level. This is precisely what the present paper describes
through hidden Markov walk.

Moreover, hidden Markov walks are simple objects from the point of view of numerical
simulations and thus the present construction may lead to interesting discrete approxi-
mations, as for example in [7, 15].

Finally, the proofs of the results presented below introduce new objects in the study of
discrete time Markov chains: iterated occupation times, which are a discrete analogue of
iterated integrals and signature of the rough path theory. These iterated occupation times
satisfy algebraic relations, such as quasi-shuffle and concatenation, and are of independent
interest in the general theory of Markov chains.

1.2. Formulation of the results

1.2.1. Hidden Markov walks and the first theorem.

We first define the discrete time model we will consider throughout the paper and we
choose to call it hidden Markov walk, which is a particular case of hidden Markov chain
as introduced in [2].

Definition 1.1 (hidden Markov walk). Let E be a countable set and V a finite dimen-
sional real vector space. A hidden Markov walk is a process (Rn, Xn)n∈N on E × V such
that:

1. the process (Rn)n∈N is a Markov chain on E;
2. conditionally on the process (Rn), the increments Fn = Xn+1 −Xn are independent

and have marginal laws such that, for any Borel set A of V , any n ∈ N and any
r ∈ E, it holds:

P (Fn ∈ A|σ(R)) = P (Fn ∈ A|Rn) , (3)

P (Fn ∈ A|Rn = r) = P (F1 ∈ A|R1 = r) . (4)

The process (Rn, Fn)n∈N corresponds to the usual definition of a hidden Markov chain.
The additional vector space structure of V allows one to consider the (Fn) as increments
and to add them to obtain the process (Xn).

A classical way of embedding the discrete process (Xn)n∈N in continuous time is the
so-called Donsker embedding.

Definition 1.2 (Donsker embedding). Let N ∈ N and V be a vector space. Let (xn)0≤n≤N

be a V -valued sequence. The Donsker embedding ιN (x) is the path ιN (x) : [0, 1] → V such
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that, for any 0 ≤ k < N and any s ∈ [0, 1],

ιN (x)

(
(1 − s)

k

N
+ s

k + 1

N

)
= (1 − s)xk + sxk+1,

which interpolates linearly between the (xn) and accelerate time by a factor N .

We also define, for any real number s > 0, the dilation operators:

δs : T
(n)
1 (V ) → T

(n)
1 (V )

u1 ⊗ . . . ⊗ ul 7→ sl(u1 ⊗ . . . ⊗ ul)

where the (ui)1≤i≤l are vectors of V and l an integer smaller than n.
We may now state our first theorem of convergence to an anomalous enhanced Brown-

ian motion. The precise definition of the topological rough paths space Cα([0, 1], G2(V ))
is given in section 2.1.

Theorem 1.1. Let (Rn, Xn)n∈N be a hidden Markov walk on E × V such that, for a
fixed r0 ∈ E,

(i) X0 = 0 a.s. and R0 = r0 a.s.
(ii) the Markov chain (Rn) is irreducible and positive recurrent, with invariant proba-

bility ν, and the first return time

T1 = inf{n ≥ 1; Rn = R0} (5)

has finite moments of all orders.
(iii) the increments Fn = Xn+1 − Xn satisfy, for all p ∈ N,

sup
r∈E

E [||F1||p|R1 = r] < ∞ (6)

(iv) the walk (Xn) is centred, i.e. satisfies

∑

r∈E

ν(r)E [F1|R1 = r] = 0V (7)

Then, for any 1/3 < α < 1/2, the sequence of G2(V )-valued continuous time processes
(δN−1/2 ◦ S ◦ ιN (X)(t))t∈[0,1] (where S is the signature of the path) converges in law in

the rough path topology of C0,α-Höl([0, 1], G2(V )) to the enhanced Brownian motion (as
defined in (2)) with covariance matrix C and anomalous area drift Γ. Moreover, the limit
law does not depend on the choice of the initial law of R0.

Explicit formulae for C and Γ are presented in (29), (30), (45a) and (45b).

The enhanced Brownian motion obtained in the limit is not the standard one, with

identity covariance matrix and zero area drift, but has a covariance E

[
B

(i)
t B

(j)
t

]
= Cijt
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and an area E

[
A

(ij)
t

]
= tΓij (the standard Lévy area is centred). As detailed during

the proof of the theorem and in section 2.3.2, the main ingredient for the existence of a
non-zero Γij is the fact that the area covered during one excursion of the Markov chain
(Rn) may be not centered and we have:

Er0

[
A

(ij)
T1

]
= ΓijEr0 [T1] (8)

where T1 is the length of the excursion ans A
(ij)
T1

is the area covered by the discrete walk
Xn between 0 and T1.

The first hypothesis is not restrictive at all since there is global translation invariance.
The irreducibility of (Rn) is not restrictive since one may always restrict E to one of
its irreducible component. The hypotheses of positive recurrence and of finite moments
of T1 are important for the proofs but are trivially satisfied whenever E is finite. The
hypothesis on the moments of the increments is already required in [4] to obtain rough
path convergence of random walks. The assumption on centring is not restrictive: the
centring is important to describe TCL-like fluctuations around the law-of-large-number
asymptotics of Xn.

1.2.2. Iterated occupation times.

Definition and basic algebraic properties. The proof of theorem (1.1) uses exten-
sively conditional expectations with respect to the process σ(R) and the hidden Markov
structure reduces iterated integrals with values in tensor products of the space V to
combinatorial quantities related to the single process (Rn)n∈N. It appears that these
combinatorial quantities also have a nice algebraic structure and interesting asymptotics.

Definition 1.3 (iterated occupation time of a sequence). Let E be a set and let
(xn)0≤n<N be a sequence of elements of E. For any k ≥ 1 and any sequence u =
(u1, . . . , uk) ∈ Ek, the iterated occupation time of (xn) at u is defined as:

Lu(x) = card{(i1, . . . , ik) ∈ {0, ..., N − 1}k;

i1 < i2 < . . . < ik and xi1 = u1, xi2 = u2, . . . , xik
= uk}

(9)

and, if k = 0, the empty sequence is noted ǫ and by convention Lǫ(x) = 1.

For k = 1, Lu(x) counts the number of times the sequence x visits u, hence the name
of iterated occupation times for larger k. Another writing of (9) makes the relation with
iterated integrals clearer:

Lu(x) =
∑

0≤i1<...<ik<N

1xi1 =u1 . . . 1xik
=uk

(10)

The iterated sum structure endows the iterated occupation times with both a concate-
nation structure and a quasi-shuffle structure.
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Property 1.1 (concatenation structure). Let (xn)0≤n<N be a finite sequence of ele-
ments of E of length N . Let u = (u1, . . . , uk) ∈ Ek for some k. Let M be an integer
smaller than N . Then it holds

Lu1...uk
(x) =

k∑

p=0

Lu1...up((xn)0≤n<M )Lup+1...uk
((xn)M≤n<N ) (11)

where, by convention, Lǫ(x) = 1 for ǫ the zero length sequence.

The quasi-shuffle property requires some additional combinatorial definitions. There
are various approaches to quasi-shuffles and the interested reader may refer to [11, 12]
for more results on this notion.

Definition 1.4 (quasi-shuffle product). Let E be a set and let A(E) be the algebraic
direct sum

A(E) = ⊕k≥0 ⊕u∈Ek Ru

(for k = 0, the empty sequence is written ǫ) endowed with the shift operators a · u defined
for a ∈ E and u = (u1, . . . , uk) ∈ Ek by

a · u = (a, u1, . . . , uk)

The quasi-shuffle product �̂ is defined recursively on the canonical basis by:

ǫ�̂ǫ = ǫ

(a · u)�̂ǫ = a · u

ǫ�̂(b · v) = b · v

(a · u)�̂(b · v) = a · (u�̂(b · v)) + b · ((a · u)�̂v)

+ 1a=ba · (u�̂v)

and extended to A(E) by linearity.
To any finite sum a =

∑
p cpup with elements up ∈ ∪kEk, the definition of the iterated

occupation time Lu(x) of a sequence is extended by:

La(x) =
∑

p

cpLup(x) (12)

and is thus a linear application A(E) → R.

When the sequences u1 and u2 have no element in common, the set of quasi-shuffles
u1�̂u2 is equal to the classical shuffle of the two sequences. We now express the fact that
the linear map L• : A(E) → R is a morphism of algebra for the quasi-shuffle product.
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Proposition 1.1. Let (xn)0≤n<N be a finite sequence of elements of E. For any k, l ≥ 1
and any sequences u = (u1, . . . , uk) ∈ Ek and v = (v1, . . . , vl) ∈ El, it holds:

Lu(x)Lv(x) = L
u�̂v

(x) (13)

where the r.h.s has to interpreted in A(E) through the extension (12).

Checking the following identity for k = l = 1 is left as a warm-up exercise for the
complete proof in section 2.3.1

L(u1)(x)L(v1)(x) = L(u1v1)(x) + L(v1u1)(x) +

{
L(u1)(x) if u1 = v1

0 else

The replacement of shuffles of iterated integrals by quasi-shuffles of iterated sums is
related to the fact that the Lebesgue measure puts zero mass on singlets nor on d − 1-
dimensional subspaces of Rd.

From hidden Markov paths to iterated occupation times. As announced, the
definition 1.1 of hidden Markov walks fits nicely with the framework of iterated occupa-
tion times.

Property 1.2. Let (Rn, Xn) be a hidden Markov walk on E × V . Let N ∈ N and
XN : [0, 1] → V be the piecewise linear path XN = ιN (X). Then, under suitable integra-
bility hypothesis for the existence of the conditional expectation, there exist deterministic
coefficients (fu)u∈E in V , (cu)u∈E in V ⊗ V and (bu,v)u,v∈E in V ⊗ V such that

E

[∫ 1

0

dXN (s)

∣∣∣∣σ(R)

]
=
∑

u∈E

fuLu((Rn)0≤n<N )

E

[∫

0<s1<s2<1

dXN (s1) ⊗ dXN (s2)

∣∣∣∣σ(R)

]
=
∑

u∈E

cuLu((Rn)0≤n<N )

+
∑

(u,v)∈E

bu,vLuv((Rn)0≤n<N )

and more generally such decompositions on iterated occupation time hold for higher iter-
ated integrals.

One checks that iterated integrals of level two are mapped to iterated occupation
times of both level one and level two: the absence of coherent grading is related to the
fact that iterated integrals satisfy a shuffle property whereas iterated sums satisfy only
a quasi-shuffle property.

Description of C and Γ. There are explicit expressions for the deterministic coeffi-
cients C and Γ of theorems 1.1 and 1.2 that are easy to derive but that we choose to
skip here. Section 2.3.2 is dedicated to such computations giving in particular explicit
expressions relating iterated occupation times with C and Γ.
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Generalized ergodic theorem for iterated occupation times. Following the same
type of proof as in section 2.2 based on excursion theory of Markov chain, one can prove
the following asymptotic property.

Proposition 1.2. Let (Rn)n∈N be a Markov chain on a countable space E such that it
is irreducible and positive recurrent, with invariant probability ν. Then, for any sequence
(u1, . . . , uk) ∈ Ek,

Lu1...uk
((Rn)0≤n<N )

Nk

a.s.,L1

−−−−→
N→∞

ν(u1)ν(u2) . . . ν(uk)

k!
(14)

This result looks uninteresting at first sight and corresponds to the discrete equivalent
of the convergence of δN−1 ◦S◦ιN(X) to a zero limit due to the centring of the increments
and the law of large number. A more interesting asymptotic result for iterated occupation
times consists in considering fluctuations around the a.s. limit (14). This is done partially
in section 2.3.3, even if it would be interesting to have a more general study of iterated
occupation times.

1.2.3. The general question of embeddings.

Theorem 1.1 already encompasses a wide variety of discrete models but we formulate
below a generalization of it by observing the two following facts.

First, the definition 1.1 of hidden Markov walk requires only that V is a semi-group
in order to build Xn = F0 · F1 · . . . · Fn−1 out of its increments Fn and that it embeds
nicely in G2(V ) in order to formulate the theorem.

Besides, the choice of Donsker embedding is particular since it is one of the simplest
embeddings one may consider on V but one may choose more useful embeddings if the
discrete model already has its own geometrical embedding (see for example the round-
about model described in section 1.3).

We thus generalize the definition 1.1 to the case of general embeddings.

Definition 1.5. Let E be a countable set and V a finite-dimensional vector space. A
hidden Markov path ((Rn, Fn)n∈N, (Xt)t∈R+) with regularity α is a process such that:

(i) the process (Rn)n∈N is a Markov chain on E;
(ii) the r.v. Fn have values in C0,α-Höl([0, 1], G2(V ))

(iii) conditionally on the process (Rn), the increments Fn are independent and have
marginal laws such that, for any Borel set A, any n ∈ N and any r ∈ E,

P (Fn ∈ A|σ(R)) = P (Fn ∈ A|Rn) (15)

P (Fn ∈ A|Rn = r) = P (F1 ∈ A|R1 = r) (16)

and moreover Fn(0) = 0G2(V ) a.s.;
(iv) the process (Xt) is obtained by concatenating the increments Fn, i.e., for any n ∈ N,

for any t ∈ [n, n + 1[,

Xt = F0(1) · . . . Fn−1(1) . . . · Fn(t − n) (17)
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where · is the product in G2(V ).

Given this generalized definition, theorem 1.1 admits the following generalization.

Theorem 1.2. Let E be a countable set and V a finite-dimensional vector space. Let
r0 ∈ E. Let ((Rn, Fn)n∈N, (Xt)t∈R+) be a hidden Markov path such that:

(i) X0 = 0G2(V ) a.s. and R0 = r0 a.s.
(ii) the Markov chain (Rn) is irreducible and positive recurrent, with invariant proba-

bility ν, and the first return time T1 = inf{n ≥ 1; Rn = R0} has finite moments for
all integer p:

Er0 [T p
1 ] < ∞ (18)

(iii) the increments Fn take values in
⋂

1
3 <β< 1

2
C0,β-Höl([0, 1], G2(V )) and satisfy, for

all p ∈ N, the bound

sup
r∈E

sup
1
3 <β< 1

2

E
[
dβ(F1, 0G2(V ))

p
∣∣R1 = r

]
< ∞ (19)

(iv) the walk (Xt) is centred, i.e. satisfies

∑

r∈E

ν(r)E [π1(F1(1))|R1 = r] = 0V (20)

where π1(u) is the component in V of u ∈ G2(V ) ⊂ V ⊕ (V ⊗ V ).

Then, for any 1/3 < α < 1/2, the sequence of processes (δN−1/2 (XNt))t∈[0,1] converges

in law in the rough path topology of C0,α-Höl([0, 1], G2(V )) to the enhanced Brownian
motion (as defined in (2)) with covariance matrix C and area anomaly Γ ∈ V ∧ V given
in (29) and (30), for any 1/3 < α < 1/2. Moreover, the limit law does not depend on the
choice of r0.

In particular, one verifies easily that theorem 1.1 is a consequence of theorem 1.2 by
choosing the linear interpolation:

Fn(t) = exp(tFn) = (tFn, 0) ∈ V ⊕ (V ∧ V ) ≃ G2(V ) (21)

(see section 2.1 for the exact definition of the Lie group G2(V )). More generally, hypothe-
sis (19) is satisfied as soon as the embeddings are smooth or Lipschitz and the increments
have finite moments.

As for theorem 1.1, the area anomaly Γ obtained in (45b) is related to the area of
the walk (Xn) covered during one excursion of the process (Rn). There may be now two
contributions: one of them is related to the fact that the Fn may contain an area drift
(this is the new part due to the nonlinear embeddings) and one of them is related to the
area produced by correlations during one excursion.
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1.3. Examples and heuristics

We present in this section various models to illustrate the previous theorems. The explicit
formulae for C and Γ are given below in equations (45a) and (45b).

A random walk in C with rotating increments. Let ω = e2iπ/L be a root of unity
with L ≥ 3. Let (Uk)k∈N be a sequence of i.i.d. real random variables with finite moments
of all order. Identifying canonically C with R2, the process (Xn)n∈N defined by X0 = 0
and, for any n ≥ 1

Xn =

n−1∑

k=0

ωkUk

is a hidden Markov walk. Indeed, one may choose E = Z/LZ and the deterministic
dynamics Rn = n mod L. The increment Fn = ωRnUn depends only on Rn and of r.v.
independent of the process (Rn). The first return time is constant T1 = L and thus
E0 [T p

1 ] = Lp < ∞. Moreover one has the following computations.

E0 [XT1 ] =

(
L−1∑

k=0

ωk

)
E [X1] = 0

Cij =
1

L
E0

[
X

(i)
T1

X
(j)
T1

]
=

Var(X1)

2
δij

Γ =
cos(π/L)

4 sin(π/L)
E [X1]

2

(
0 −1
1 0

)

In the present case, the return time has an almost sure value and thus we may improve
the proof of theorem 1.2 in order to relax the finite moment hypothesis on the Uk.

Spending time turning around. A case described by theorem 1.2 but not by the-
orem 1.1 is given by the following construction. We fix E = {1, 0}. If Rn = 1, then a
centred random vector Un is chosen and the path increment is the straight line:

Fn(t) = (tUn, 0) (22)

If Rn = 0, then the path increment is a circle c(t) = r(cos(2πt)−1, sin(2πt)). The covered
area at time 1 is thus πr2 and Fn(1) = (0, πr2) where R2 ∧ R2 is identified to R.

The process Rn is a Markov chain with transition matrix

Q =

(
1 − a a

b 1 − b

)

in the basis (1, 0). Theorem 1.2 can be applied. An excursion corresponds to the sequence
of states 1 or 100 . . . 0 where the number of 0 is a geometric law (starting at 1) and one
obtains:

C =
1

E1 [T1]
E1 [XT1 ⊗ XT1 ] =

b

a + b
E [U1 ⊗ U1]

Γ = πr2 a

a + b
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Figure 1. Diamond (left) and round-about (right) models on Z2-periodic patterns. At each vertex, there
is exactly two incoming and two out-coming edges, one plain and one dashed. The dashed out-coming
edge is chosen with probability p and the plain one with probability 1−p. The space state E corresponds
to the types of arrow. The difference between the two cases corresponds to the curved dashed arrow: in
the roundabout model, the increment is the same but with an additional covered area.

If b goes to zero, one recovers the area bubbles mentioned in the introduction. If a goes
to 0, there are no circles and one recovers the classical random walk.

Diamond and round-about models: the question of correlations and embed-

dings. We introduce two other models that illustrate theorem 1.2 in figure 1. Both
models have the same space E = {1, 2, . . . , 8}. A value r ∈ E corresponds to a unique
type of edges on a Z2-periodic graph. In both models, the edges have the same increments
in the plane R2 but differ by their embeddings: in the diamond model, all the embeddings
are straight lines whereas, in the round-about model, part of the edges are circle arcs,
which cover a non-zero area.

At the end of an arrow, there is exactly two out-coming edges, one plain and one
dashed. The dashed out-coming edge is chosen with probability p and the plain one with
probability 1 − p.

If p ≥ 1/2, the walk tends to be trapped in the diamonds/round-abouts and thus ac-
cumulates a covered area, which in the continuous limit, contributes to the area anomaly
Γ. In the diamond model, all the contributions to Γ are of these type. In the round-about
model, there is an additional contribution to Γ corresponding to the area covered by the
circle arcs.
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2. Mathematical tools and proofs.

2.1. The rough path space and its topology

All our notations and definitions follow closely the ones introduced in [4] and [9] and
thus we sketch only the tools needed for the proofs. The space G2(V ) is the subset

of T
(2)
1 (V ) = V ⊕ (V ⊗ V ) of elements (v, M) such that there exists a smooth path

x : [0, 1] → V whose signature S(x)(1) is equal to (v, M). It is easy to see that G2(V ) is
a subgroup isomorphic to V ⊕ V ∧ V since the symmetric part of M has to be equal to
(1/2)v ⊗ v and thus can be skipped from the description. The group law is defined as

(a, A) · (b, B) = (a + b, A + B + (1/2)(a ⊗ b − b ⊗ a))

and the inverse is given by (a, A)−1 = (−a, −A). We define the two canonical projections:

π1 : G2(V ) → V π2 : G2(V ) → V ∧ V

(a, A) 7→ a (a, A) 7→ A

The Carnot-Caratheodory norm ||u|| of an element u is the infimum of the lengths1

of smooth paths x such that S(x)(1) = u and it induces a distance on G2(V ) through
d(u1, u2) =

∣∣∣∣u1 · u−1
2

∣∣∣∣, making G2(V ) a geodesic space.
Given two smooth paths x1, x2 : [0, 1] → V such that x1(0) = x2(0) = 0V , we

introduce, for any α ∈ (1/3, 1/2), the distance:

dα(x1, x2) = sup
(s,t)∈[0,1]2

∣∣∣∣S2(x1)(s, t) · S2(x2)(s, t)−1
∣∣∣∣

|t − s|α (23)

where S2(x)(s, t) = S2(x)(t) · S2(x)(s)−1 is the G2(V )-valued increment of the signature.
The dα-closure of the set of signatures (S(x)) of smooth paths x at finite distance

from the signature of the constant zero path is the Polish space (for dα)

C0,α-Höl([0, 1], G2(V )) (24)

In practice, the study of convergence in law of processes in the topology of this rough
path space is made easier by two useful tools: equivalence of norms and Kolmogorov-
Centsov tightness criterion. First, there is equivalence of norms on G2(V ) between the
Carnot-Caratheodory norm ||(a, A)|| defined through geodesics and the norm ||(a, A)||′
defined by:

||(a, A)||′ =

d∑

i=1

|π(i)
1 (a)| +

∑

1≤i<j≤d

|π(ij)
2 (A)|1/2 (25)

where π
(i)
1 (a) and π

(ij)
2 (A) are the components of a and A in a given basis. Bounding

dα(x1, x2) thus only requires suitable bounds on every coefficient of the components of
the paths.

1V is assumed to be Euclidean.
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All the tightness criteria required by our theorem deal with 1/3 < α < 1/2 and
thus, following [4], tightness of a sequence of processes ((X(N)(t))t∈[0,1])N≥1 in a fixed

C0,α-Höl([0, 1], G2(V )) requires only that there exists p ≥ 1 such that α ≤ (2p − 1)/(4p)
and there exists C such that for any s, t ∈ [0, 1], it holds:

sup
N≥1

E

[∣∣∣
∣∣∣X(N)(t) · X(N)(s)−1

∣∣∣
∣∣∣
4p
]

≤ C|t − s|2p (26)

2.2. Proof of the convergence theorem and formulae for the

anomalous area drift

In this section, we fix a hidden Markov path ((Rn, Fn)n∈N, (Xt)t∈R+) in G2(V ) satisfying
the hypothesis of theorem 1.2. The proof of theorem 1.2 relies on the following steps:

• we cut the trajectories of (Rn) into excursions;

• we then study the convergence of the accelerated geodesic interpolation (X̂t) of the
process (Xt) between two successive return times of (Rn);

• we compare the finite-dimensional marginals of the two processes X̂ and X in the
limit;

• we prove the tightness of the sequence of processes (X(N))N .

Cutting into independent excursions. The proof of theorem 1.2 relies on the divi-
sion of the process ((Rn, Fn)n∈N, (Xt)t∈R+) into time windows [Tk, Tk+1) corresponding
to excursions of the Markov process (Rn) (see [13] for a general theory of excursions of
Markov processes).

Proposition 2.1. Let (Tk)k∈N be the sequence of excursion times defined by:
{

T0 = 0

Tk+1 = inf {n > Tk; Rn = RTk
} , k ∈ N

(27)

Then, for any r0 ∈ E, conditionally on {R0 = r0}, the r.v. (F̂k)k∈N1 defined by

F̂k = FTk−1
(1) · FTk−1+1(1) · . . . · FTk−1(1) (28)

is a sequence of independent and identically distributed G2(V )-valued random variables.

Proof. The recurrence of (Rn) implies that all the Tk are finite a.s. and, from the general
theory of discrete Markov processes, the excursions of the process (Rn) are independent

and identically distributed. Each F̂k is a product of r.v. indexed by times belonging to
the same excursion of the process (Rn) and the hidden Markov structure implies the
result.

Property 2.1 (moments of F̂1). Under the hypotheses of theorem (1.2), the r.v. (F̂k)k∈N

are independent and satisfy:
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(i) for all p ∈ N and all r0 ∈ E, Er0

[∣∣∣
∣∣∣F̂1

∣∣∣
∣∣∣
p]

< ∞
(ii) the projection on V are centred and have a finite covariance

Er0

[
π1(F̂1)

]
= 0V Er0

[
π

(i)
1 (F̂1)π

(j)
1 (F̂1)

]
= CijEr0 [T1] < ∞ (29)

where Cij is symmetric and does not depend on the choice of r0.
(iii) the expectation of the second level is given by

Er0

[
π

(ij)
2 (F̂1)

]
= ΓijEr0 [T1] (30)

where Γij is antisymmetric and does not depend on r0.

Proof. Let p ∈ N be a fixed integer. The first point uses sub-additivity of the norm and
the bound (a1 + . . . + an)p ≤ np(ap

1 + . . . + ap
n) for positive numbers:

∣∣∣
∣∣∣F̂1

∣∣∣
∣∣∣
p

≤ T p
1

∑

0≤k<T1

||Fk(1)||p

Er0

[∣∣∣
∣∣∣F̂1

∣∣∣
∣∣∣
p∣∣∣σ(R)

]
≤ T p

1

∑

0≤k<T1

Er0 [||Fk(1)||p|σ(R)] ≤ T p+1
1 C

using hypotheses (19) and (18).
The second point uses the classical representation property of invariant measure as

marginal of the excursion measure of additive functionals: for any ν-integrable function
f : E → R, it holds

∑

r∈E

f(r)ν(r) =
1

Er0 [T1]
Er0



∑

0≤k<T1

f(Rk)


 (31)

for any r0 ∈ E. In the present case, we apply this formula to

Er0

[
π1(F̂1)

]
= Er0


 ∑

0≤k<T1

Er0 [π1(Fk(1))|Rk]




and use the centring hypothesis (20). C and Γ do not involve additive functionals (see be-
low section 2.3.2 for more information and explicit formulae), however the independence
with respect with r0 can be proved in the same way as the previous property.

Convergence of the excursion-geodesic extracted process. Out of the indepen-
dent G2(V )-valued r.v. (F̂k), we follow [4] and build the geodesic-interpolated processes

(X̂t))t∈R+ defined by

X̂t = F̂1 · . . . · F̂⌊t⌋ · g(F̂⌊t⌋+1, {t}) (32)
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where g : G2(V ) × [0, 1] → G2(V ) is defined such that g(u, ·) is the geodesic in G2(V )
joining 0G2(V ) and u. For any real number t, ⌊t⌋ and {t} are respectively its integer and
fractional parts.

The relation with the initial process Xt is that, for any k ∈ N,

X̂k = XTk
(33)

However, the sequence of processes (δN−1/2 (X̂Nt)) is such that a corrected version of
the results of [4] can be applied and provide the following theorem and the following
lemma. By the word corrected, we mean that theorem 3 of [4] should either require also
the centering of the π2(ξi) in order to have no drift area or, if not, include an area drift
Γ in the enhanced Brownian motion at the limit. One may be convinced for example by
considering increments (ξi, a) where ξi is an random increment in V and a is a constant

in V ∧V . Then W
(n)
k/n is given by δn−1/2

(
eξ1 ⊗ . . . ⊗ eξk

)
⊗(0, ka/n) since the last term is

central in G2(V ) and converges a.s. to the limit process (0, ta) (using Slutsky’s lemma, one
has convergence to the anomalous enhanced Brownian motion). The proof of theorem 3
of [4] remains unchanged: the use of Stroock-Varadhan theorem is still valid but identifies
a non-zero additional drift term in V ⊗ V . The tightness criterion remains the same up
to recentering of the area, which is costless. An alternative way of identifying this drift
term is present in [6] in a more general context and with a precise description of all the
terms.

Theorem 2.1 (from [4]). Let ((Rn, Fn)n∈N, (Xt)t∈R+) be a hidden Markov path in
G2(V ) satisfying the hypothesis of theorem 1.2 and let 1/3 < α < 1/2. Let β = 1/Er0 [T1].

The sequence of processes ((δN−1/2(X̂Nβt)t∈[0,1])N∈N∗ converges in distribution in the

space C0,α-Höl([0, 1], G2(V )) to the enhanced Brownian motion with covariance matrix C
and area anomaly Γ given in property 2.1. Moreover, the limit law does not depend on
r0.

We emphasize that the dependence on r0 in the construction of X̂k is due to the
construction of the excursions of the process (Rn) and of their length T1: the independence
of C and Γ in property 2.1 requires a normalization by Er0 [T1], which is included in the
previous theorem as a slow-down of the time scale. This can be also seen in eq. (33),
using the a.s. asymptotic equivalent Tk ≃ E [T1] k.

Useful bounds on products of increments F̂n.

Lemma 2.1 (from [4]). For all integer p ≥ 1, there exists C′
p > 0 such that, for any

integers n < m, the following bound holds:

E

[∣∣∣
∣∣∣F̂n · F̂n+1 · . . . · F̂m−1

∣∣∣
∣∣∣
4p
]

≤ Cp(m − n)2p (34)
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This lemma inherited directly from [4] corresponds to equation (∗) of [4] and its proof

relies on the centering of the r.v. π
(i)
1 (F̂n) and a equivalence of ||·|| with a norm which is

a polynomial in the components of F̂n.
However, this lemma is not precise enough for our purposes because of the fluctuations

of the time scale between X̂Nβt and the process XNt (more precisely Tk/k → E [T1] only
asymptotically) and we need the following improved maximal version of the previous
lemma.

Lemma 2.2. For all integer p ≥ 1, there exist C′
p > 0 such that, for any integers

n < m, the following bounds hold:

E

[
sup

n≤k≤m−1

∣∣∣
∣∣∣F̂n · F̂n+1 · . . . · F̂k

∣∣∣
∣∣∣
4p
]

≤ C′
p(m − n)2p (35)

E

[
sup

n≤k≤l≤m−1

∣∣∣
∣∣∣F̂k · F̂k+1 · . . . · F̂l

∣∣∣
∣∣∣
4p
]

≤ 24pC′
p(m − n)2p (36)

Proof. We start with the proof of (35). Using the distance (25), it is enough to prove
the existence of constants Ai and Bij such that:

E

[
sup

n≤k≤m−1

∣∣∣π(i)
1 (F̂n · F̂n+1 · . . . · F̂k)

∣∣∣
4p
]

≤ Ai(m − n)2p (37a)

E

[
sup

n≤k≤m−1

∣∣∣π(ij)
2 (F̂n · F̂n+1 · . . . · F̂k)

∣∣∣
2p
]

≤ Bij(m − n)2p (37b)

for any 1 ≤ i, j ≤ d. By definition of G2(V ), we have:

π
(i)
1 (F̂n · F̂n+1 · . . . · F̂k) =

k∑

l=n

π
(i)
1 (F̂l)

π
(ij)
2 (F̂n · F̂n+1 · . . . · F̂k) =

k∑

l=n

π
(ij)
2 (F̂l)

+
∑

n≤l1<l2≤k

(
π

(i)
1 (F̂l1 )π

(j)
1 (F̂l2 ) − π

(j)
1 (F̂l1 )π

(i)
1 (F̂l2 )

)

The r.v. π
(i)
1 (F̂l) are i.i.d. centred random variable and thus the sequence (M

(1)
k )k≥n of

r.v. M
(1)
k =

∑k
l=n π

(i)
1 (F̂l) is a martingale and Doob’s maximal inequality gives the first

bound (37a) since E

[
(M

(1)
m−1)4p

]
≤ A′

i(m − n)2p.

We introduce now a(ij) = E

[
π

(ij)
2 (F̂1)

]
and observe that, if M

(2)
k = π

(ij)
2 (F̂n · . . .·F̂k)−

(k − n)a(ij), (M
(2)
k )k≥n is also a martingale since both

(∑k
l=n(π

(ij)
2 (F̂l) − a(ij))

)
k≥n

and




∑

n≤l1<l2≤k

(
π

(i)
1 (F̂l1 )π

(j)
1 (F̂l2 ) − π

(j)
1 (F̂l1 )π

(i)
1 (F̂l2 )

)



k≥n
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are martingales. Moreover it holds:
∣∣∣π(ij)

2 (F̂· . . . · F̂k)
∣∣∣
2p

≤ 22p
(

|a(ij)|2p(k − n)2p + M2p
k

)
≤ C1(m − n)2p + M2p

k

Using again Doob’s maximal inequality, we are left to prove

E

[
(M

(2)
m−1)2p

]
≤ C2(m − n)2p (38)

which can be done by direct computation. Hence we obtain eq. (37b).
The proof of (36) is obtained by the norm subadditivity through the following inequal-

ity for n ≤ k ≤ l ≤ m
∣∣∣
∣∣∣F̂k · . . . · F̂l

∣∣∣
∣∣∣
4p

=
∣∣∣
∣∣∣(F̂n · . . . · F̂k−1)−1 · (F̂n · . . . · F̂l)

∣∣∣
∣∣∣
4p

≤ 24p

(∣∣∣
∣∣∣F̂n · . . . · F̂k−1

∣∣∣
∣∣∣
4p

+
∣∣∣
∣∣∣F̂n · . . . · F̂l

∣∣∣
∣∣∣
4p
)

Using then (35) gives directly (36).

Useful bounds on the renewal process (Tk)k∈N. The sequence of excursion times
(Tk)k∈N is a renewal process on N (see [1] for a good introduction). We introduce, for
any x ∈ R+, the integer-valued random variable K(x) defined by

K(x) = max {n ∈ N; Tn ≤ x}
This is the unique integer K(x) such that TK(x) ≤ x < TK(x)+1. The proofs below require
deviation estimates of K(x) − βx with β = 1/E [T1] as well as moment estimates on
increments TK(x)+1−TK(x). We emphasize on the inspection paradox : although Tn+1−Tn

has the same law as T1, TK(x)+1 − TK(x) is stochastically larger than T1. However, in our
case, the following property still holds:

Proposition 2.2. Let (Tk) be a renewal process such that the (Tn+1 − Tn)n∈N are i.i.d.
and there exists P ∈ N such that, for all p ≤ P , E [T p

1 ] < ∞. Then, for all p ≤ P − 1,
there exists Cp > 0 such that, for all x ∈ R+,

E
[(

TK(x)+1 − TK(x)

)p] ≤ Cp < ∞

Proof. It is sufficient to prove the result for x integer since K(⌊x⌋) = K(x). We introduce
the delay Dj = Tj − Tj−1 for j ≥ 1 and we now decompose the event {DK(x)+1 = n}
along the values of K(x):

{DK(x)+1 = n} =
⋃

j∈N

{K(x) = j and Dj+1 = n}

=
⊔

j∈N

{Tj ≤ x < Tj + n and Dj+1 = n}

=
⊔

x−n<k≤x

⊔

j∈N

{Tj = k and Dj+1 = n}
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We now obtain

P
(
DK(x)+1 = n

)
=

∑

x−n<k≤x

∑

j∈N

P (Tj = k and Dj+1 = n)

For fixed j, the r.v. Tj and Dj+1 are independent by construction and Dj+1 has the same
law as T1. We thus obtain

P
(
DK(x)+1 = n

)
= P (T1 = n)

∑

x−n<k≤x

∑

j∈N

P (Tj = k)

≤ P (T1 = n)
∑

x−n<k≤x

1 ≤ nP (T1 = n)

The expected uniform finite bounds on the moments of TK(x)+1 − TK(x) is then an easy
consequence.

We will also need the following deviation estimation on the r.v. K(x) for the proof of
lemma 2.3.

Proposition 2.3. Let (Tk) be a renewal process such that the (Tn+1 − Tn)n∈N are i.i.d.
and, there exists p ∈ N, E [T p

1 ] < ∞. Let β = 1/E [T1]. Then, for all real a > 1 and
x > 0, it holds:

P (K(x) − βx ≥ a) ≤ Cp
(βx + a)p/2

(a − 1)p
(39a)

P (K(x) − βx ≤ −a) ≤
{

Cp
(βx−a+1)p/2

(a−1)p for a ≤ βx

0 for a > βx
(39b)

Proof. We first relate the event {|K(x) − βx| ≥ a} to events related to the (Tn) using
the equality {K(x) ≥ n} = {Tn ≤ x}:

P (K(x) − βx ≥ a) = P (K(x) ≥ ⌊βx + a⌋) ≤ P
(
T⌊βx+a⌋ ≤ x

)

≤ P
(
T⌊βx+a⌋ − E [T1] ⌊βx + a⌋ ≤ −(a − 1)E [T1]

)

As a sum of independent centered r.v. with finite moments, it holds E [|Tn − nE [T1] |p] ≤
Apnp/2. Using now Markov inequality produces (39a). The second inequality is obtained
in the same way by considering complementary events:

P (K(x) − βx ≤ −a) ≤ P (K(x) ≤ ⌊βx − a⌋) = P
(
T⌊βx−a⌋+1 > x

)
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Comparison of the finite-dimensional marginals of the two processes.

Lemma 2.3. Let β = 1/E [T1] ∈ (0, +∞). Let t ∈ [0, 1]. For any ǫ > 0, it holds:

P

(∣∣∣
∣∣∣δN−1/2(X̂Nβt)

−1 · δN−1/2(XNt)
∣∣∣
∣∣∣ > ǫ

)
N→∞−−−−→ 0 (40)

Using the same argument repeatedly, the same convergence in probability to 0 can
be extended to a family (t1, . . . , tm) and thus, by Slutsky’s lemma, it shows that both
processes have the same finite-dimensional marginal laws.

Proof. The idea behind the lemma comes from eq. (33): the stopping times Tk are
asymptotically equivalent to kE [T1]. The differences between the two processes have two
origins: first, the difference between Tk and kE [T1] and second, the difference between
the geodesic interpolation and the stochastic path Xt.

The two r.v. X̂Ntβ and XNt are given by:

X̂Nβt = F̂1 · . . . · F̂⌊Nβt⌋ · g(F̂⌊Ntβ⌋+1, {Ntβ})

XNt = F̂1 · . . . · F̂K(⌊Nt⌋) · FTK(Nt)
(1) · . . . · F⌊Nt⌋−1(1) · F⌊Nt⌋({Nt})

where K(u) is the unique integer such that

TK(u) ≤ u < TK(u)+1.

We then obtain the bound:
∣∣∣
∣∣∣X̂−1

Nβt · XNt

∣∣∣
∣∣∣
q

≤ 3q
( ∣∣∣
∣∣∣g(F̂⌊Nβt⌋+1, {Ntβ})

∣∣∣
∣∣∣
q

+
∣∣∣
∣∣∣F̂min(K(Nt),⌊Ntβ⌋)+1 · . . . · F̂max(K(Nt),⌊Ntβ⌋)

∣∣∣
∣∣∣
q

+
∣∣∣∣FTK(Nt)

(1) · . . . · F⌊Nt⌋−1(1) · F⌊Nt⌋({Nt})
∣∣∣∣q
)

The first norm is trivially bounded by
∣∣∣
∣∣∣F̂⌊Nβt⌋+1

∣∣∣
∣∣∣
q

, which has a finite expectation from

property 2.1. The third norm is also easy to bound in expectation:

E
[∣∣∣∣FTK(Nt)

(1) · . . . · F⌊Nt⌋−1(1) · F⌊Nt⌋({Nt})
∣∣∣∣q∣∣σ(R)

]

≤ (⌊Nt⌋ − TK(Nt))
q

⌊Nt⌋∑

k=TK(Nt)

E
[
dα(Fk, 0G2(V ))

q
∣∣Rk

]

≤ A(⌊Nt⌋ − TK(Nt))
q+1 ≤ A(TK(Nt)+1 − TK(Nt))

q+1

and thus the expectation of the q-th power of the norm is finite from proposition 2.2 and
hypothesis 18.
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In order to bound from above the expectation of the second norm, we introduce the
sequence uN = ⌊Nγ⌋ for some real γ > 0 chosen below. We then obtain, using q = 4p
and lemma 2.2:

E

[∣∣∣
∣∣∣F̂min(K(Nt),⌊Ntβ⌋)−1 · . . . · F̂max(K(Nt),⌊Ntβ⌋)

∣∣∣
∣∣∣
4p

1|K(Nt)−⌊Ntβ⌋|≤uN

]

≤ E

[
sup

⌊Nβt⌋−uN ≤k≤l≤⌊Nβt⌋+uN

∣∣∣
∣∣∣F̂k · . . . · F̂l

∣∣∣
∣∣∣
4p
]

≤ K1u2p
N

The event |K(Nt) − ⌊Nβt⌋| > uN has a small probability for large N . Moreover the
previous norm contains at most ⌊Nt⌋ terms since K(Nt) ≤ ⌊Nt⌋ and β > 1. We use
lemma 2.2 and Cauchy-Schwarz inequality to obtain

J(uN ) =E

[∣∣∣
∣∣∣F̂min(K(Nt),⌊Ntβ⌋) · . . . · F̂max(K(Nt),⌊Ntβ⌋)−1

∣∣∣
∣∣∣
4p

1|K(Nt)−⌊Ntβ⌋|>uN

]

≤E

[
sup

1≤k≤l≤⌊Nt⌋

∣∣∣
∣∣∣F̂k · . . . · F̂l

∣∣∣
∣∣∣
4p

1|K(Nt)−⌊Ntβ⌋|>uN

]

≤K2N2p
P (|K(Nt) − ⌊Ntβ⌋| > uN)1/2

Proposition 2.3 for p = 2 immediately gives the following bound for N large enough:

J(uN ) ≤ K4
N2p+1/2

uN

Collecting all the results with the dilation δN−1/2 gives for 4p + 3 ≤ r

E

[∣∣∣
∣∣∣δN−1/2(X̂Nβt)

−1 · δN−1/2(XNt)
∣∣∣
∣∣∣
4p
]

≤ A1

N2p
+

K1u2p
N

N2p
+ K4

N1/2

uN

Any choice 1/2 < γ < 1 implies that the expectation tends to zero, hence the convergence
in probability.

Tightness of the initial process.

Lemma 2.4 (tightness). Under the hypotheses of theorem 1.2, the tightness criterion
(26) holds for the sequence of processes (δN−1/2(XNt))t∈[0,1].

Proof. The proof is similar to the one of the previous lemma. We fix s < t. If ⌊Ns⌋ =
⌊Nt⌋ = j, then

∣∣∣∣XNs(s)−1 · XNt(t)
∣∣∣∣4p

= ||Fj(Nt − Ns)||4p ≤ dβ(Fj , 0G2(V ))
4p(Nt − Ns)4pβ

for any 1/3 < β < 1/2. Hypothesis (19) gives

E

[∣∣∣∣XNs(s)−1 · XNt(t)
∣∣∣∣4p
]

≤ C(Nt − Ns)4pβ
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for any β < 1/2, hence the bound N2p(t − s)2p by taking β → 1/2.
If ⌊Ns⌋ < ⌊Nt⌋, we introduce the event

E =
{

TK(Ns)+1 < TK(Nt)

}

which corresponds to at least one complete excursion separating Ns and Nt. On Ec, we
use the decomposition

X−1
Ns · XNt =

(
F⌊Ns⌋({Ns})−1 · F⌊Ns⌋(1)

)
· F⌊Ns⌋+1(1) · . . . · F⌊Nt⌋−1(1) · F⌊Nt⌋({Nt})

and, on E, we factorize the excursions using the F̂k:

X−1
Ns · XNt =F⌊Ns⌋({Ns})−1 · F⌊Ns⌋(1) (41a)

· F⌊Ns⌋+1(1) · . . . · FTK(Ns)+1−1(1) (41b)

·
(

F̂K(Ns)+2 · . . . · F̂K(Nt))

)
(41c)

· FTK(Nt)
(1) · . . . · F⌊Nt⌋−1(1) (41d)

· F⌊Nt⌋({Nt}) (41e)

First case: on E. We will use repeatedly the following ordering valid on E:

TK(Ns) ≤ Ns < ⌊Ns⌋ + 1 ≤ TK(Ns)+1 < TK(Nt) ≤ ⌊Nt⌋ ≤ Nt < TK(Nt)+1

We call I1, I2, I3, I4 and I5 the respective norms of the terms (41a), (41b),(41c), (41d)
and (41e). We then have

∣∣∣∣δN−1/2 (XNs)−1 · δN−1/2(XNt)
∣∣∣∣4p ≤ 54p

N2p

5∑

k=1

I4p
k

Bounding I4p
1 and I4p

5 from above uses the distance (23)

||I1||4p ≤ dβ(F⌊Ns⌋, 0G2(V ))
4p(1 − {Ns})4pβ

||I5||4p ≤ dβ(F⌊Nt⌋, 0G2(V ))
4p({Nt})4pβ

Taking σ(R)-conditional expectation with the bound (19) gives a bound valid for all
β < 1/2:

E

[
||I1||4p

∣∣∣σ(R)
]

≤ C(1 − {Ns})4pβ ≤ C(Nt − Ns)4pβ

E

[
||I5||4p

∣∣∣σ(R)
]

≤ C({Nt})4pβ ≤ C(Nt − Ns)4pβ

and thus for β ↑ 1/2 we obtain the expected bound N2p(t − s)2p for E

[
||I1||4p

1E

]
and

E

[
||I5||4p

1E

]
.
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The bounds on I2 and I4 are similar and we write down only the one for I2 using
again hypothesis (19):

||I2||4p ≤




TK(Ns)+1−1∑

k=⌊Ns⌋+1

dβ(Fk, 0G2(V ))




4p

≤
(
TK(Ns)+1 − ⌊Ns⌋ − 1

)4p
TK(Ns)+1−1∑

k=⌊Ns⌋+1

dβ(Fk, 0G2(V ))
4p

≤ C
(
TK(Ns)+1 − ⌊Ns⌋ − 1

)4p+1

≤ C
(
TK(Ns)+1 − TK(Ns)

)2p+1
(Nt − Ns)2p

where the last inequality is true on E only. The excursion times have finite moments
from proposition 2.2 and hypothesis 18 and thus:

E

[
||I2||4p

1E

]
≤ C′(t − s)2p (42)

The bound on I3 can be obtained using lemma 2.2. Since the number K(Nt)−K(Ns)
between Ns and Nt is necessarily smaller than N(t − s), we have the bound

E
[
I3(Ns, Nt)4p1E

]
≤ E

[
sup

1≤k≤N(t−s)

∣∣∣
∣∣∣F̂K(Ns)+2 · . . . · F̂K(Ns)+1+k

∣∣∣
∣∣∣
4p
]

We call Z(TK(Ns)+1) the positive r.v. in the r.h.s. since it is is a product of r.v. Fj(1)
with j ≥ TK(Ns)+1. The filtration (Fn) is defined as Fn = σ((Rk, Fk); k ≤ n). We now
have:

E
[
Z(TK(Ns)+1)

]
=
∑

p∈N

E
[
Z(Tp+1)1K(Ns)=p

]
=
∑

p∈N

E
[
E
[
Z(Tp+1)

∣∣FTp+1

]
1K(Ns)=p

]

since the event {K(Ns) = p} = {Tp ≤ Ns < Tp+1} is FTp+1-measurable. Using the strong
Markov property for the hidden Markov chain (Rn, Fn) and the fact that RTp+1 = r0,
we obtain

E
[
Z(TK(Ns)+1)

]
=
∑

p∈N

E
[
Z(0)1K(Ns)=p

]
= E [Z(0)]

We got rid of the dependency on K(Ns) and lemma 2.2 gives the final inequality

E
[
I3(Ns, Nt)4p1E

]
≤ BN2p(t − s)2p

Second case: on Ec. On Ec, we have the following ordering:

TK(Ns) ≤ ⌊Ns⌋ ≤ Ns < ⌊Ns⌋ + 1 ≤ ⌊Nt⌋ ≤ Nt < TK(Ns)+2 (43)
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The difference is that the term I3 is absent and I2 and I4 may be combined such that,
on Ec:

∣∣∣∣X−1
Ns · XNt

∣∣∣∣4p ≤ 34p
(

||I1||4p
+ ||I24||4p

+ ||I5||4p
)

where I24 = F⌊Ns⌋+1(1) · . . . · F⌊Nt⌋−1(1). The upper bounds on I1 and I5 are the same
as in the previous case. For I24, we have on Ec

||I24||4p
1Ec ≤ (⌊Nt⌋ − ⌊Ns⌋ − 1)4p

⌊Nt⌋−1∑

k=⌊Ns⌋+1

dβ(Fk, 0G2(V ))
4p

and thus now using (19) and the ordering (43) on Ec

E

[
||I24||4p

∣∣∣σ(R)
]

1Ec ≤ C(⌊Nt⌋ − ⌊Ns⌋ − 1)4p+11Ec

≤ C(Nt − Ns)2p(TK(Ns)+2 − TK(Ns))
2p+11Ec

Hypothesis (18) then gives the desired bound CE

[
T 2p+1

2

]
on E

[
||I24||4p

1Ec

]
.

Collecting all the previous bounds gives the expected tightness criterion since all the
bounds are of the form AN2p(t − s)2p.

Remarks on the hypotheses (18) and (19). Some of the hypotheses of theorem 1.2
could be slightly relaxed by improving the previous proof or by considering only a fixed
given α < 1/2. In the case where only one value α < 1/2 is targeted, one could use the
same approach as [4] and require only a finite set of finite moments. However, in practice,
one is often interested to the case α → 1/2. In this case, the finite moments hypothesis on

T1 cannot be relaxed since the variable F̂k are required to have moments of all orders in
order to apply the results of [4]. Only efforts may be made on the requirement (19) using
for example correlations between the length Tk of an excursion and the corresponding
increment F̂k. The bound (19) is not restrictive in practice since it encompasses already
the case where the embeddings Fk are smooth or Lipschitz.

2.3. Iterated occupation times, the quasi-shuffle property and

asymptotics

2.3.1. Proof of the quasi-shuffle property (1.1)

Proof. We first prove the following recursive decomposition. If u = u1 · u′ with u′ =
(u2, . . . , uk) is the concatenation of the length one sequence u1 and the sequence u′, then

Lu1·u′(x) =
∑

0≤i1

1xi1 =u1


 ∑

i1<i2<...<ik≤N

1xi2 =u2 . . . 1xik
=uk




=
∑

0≤i1<N

1xi1 =u1Lu′((xn)i1+1≤n<N )
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For two sequences u = u1u′ and v = v1v′ of length larger than 1, the previous equation
gives:

Lu1·u′(x)Lv1·v′(x) =
∑

0≤i1<j1

1xi1 =u11xj1 =v1Lu′((xn)i1+1≤n<N )Lv′((xn)j1+1≤n<N )

+
∑

0≤j1<i1

1xi1 =u1 1xj1 =v1 Lu′((xn)i1+1≤n<N)Lv′((xn)j1+1≤n<N )

+
∑

0≤i

1xi=u1 1u1=j1 Lu′((xn)i+1≤n<N )Lv′((xn)i+1≤n<N )

=
∑

0≤i1

1xi1 =u1 Lu′((xn)i1+1≤n<N )Lv1v′((xn)i1+1≤n<N )

+
∑

0≤j1

1xj1 =v1 Lu1u′((xn)j1+1≤n<N)Lv′((xn)j1+1≤n<N )

+ 1u1=v1

∑

0≤i

1xi=u1 Lu′((xn)i+1≤n<N )Lv′((xn)i+1≤n<N )

= L
u1·u′

�̂v1·v′
(x)

from the definition of the quasi-shuffle product. The expected result is then obtained
from the previous equation by recursion on the sum of the lengths of u and v by setting
for convenience Lǫ(x) = 0.

2.3.2. Relation between C, Γ and the first iterated occupation times

The covariance matrix C and the anomalous area drift Γ are obtained in property 2.1 in
terms of the moments of the law of the i.i.d.r.v. F̂k. It may be interesting to have more
explicit formulae for C and Γ, since they describe completely the limit law.

To this purpose, we introduce, for all u ∈ E, the following expectation values, which
are related to the conditional law of the Fk and do not depend on the law of the process
(Rn)n∈N,

fu = Er0 [π1(F1(1))|R1 = u]

cu = Er0 [π1(F1(1)) ⊗ π1(F1(1))|R1 = u] ∈ V ⊙ V

γu = Er0 [π2(F1(1))|R1 = u] ∈ V ∧ V

where V ⊙ V is the symmetric subspace of V ⊗ V . The proof of proposition 2.1 uses the
fact that the invariant probability of the Markov chain (Rn) satisfies, for any u ∈ E,

ν(u) =
Er0 [Lu((Rn)0≤n<T1 )]

Er0 [T1]

Using the iterated occupation times, we now define, for any k ∈ N, the iterated measure
on Ek:

νk,r0 (u1, . . . , uk) =
Er0 [Lu1...uk

((Rn)0≤n<T1 )]

Er0 [T1]
, (44)
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which coincide, for k = 1, with ν. For k 6= 1, it depends on the initial point r0: this
can be seen for example in the total mass related to the moments of T1, which depends
on the initial point r0. However, the expression below for C and Γ do not depend on
r0. It would be interesting to understand in more details the dependence on the initial
point, but it is more a question of general theory of Markov processes than a rough path
question.

Property 2.2. The covariance matrix C and the anomalous area drift Γ, defined in
property 2.1 and appearing in theorems 1.1 and 1.2 are given by:

Cij =
∑

u∈E

c(ij)
u ν(u) +

∑

(u,v)∈E2

(f (i)
u f (j)

v + f (j)
u f (i)

v )ν2(u, v) (45a)

Γij =
∑

u∈E

γ(ij)
u ν(u) +

1

2

∑

(u,v)∈E2

(f (i)
u f (j)

v − f (j)
u f (i)

v )ν2(u, v) (45b)

Proof. The proof is left to the reader and uses only the definition of a hidden Markov
chain and the definition of fu, cu, γu, ν and ν2.

The previous formula (45b) for Γ shows that there may be two ways of creating a
non-zero Γ. The first way — which is a bit trivial — uses non-zero contributions γu

and corresponds to path increments Fk which already have a non-zero area π2(Fk(1)) in
average: this is the case for example in the round-about model of section 1.3. However,
this is impossible in the case of theorem 1.1 since geodesics in V are straight lines with
zero area.

The second way is much more interesting since it may create a non-zero anomalous
area drift Γ even in the context of theorem 1.1: it is based on the ν2 contribution to
Γ in (45b). In particular, it is absent from [4]: random walks are a particular case of
hidden Markov walk for which E can be chosen to have cardinal 1 and T1 = 1 a.s. and
thus νk = 0 for k ≥ 2. One also checks easily that this term also vanishes for reversible
Markov chain (Rn), for which ν2(u, v) = ν2(v, u) for all (u, v) ∈ E2.

2.3.3. Asymptotic fluctuations of the iterated occupation times and a remark on
non-geometric rough paths

Property 1.2 gives an almost sure limit of the rescaled quantities Lu((Rn))n∈N; however,
their fluctuations are more difficult to describe due to the quasi-shuffle property. We
show here how to handle the question using our previous theorem 1.2. To make things
simpler, we focus on the case where u is of length at most 2 and E is finite.

We now introduce the following quantities:

L⋆
u1

((Rn)0≤n<N ) =
∑

0≤k<N

(1Rk=u1 − ν(u1)) = Lu1 ((Rn)0≤n<N ) − Nν(u1)
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If E is finite, we introduce the finite-dimensional vector space RE with its canonical basis
(eu)u∈E . We define the increments F ⋆

k =
∑

u∈E(1Rk=u − ν(u))eu and the walk:

X⋆
N =

∑

u∈E

L⋆
u((Rn)0≤n<N ))eu (46)

Property 2.3. The process (Rn, X⋆
n)n∈N is a hidden Markov walk in E × RE with

centred increments (F ⋆
n). If (Rn) is irreducible, positive recurrent with finite moments of

the first return time T1, then theorem 1.1 may be applied to describe the scaling limit of
the process.

This implies in particular, without any surprise, that Lu((Rn)0≤n<N )/N has (joint)
Gaussian fluctuations of order N−1/2 around its a.s. limit ν(u). But this also gives re-
sult about the second iterated occupation times Lu1u2 ((Rn)0≤n<N ). To this purpose, we
compute explicitly the iterated integral of the process ιN (X⋆):

1

N

∫

0<s1<s2<1

dιN (X⋆)(s1) ⊗ dιN (X⋆)(s2) =
1

2N

N−1∑

k=0

F ⋆
k ⊗ F ⋆

k

+
1

N

∑

0≤k<l<N

F ⋆
k ⊗ F ⋆

l

The l.h.s. converges in law to B1 ⊗B1/2+ALévy
1 +Γ. The first term of the r.h.s. converges

a.s. and thus in law to a deterministic constant by the ergodic theorem. The second term
of the r.h.s. is related to the modified iterated occupation time through:

1

N

∑

0≤k<l<N

F
(u1)
k F

(u2)
l =

1

N

∑

0≤k<l<N

(1Rk=u1 − ν(u1))(1Rl=u2 − ν(u2))

=:
1

N
L⋆

u1u2
((Rn)0≤n<N )

(47)

Relating L⋆
u1u2

to Lu1u2 gives the information about joint fluctuations of the collection
of r.v. Lu1u2((Rn)0≤n<N ) and additive functionals of the Lu((Rn)0≤n<N ).

Remark on non-geometric rough paths. The construction of the present section is
purely combinatorial and involves only integer numbers for the indices: one may wonder
why integrals of the Donsker embedding ιN (X⋆) should be preferred to the choice of
iterated sums for the signature in T 2(V ) (and not G2(V ) any more) such as:


 ∑

0≤k<N

F ⋆
k ,

∑

0≤k<l<N

F ⋆
k ⊗ F ⋆

l




There is indeed no reason to prefer one to another and it may depend on the context.
The positive result is that there is no reason since both constructions differ by a term
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(1/2)
∑

0≤k<N F ⋆
k ⊗ F ⋆

k , which belongs to the center of T 2(V ), is symmetric and whose
limit is governed in the present case by the law of large numbers and is given by (0, Kt)
where K is a deterministic symmetric matrix. This additional term breaks the geometric
rough path property but, as emphasized in exercise 2.14 (page 23) of [8] (and remarks
disseminated in the corresponding chapter) or [10], this subtlety does not make a big
difference from an analytic perspective.

3. Some open questions and extensions

We have seen how to build non-trivial rough paths above Brownian motion from very
simple and intuitive processes such as hidden Markov chains. This raises various ques-
tions.

A key role in the emergence of a non-zero area anomaly Γ is played by the short-time
correlations of the underlying Markov chain (Rn)n∈N. Exact renormalization on the time
scale is due to the excursion decomposition: it would be interesting to generalize it to
more general processes, such as α-mixing processes as described in [3].

On one hand, we have put restrictive hypothesis on the return times T1 and the
moments of the increments Fn, so that the limit belongs to the Brownian universality
class. On the other hand, rough paths structure may also describe Lévy processes as
described in [6]. It would be interesting to build discrete time models that converge to
such Lévy processes and contain all types of admissible anomalies such as Γ.

The generalization of theorem 1.1 to theorem 1.2 uses embeddings. This question
of a discrete structure on top of piecewise paths is similar to the theory of piecewise-
deterministic Markov processes (PDMP) in continuous time and it may be interesting to
study space-time renormalized PDMP using the present rough path approach.

Rough paths are a particular case of much more general regularity structures as intro-
duced by [8]. One may expect that such regularity structures may contain a wide class
of anomalies (both in the sense of our area anomaly and in the sense of anomalies in
field theory, i.e. a broken symmetry in the discretization or regularization restored by
counter-terms in the continuous limit) and it may interesting to understand them from
correlations in discrete models, as done in the present paper. In particular, anomalous en-
hanced Brownian motion is a particular case of translation of rough paths as described in
[5]: the renormalization scheme described in this reference corresponds to our excursion-
based renormalization. It would also be interesting in this context to introduce branched
version of our iterated occupation times.

The other novelty is the introduction of iterated occupation time and the emergence of
shuffle or quasi-shuffle products already at the discrete level. Such products also appear
in other domains of algebra or combinatorics, for example in the theory of multiple zeta
values or periods: it would be interesting to examine whether relevant Markov chains
could be related to such theories.
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