

Low rates of immediate coronary angiography among young adults resuscitated from sudden cardiac arrest

Victor Waldmann, Nicole Karam, Julien Rischard, Wulfran Bougouin, Ardalan Sharifzadehgan, Florence Dumas, Kumar Narayanan, Georgios Sideris, Sebastian Voicu, Estelle Gandjbakhch, et al.

▶ To cite this version:

Victor Waldmann, Nicole Karam, Julien Rischard, Wulfran Bougouin, Ardalan Sharifzadehgan, et al.. Low rates of immediate coronary angiography among young adults resuscitated from sudden cardiac arrest. Resuscitation, 2020, 147, pp.34-42. 10.1016/j.resuscitation.2019.12.005 . hal-02948006

HAL Id: hal-02948006 https://hal.sorbonne-universite.fr/hal-02948006v1

Submitted on 21 Jul2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 Low Rates of Immediate Coronary Angiography among Young Adults 2 **Resuscitated From Sudden Cardiac Arrest**

- 3
- Victor Waldmann^{1,2,3}, MD, MPH; Nicole Karam^{1,2,3}, MD, PhD; Julien Rischard^{1,2}, MD; 4
- 5 Wulfran Bougouin^{2,3,4}, MD, PhD; Ardalan Sharifzadehgan^{1,2,3}, MD, MPH; Florence
- Dumas^{2,3,5}, MD, PhD; Kumar Narayanan^{2,6}, MD; Georgios Sideris⁷, MD, PhD; Sebastian 6
- Voicu⁸, MD; Estelle Gandjbakhch^{9,10}, MD, PhD; Daniel Jost¹¹, MD; Lionel Lamhaut¹², MD, 7
- PhD; Bertrand Ludes¹³, MD; Isabelle Plu¹⁴, MD; Frankie Beganton², MS; Karim Wahbi^{3,15}, 8
- MD; Olivier Varenne^{3,15}, MD, PhD; Bruno Megarbane⁸, MD, PhD; Vincent Algalarrondo^{10,16}, 9
- MD, PhD; Fabrice Extramiana^{10,16}, MD, PhD; Nicolas Lellouche^{10,17}, MD; David S. 10
- 11
- Celermajer¹⁸, MBBS, FRACP; Christian Spaulding^{1,3}, MD, PhD; Antoine Lafont^{1,3}, MD, PhD; Alain Cariou^{2,3,19}, MD, PhD; Xavier Jouven^{1,2,3*}, MD, PhD; Eloi Marijon^{1,2,3,10*}, MD, 12
- 13 PhD - On Behalf Paris-SDEC investigators
- 14
- 15 ¹AP-HP, European Georges Pompidou Hospital, Cardiology Department, Paris, France
- 16 ² Sudden Death Expertise Center, INSERM U970, Paris Cardiovascular Research Center (PARCC),
- 17 European Georges Pompidou Hospital, Paris, France
- 18 ³ Paris University, Paris, France
- 19 ⁴ Ramsay Générale de Santé, Hôpital privé Jacques Cartier, Intensive Care Unit, Massy, France
- 20 ⁵ AP-HP, Cochin-Hotel Hospital, Emergency Department, Paris, France
- 21 ⁶ Maxcure Hospitals, Hyderabad, India
- 22 ⁷ AP-HP, Lariboisière Hospital, Cardiology Department, Paris, France
- 23 ⁸AP-HP, Lariboisière Hospital, Intensive Care Unit, Paris, France
- 24 ⁹AP-HP, La Pitié Salpêtrière University Hospital, Cardiology Department, Paris, France
- 25 ¹⁰ Groupe Parisien Universitaire de Rythmologie (G.P.U.R.)
- 26 ¹¹ Paris Firefighters Brigade, Paris, France
- 27 ¹² AP-HP, SAMU de Paris, Necker Hospital, Paris, France
- 28 ¹³ Forensic Medical Institute, Paris, France
- 29 ¹⁴ AP-HP, La Pitié Salpêtrière University Hospital, Anatomopathology Department, Paris, France
- 30 ¹⁵ AP-HP, Cochin Hospital, Cardiology Department, Paris, France
- 31 ¹⁶ AP-HP, Bichat-Claude-Bernard Hospital, Cardiology Department, Paris, France
- 32 ¹⁷ AP-HP, Henri Mondor Hospital, Cardiology Department, Créteil, France
- ¹⁸ Faculty of Medicine and Health, Sydney, Australia 33
- 34 ¹⁹ AP-HP, Cochin Hospital, Intensive Care Unit, Paris, France
- 35

36 *Equally contributed to the manuscript 37

38 **Corresponding author**

- 39 Eloi Marijon MD, PhD
- 40 Hôpital européen Georges Pompidou
- Département de Cardiologie 41
- 42 20-40 Rue Leblanc 75908 Paris Cedex 15, France
- 43 Phone: +33662833848
- 44 Fax : +33156093047
- 45 Email: eloi.marijon@aphp.fr
- 46
- 47 **Original Paper – Resuscitation**
- 48
- 49 Words Count: 2853
- 50

1 **Abstract (250 w)**

2 Aim

3 Coronary artery disease (CAD) has recently been emphasized as a major cause of sudden

4 cardiac arrest (SCA) in young adults. We aim to assess the rate of immediate coronary

5 angiography performance in young patients resuscitated from SCA.

6 Methods

7 From May 2011 to May 2017, all cases of out-of-hospital SCA aged 18 to 40 years alive at

8 hospital admission were prospectively included in 48 hospitals of the Great Paris area.

9 Cardiovascular causes of SCA were centrally adjudicated, and management including

10 immediate coronary angiography performance was assessed.

11 **Results**

12 Out of 3,579 SCA admitted alive, 409 (11.4%) patients were under 40 years of age (32.3±6.2

13 years, 69.7% males), with 244 patients having a definite cause identified. Among those, CAD

14 accounted for 72 (29.5%) cases, of which 64 (88.9%) were acute coronary syndromes. The

15 rate of immediate coronary angiography was only 41.7% compared to 65.1% among those \geq

16 40-years (P<0.001). During the study period, while the rate of immediate coronary

17 angiography increased from 60.5% to 70.3% (P < 0.001) in patients aged \geq 40 years, the rate

- 18 in patients aged less than 40 years remained stable (43.5% to 45.3%, P =0.795). Patients
- 19 younger than 40 years were significantly less likely to undergo immediate coronary
- 20 angiography (OR=0.34, 95% CI: 0.25-0.47), although early angiography was associated with
- survival at hospital discharge (OR=2.68, 95% CI: 1.21-6.00).

22 Conclusion

- 23 CAD is the first cause of SCA in young adults aged less than 40 years. The observed low
- 24 rates of immediate coronary angiography suggest a missed opportunity for early intervention.

- 1 Key words Sudden cardiac death; cardiac arrest; coronary artery disease; acute coronary
- 2 syndrome; epidemiology; percutaneous coronary intervention

1 Introduction

Sudden Cardiac Arrest (SCA) is defined as a natural, unexpected and sudden pulseless event,
without an obvious non-cardiac cause [1]. It is a significant public health concern, accounting
for approximately 50% of cardiovascular deaths, with 300,000 cases estimated annually in
Europe [2].

6 Coronary Artery Disease (CAD) accounts for around 80% of SCA cases [3]. Along 7 with bystander interventions and early defibrillation, immediate percutaneous coronary 8 intervention (PCI) is associated with improved outcomes after resuscitation from SCA 9 [4][5][6][7][8]. Previous reports have shown an increase in the rate of coronary angiography 10 performance in patients hospitalized alive after SCA [9][10]. In young patients, non-ischemic 11 structural heart disease (especially cardiomyopathies) and electrical cardiac disorders are 12 alternative diagnoses that were traditionally considered more prevalent [11][12]. However, the 13 epidemiology of CAD has substantially changed over the last two decades, with significant 14 changes in cardiovascular risk factors in early adulthood [13][14][15][16]. The proportion of 15 young adults among STEMI victims has considerably increased over the last years [17]. 16 Recent studies have reported that CAD was a major cause of SCA in young adults, in 17 postmortem examination [18] and in SCA survivors [19]. This has potentially important 18 implications for emergency decision-making in young subjects, especially with regard to early 19 coronary angiography and PCI. 20 We undertook a population-based study of SCA patients admitted alive to hospital and 21 hypothesized that young adults would be less likely to be referred for immediate coronary 22 angiography at hospital admission due to perceptions of low CAD risk.

23

24 Methods

25 Study setting

1 The Paris-Sudden Death Expertise Center (SDEC) registry is an ongoing study which has 2 been described previously [20][21][22][23][24]. Briefly, it is a comprehensive, prospective 3 population-based registry comprising Paris and suburbs, encompassing a residential 4 population of 6.7 million (approximately 10% of the total French population) and covering 5 762 km^2 . In Paris, management of out-of-hospital cardiac arrest involves mobile emergency 6 units (Service d'Aide Médicale Urgente), and firefighters (Brigade de Sapeurs Pompiers de 7 Paris), with at least one trained emergency physician on board. Patients in whom a return of 8 spontaneous circulation is achieved are then referred to a center with an intensive care unit 9 (ICU) and coronary intervention facilities. Owing to a close collaboration with all the pre-10 hospital Emergency Medical Services (EMS), 48 hospitals, and forensic units, every case of 11 out-of-hospital cardiac arrest aged ≥ 18 years occurring in the area is systematically enrolled 12 in the SDEC registry, since May 2011. Exclusion criteria include age less than 18 years and 13 cardiac arrest occurring outside the geographical area of interest. Regular external audits on 14 the registry have shown that 99 % of cardiac arrest cases admitted alive to the hospital were 15 detected [20].

16 The study was conducted in compliance with Good Clinical Practice, French Law and 17 the French data protection law in accordance with the ethical standards laid down in the 1964 18 Declaration of Helsinki and its later amendments. Data file of the Paris-SDEC registry was 19 declared to and authorized by the French data protection committee (Commission Nationale 20 Informatique et Liberté, CNIL, DR-2012-445 authorization n°912309).

21 Study population

All SCA admitted alive to hospital were included from 15 May 2011 to 15 May 2017.

23 According to definitions from the last consensus, SCA was defined as an unexpected out-of-

24 hospital cardiac arrest without obvious non-cardiac cause, occurring with a rapid witnessed

25 collapse within 1 hour after the onset of symptoms, or if unwitnessed, within the 24 hours

1 after the last contact [1]. Those likely due to non-cardiac circumstances (such as trauma,

2 drowning, hanging etc.) or prior terminal condition were not included. The present study

3 specifically focused on young adults aged less than 40 years old.

4 Data collection

5 General data included demographic characteristics and location of SCA (residential or public 6 place). Utstein templates for resuscitation information reporting were followed [25]. Pre-7 hospital data recorded included SCA circumstances, presence of a witness, witness-8 cardiopulmonary resuscitation before EMS arrival, presence of shockable rhythm before 9 advanced life support, epinephrine dose injected by EMS, ST segment elevation on first 10 electrocardiogram (ECG) recorded, and delays from collapse to basic life support and from 11 call for EMS to arrival of EMS. In addition to the data from EMS and the medical examiner, a 12 working group of the SDEC collected and assessed the lifetime past medical history. The 13 information was gathered by the local medical staff, but two investigators thoroughly 14 reviewed each medical report for data completion and validity, and provided final central 15 adjudication (assigned diagnosis). In cases of divergent opinion, a third expert was asked to 16 arbitrate. In survivors without definite diagnosis after the initial work-up performed in ICU, 17 etiological medical investigations were carried out in cardiology, including cardiac magnetic 18 resonance imaging, pharmacological tests, vasospasm provocative test, Holter-ECG 19 recording, exercise stress test as well as genetic screening, all of which were actively 20 encouraged by the coordinators of the study. The diagnosis of idiopathic ventricular 21 fibrillation was made among survivors when eventually no phenotype was identified. Survival 22 at hospital discharge and neurological status were also recorded. Favorable neurological 23 prognosis was defined by a cerebral performance category (CPC) score 1 or 2, with 1 24 representing full recovery or mild disability and 2, moderate disability but independent in 25 activities of daily living.

1 Definitions

2 Immediate coronary angiography was defined as that performed within the first two hours 3 after ICU admission [26][27]. Significant CAD was defined by the presence of a stenosis 4 producing > 50% narrowing in at least one coronary artery. Flow in coronary arteries was 5 assessed using the thrombolysis in myocardial infarction (TIMI) classification. A coronary 6 occlusion was defined as TIMI grade 0 to 1 flow. The occlusion was considered recent if 7 collaterals were absent and if the occlusion was easily crossable by the wire during 8 subsequent angioplasty. A culprit lesion was defined by the presence of a thrombus in the 9 artery, a flow reduction < TIMI 3, and/or an acute coronary occlusion, requiring a 10 revascularization by PCI (aspiration thrombectomy and/or angioplasty). Chronic ischemic 11 heart disease-related SCA was defined as significant CAD diagnosed during coronary 12 angiography in the absence of culprit lesion criteria or other non-cardiac SCA cause.

13 Statistical analysis

14 Continuous data were reported as mean ± standard deviation (SD) or median and interquartile 15 range (IQR) for normally and non-normally distributed data respectively. Categorical data 16 were reported as numbers and percentages. Comparisons used the χ^2 or Fisher's exact test for 17 categorical variables and Student's t test or Mann-Whitney-Wilcoxon test, when appropriate, 18 for continuous variables. Multiple logistic regressions were used (i) to compare the rate of 19 immediate coronary angiography at hospital admission according to patient's age, and (ii) to 20 assess the association between immediate coronary angiography performance and survival 21 rate at hospital discharge. The main known pre-hospital outcome predictors were included as 22 explicative variables in the former model (age, gender, location of SCA, witness presence and 23 witness-cardiopulmonary resuscitation, delays from collapse to basic life support and from 24 call for EMS to arrival of EMS, presence of a shockable rhythm, epinephrine use), as well as 25 ST segment elevation on first recorded ECG. Main comorbidities were also included in the

1 second model. Variables significantly associated (P < 0.20) in univariate analysis were 2 assessed in multivariate logistic regression. Linear time trends analysis on the rate of 3 immediate coronary angiography were tested with the use of logistic regression dividing this 4 6-year study in 3 periods of 24 months. Missing data on study variables were no more than 5 10%, except for ST segment elevation on first ECG (12.0%) and interval from collapse to 6 basic life support (12.3%), and were handled using case-complete analysis. Results were 7 considered statistically significant at P < 0.05. All analyses were two-tailed. Statistical 8 analysis was performed using R software, version 3.3.2 (R Project for Statistical Computing). 9

10 **Results**

11 **Population**

From May 15th, 2011 to May 15th, 2017, among 3,579 comatose patients admitted alive to 48 12 13 different hospitals after SCA, 409 (11.4%) were aged less than 40 years. Clinical and 14 demographic characteristics of the young SCA group are summarized in Table 1. Mean age 15 was 32.3±6.2 years with 285 (69.7%) males. Compared to patients older than 40, younger 16 patients had fewer cardiovascular risk factors, comorbidities, or previously diagnosed heart 17 disease (15.8% vs. 35.3%, P<0.001), especially CAD (1.1% vs. 20.1%, P<0.001). ST-segment 18 elevation was less frequently recorded in the initial ECG (23.5% vs. 34.2%, P<0.001), family 19 history of SCA was more frequent (8.0% vs. 1.8%, P<0.001), and SCAs were more often 20 sports-related (12.2% vs 4.1%, P<0.001). The survival rate at hospital discharge was 21 comparable between the two groups (31.6% vs 27.4%, P=0.103). 22 Causes of SCA among the Young 23 Among young SCA patients, the cause was uncertain in 165 (40.3%) cases due to early death

and negative or incomplete initial work-up in ICU. Among 244 young adults with a definite

etiology identified, a non-cardiac cause was diagnosed in 72 (29.5%) patients, and a cardiac

cause was identified in 172 (70.5%) patients (Figure 1). CAD was the most frequent etiology,
diagnosed in 72 (29.5%) subjects, of which 64 (88.9%) presented acute coronary syndromes.
Non-ischemic structural heart disease and non-structural heart disease were identified in 62
(25.4%) and 38 (15.6%) patients, respectively. In the 30 to 40 year age group, CAD
represented 40.9% of etiologies identified, and non-ischemic structural heart diseases were
the main cause of SCA under 30 years (38.8%) (Figure 2).

7 Characteristics of CAD-Related SCA

8 Among CAD-related SCA cases, acute coronary syndromes were more frequent in younger 9 patients (100.0% before 30 years, 87.7% between 30 and 40 years, and 76.3% after the age of 10 40-years, overall P=0.033), compared to chronic ischemic heart disease (without an acute 11 culprit lesion) (Figure 2). Young CAD patients had more cardiovascular risk factors (≥ 1) than 12 young non-CAD patients (84.3% vs. 50.5%, P<0.001), in particular current smoking (65.7%) 13 vs. 28.3%, P<0.001), dyslipidemia (14.5% vs. 1.0%, P=0.001) and family history of CAD 14 (20.3% vs. 7.1%, P=0.03). These patients also had a different distribution of risk factors 15 compared to older CAD cases, with a higher prevalence of active smoking (65.7% vs. 43.5%, 16 P<0.001) and family history of CAD (20.3% vs. 9.3%, P=0.006), and a lower prevalence of 17 other factors. Lastly, subjects with CAD-related SCA under 40 years less often had previously 18 known heart disease (11.6%) compared to young non-CAD patients (37.0%) or older CAD-19 related cases (36.4%) (both P<0.001).

20 Early Coronary Intervention

Among all 409 patients younger than 40, 170 (41.7%) had immediate coronary angiography

22 (vs. 65.1% in patients aged \geq 40 years, P<0.001), and 50 (29.4%) of these patients underwent

- immediate PCI at admission (vs. 48.0% in patients aged \geq 40 years, P<0.001). Additionally,
- among patients with a final diagnosis of acute coronary syndrome related to a culprit lesion,
- 25 7.8% did not undergo immediate coronary angiography (vs. 1.6% in older patients, P=0.007),

1 and none of these patients presented with typical ST segment elevation on ECG. Compared to 2 young patients not referred, those who underwent immediate coronary angiography were 3 older (33.3±5.8 vs. 31.5±6.3 years, P=0.003), more frequently males (75.3% vs. 66.0%, 4 P=0.049), a greater proportion had ST segment elevation (44.0% vs. 4.1%, P <0.001), and 5 presented with better prognostic indicators (Table 2). During the study period, while the rate 6 of immediate coronary angiography increased from 60.5% to 70.3% (P for trend <0.001) in 7 patients aged ≥ 40 years, the rate in patients aged less than 40 years remained stable (43.5% to 8 45.3%, P for trend =0.795) (Figure 3). On multivariable analysis, patients younger than 40 9 years were significantly less likely to undergo immediate coronary angiography at hospital 10 admission (OR=0.34, 95% CI: 0.25-0.47, P<0.001) (Table 3), although immediate coronary 11 angiography was found to be significantly associated with survival at hospital discharge in 12 these young patients (OR=2.68, 95% CI: 1.21-6.00, P=0.015).

13

14 **Discussion**

15 In this contemporary large population-based study, young SCA patients were significantly 16 less likely to undergo immediate coronary angiography at hospital admission. However, CAD 17 -especially acute coronary syndrome- was the main identified cause of SCA. Overall, our 18 findings underline the lack of timely and systematic investigation of SCA in young adults 19 admitted alive at hospital, suggesting an important missed opportunity for early intervention. 20 In the field of SCA, a threshold of 35 or 40 years is traditionally used to distinguish 21 younger patients, in whom CAD is considered as less prevalent and in whom greater 22 emphasis is usually laid on alternative diagnoses, in particular, inherited cardiomyopathies 23 and electrical disorders (channelopathies)[11][12]. However, CAD epidemiology has changed 24 over the last two decades, with an increase in CAD prevalence in the young population 25 [13][14][15][16]. It has been shown recently that the rate of acute myocardial infarction is

increasing in young patients [17], which might suggest a potential increase in the rate of
 CAD-related SCA among the youth.

3 Few systematic evaluations of SCA in the young have been conducted in the general 4 population; most studies have only focused on particular subgroups, such as young 5 competitive athletes [28]. However, underlying mechanisms and causes associated with SCA 6 occurring during sports may be unique and not generalizable to all young SCA. While 7 hypertrophic cardiomyopathy, myocarditis, arrhythmogenic right ventricular cardiomyopathy, 8 or channelopathies have been considered for a long time to be the main etiologies underlying SCA during competitive sports, CAD has been shown to be an important cause when 9 10 considering sports-related SCA in the general population (including recreational sports in the 11 young) [29]. Outside the particular sports setting, data regarding CAD in young SCA victims 12 is scarce. Our findings, however, reveal that CAD remains the single most common cause of 13 SCA identified before the age of 40 years in the general population. These data from a 14 population of SCA patients admitted alive to the hospital are consistent with the findings of a 15 recent autopsy-based study of SCA [18].

16 Younger patients present more frequently with ST-segment elevation acute coronary 17 syndrome (STEMI) [30], where ventricular fibrillation is more frequent than in non-ST 18 elevation acute coronary events [31]. Although coronary plaque rupture determinants remain 19 poorly elucidated, it may be hypothesized that shear forces induced by a greater degree of 20 physical activity may provoke plaque fissuring and that the higher proportion of active 21 smoking among younger patients could also predispose to plaque erosion and thrombosis, 22 triggering ventricular arrhythmias [32]. Moreover, a higher risk of SCA during STEMI has 23 been reported at a younger age, probably due to abrupt coronary artery occlusion in the 24 absence of a developed collateral circulation as compared to older patients with chronic CAD 25 [33].

1 Immediate coronary revascularization is associated with survival after resuscitated 2 SCA [4][5][6][7][8]. In our study, patients younger than 40 years were less frequently 3 subjected to an early invasive strategy. Moreover, a higher proportion of SCA actually due to 4 an acute coronary syndrome (with an identified culprit lesion later) did not undergo 5 immediate coronary angiography, when compared to older patients. While a recent study (in 6 older populations) did not support immediate angiography in patients without ST-segment 7 elevation [27], none of these patients had significant ECG changes, suggesting as already 8 reported that the predictive value of the first recorded ECG in survivors of SCA is poor. 9 Coronary lesions requiring PCI have been reported in nearly one-third of cases without initial 10 ST segment elevation [34]. Although overall CAD-related SCA were more frequent in the 11 elderly, the proportion of acute coronary syndromes was much higher among younger 12 patients, compared to chronic CAD-related SCA. Most importantly, immediate coronary 13 angiography was independently associated with improved survival at hospital discharge. 14 These data suggest that CAD may be underappreciated as a cause of SCA in younger patients 15 and support the consideration of prompt coronary angiography in young SCA patients as well, 16 in the absence of another obvious cause.

17 The present study has several limitations, which need to be acknowledged. First, the 18 number of patients < 40 years with a certain etiology is relatively modest. In most parts of the 19 world, low autopsy rates in this setting constitute a considerable bottleneck in ascertaining 20 definitive cause of SCA, and explain the relatively high proportion of cases without 21 established diagnosis. Given this scenario, a systematic description of survivors represents the 22 next best approach. SCA patients with a cause identified may not have the same distribution 23 of causes compared with patients with undetermined cause or patients who do not survive the 24 initial resuscitation attempt; however our data are consistent with a recent autopsy study of 25 non-survivors [18], and the proportion of CAD among older patients in our population is

1	congruent with the existing literature. Second, although our data are based on a large
2	population with numerous centers involved, regional disparities may potentially exist and
3	caution has to be exercised in generalizing these results. In particular, cardiovascular risk
4	factor distribution may vary significantly between countries, for instance, smoking which is
5	particularly prevalent in the young population in France [35]. Third, ascertaining causal
6	relationship between SCA and CAD is sometimes difficult and debatable, particularly with
7	chronic CAD-related SCA, in the absence of acute coronary occlusion. However, the majority
8	of CAD-related SCA in young adults were due to acute coronary syndromes with
9	identification of a culprit lesion. Lastly, the association identified between coronary
10	angiography performance and survival at hospital discharge in young patients in our
11	observational study cannot be interpreted as a causal relationship despite the multivariable
12	analysis, due to possible confounding non-measured variables.
13	
14	Conclusions
	Conclusions This population-based study demonstrates a low rate of immediate coronary
14	
14 15	This population-based study demonstrates a low rate of immediate coronary
14 15 16	This population-based study demonstrates a low rate of immediate coronary angiography in young adults aged less than 40 years resuscitated from SCA, suggesting that
14 15 16 17	This population-based study demonstrates a low rate of immediate coronary angiography in young adults aged less than 40 years resuscitated from SCA, suggesting that CAD as a cause of SCA in this population may be underappreciated by the medical
14 15 16 17 18	This population-based study demonstrates a low rate of immediate coronary angiography in young adults aged less than 40 years resuscitated from SCA, suggesting that CAD as a cause of SCA in this population may be underappreciated by the medical community. The high proportion of CAD in these patients, in particular acute coronary
14 15 16 17 18 19	This population-based study demonstrates a low rate of immediate coronary angiography in young adults aged less than 40 years resuscitated from SCA, suggesting that CAD as a cause of SCA in this population may be underappreciated by the medical community. The high proportion of CAD in these patients, in particular acute coronary
14 15 16 17 18 19 20	This population-based study demonstrates a low rate of immediate coronary angiography in young adults aged less than 40 years resuscitated from SCA, suggesting that CAD as a cause of SCA in this population may be underappreciated by the medical community. The high proportion of CAD in these patients, in particular acute coronary
 14 15 16 17 18 19 20 21 22 	This population-based study demonstrates a low rate of immediate coronary angiography in young adults aged less than 40 years resuscitated from SCA, suggesting that CAD as a cause of SCA in this population may be underappreciated by the medical community. The high proportion of CAD in these patients, in particular acute coronary
 14 15 16 17 18 19 20 21 22 23 	This population-based study demonstrates a low rate of immediate coronary angiography in young adults aged less than 40 years resuscitated from SCA, suggesting that CAD as a cause of SCA in this population may be underappreciated by the medical community. The high proportion of CAD in these patients, in particular acute coronary

1

2 **Conflict of interest**

- 3 None.
- 4

5 Acknowledgments

- 6 SDEC Executive Committee is part of the ESCAPE-NET project, a €10 million funding from
- 7 the European Commission (Horizon2020 program) to develop research on sudden cardiac
- 8 death in Europe. Paris-SDEC 2018 Investigators Listing (Data Supplement).
- 9

10 Funding Source

- 11 The Paris-SDEC activities are supported by the Institut National de la Santé et de la
- 12 Recherche Médicale (INSERM), Paris University, Fondation Coeur et Artères, Global Heart
- 13 Watch, Fédération Française de Cardiologie, Société Française de Cardiologie, Fondation
- 14 Recherche Medicale, as well as unrestricted grants from industrial partners (Medtronic, St
- 15 Jude Medical, Boston Scientific, Microport and Biotronik).
- 16

1 References

- [1] Fishman GI, Chugh SS, Dimarco JP, Albert CM, Anderson ME, Bonow RO, et al.
 Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and
 Blood Institute and Heart Rhythm Society Workshop. Circulation 2010;122:2335–48.
 https://doi.org/10.1161/CIRCULATIONAHA.110.976092.
- 6 [2] Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital
 7 cardiac arrest in Europe. Resuscitation 2005;67:75–80.
 8 https://doi.org/10.1016/j.resuscitation.2005.03.021.
- 9 [3] Zipes DP, Wellens HJ. Sudden cardiac death. Circulation 1998;98:2334–51.
- [4] Spaulding CM, Joly LM, Rosenberg A, Monchi M, Weber SN, Dhainaut JF, et al.
 Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J
 Med 1997;336:1629–33. https://doi.org/10.1056/NEJM199706053362302.
- [5] Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B, Rosencher J, et al.
 Immediate percutaneous coronary intervention is associated with better survival after
 out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of
 hospital Cardiac ArresT) registry. Circ Cardiovasc Interv 2010;3:200–7.
 https://doi.org/10.1161/CIRCINTERVENTIONS.109.913665.
- [6] Wissenberg M, Lippert FK, Folke F, Weeke P, Hansen CM, Christensen EF, et al.
 Association of national initiatives to improve cardiac arrest management with rates of
 bystander intervention and patient survival after out-of-hospital cardiac arrest. JAMA
 2013;310:1377–84. https://doi.org/10.1001/jama.2013.278483.
- [7] Jaeger D, Dumas F, Escutnaire J, Sadoune S, Lauvray A, Elkhoury C, et al. Benefit of
 immediate coronary angiography after out-of-hospital cardiac arrest in France: A
 nationwide propensity score analysis from the RéAC Registry. Resuscitation
 2018;126:90–7. https://doi.org/10.1016/j.resuscitation.2018.03.003.
- [8] Aissaoui N, Bougouin W, Dumas F, Beganton F, Chocron R, Varenne O, et al. Age and
 benefit of early coronary angiography after out-of-hospital cardiac arrest in patients
 presenting with shockable rhythm: Insights from the Sudden Death Expertise Center
 registry. Resuscitation 2018;128:126–31.

30 https://doi.org/10.1016/j.resuscitation.2018.05.006.

- [9] Patterson T, Perkins GD, Hassan Y, Moschonas K, Gray H, Curzen N, et al. Temporal
 Trends in Identification, Management, and Clinical Outcomes After Out-of-Hospital
 Cardiac Arrest: Insights From the Myocardial Ischaemia National Audit Project
 Database. Circ Cardiovasc Interv 2018;11:e005346.
- 35 https://doi.org/10.1161/CIRCINTERVENTIONS.117.005346.
- [10] Patel N, Patel NJ, Macon CJ, Thakkar B, Desai M, Rengifo-Moreno P, et al. Trends and
 Outcomes of Coronary Angiography and Percutaneous Coronary Intervention After Outof-Hospital Cardiac Arrest Associated With Ventricular Fibrillation or Pulseless
 Ventricular Tachycardia. JAMA Cardiol 2016;1:890–9.
- 40 https://doi.org/10.1001/jamacardio.2016.2860.
- [11] Liberthson RR. Sudden Death from Cardiac Causes in Children and Young Adults. N
 Engl J Med 1996;334:1039–44. https://doi.org/10.1056/NEJM199604183341607.
- [12] Eckart RE, Shry EA, Burke AP, McNear JA, Appel DA, Castillo-Rojas LM, et al.
 Sudden death in young adults: an autopsy-based series of a population undergoing active
 surveillance. J Am Coll Cardiol 2011;58:1254–61.
- 46 https://doi.org/10.1016/j.jacc.2011.01.049.
- 47 [13] Briffa T, Nedkoff L, Peeters A, Tonkin A, Hung J, Ridout SC, et al. Discordant age and
 48 sex-specific trends in the incidence of a first coronary heart disease event in Western

1 Australia from 1996 to 2007. Heart 2011;97:400-4. 2 https://doi.org/10.1136/hrt.2010.210138. 3 [14] Wilmot KA, O'Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary Heart Disease 4 Mortality Declines in the United States From 1979 Through 2011: Evidence for 5 Stagnation in Young Adults, Especially Women. Circulation 2015;132:997–1002. 6 https://doi.org/10.1161/CIRCULATIONAHA.115.015293. 7 [15] Puymirat E, Simon T, Cayla G, Cottin Y, Elbaz M, Coste P, et al. Acute Myocardial 8 Infarction: Changes in Patient Characteristics, Management, and 6-Month Outcomes 9 Over a Period of 20 Years in the FAST-MI Program (French Registry of Acute ST-10 Elevation or Non-ST-elevation Myocardial Infarction) 1995 to 2015. Circulation 2017. https://doi.org/10.1161/CIRCULATIONAHA.117.030798. 11 12 [16] Mentias A, Hill E, Barakat AF, Raza MQ, Youssef D, Banerjee K, et al. An alarming 13 trend: Change in the risk profile of patients with ST elevation myocardial infarction over 14 the last two decades. Int J Cardiol 2017;248:69-72. 15 https://doi.org/10.1016/j.ijcard.2017.05.011. [17] Arora Sameer, Stouffer George A. (Rick), Kucharska-Newton Anna, Qamar Arman, 16 17 Vaduganathan Muthiah, Pandey Ambarish, et al. Twenty Year Trends and Sex 18 Differences in Young Adults Hospitalized with Acute Myocardial Infarction: The ARIC 19 Community Surveillance Study. Circulation n.d.;0. 20 https://doi.org/10.1161/CIRCULATIONAHA.118.037137. 21 [18] Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L, et al. A Prospective 22 Study of Sudden Cardiac Death among Children and Young Adults. N Engl J Med 23 2016;374:2441-52. https://doi.org/10.1056/NEJMoa1510687. 24 [19] Waldmann V, Karam N, Bougouin W, Sharifzadehgan A, Dumas F, Narayanan K, et al. 25 Burden of Coronary Artery Disease as a Cause of Sudden Cardiac Arrest in the Young. J 26 Am Coll Cardiol 2019;73:2118-20. https://doi.org/10.1016/j.jacc.2019.01.064. 27 [20] Bougouin W, Lamhaut L, Marijon E, Jost D, Dumas F, Deye N, et al. Characteristics and prognosis of sudden cardiac death in Greater Paris: population-based approach from 28 29 the Paris Sudden Death Expertise Center (Paris-SDEC). Intensive Care Med 30 2014;40:846-54. https://doi.org/10.1007/s00134-014-3252-5. 31 [21] Jabre P, Bougouin W, Dumas F, Carli P, Antoine C, Jacob L, et al. Early Identification 32 of Patients With Out-of-Hospital Cardiac Arrest With No Chance of Survival and 33 Consideration for Organ Donation. Ann Intern Med 2016;165:770-8. 34 https://doi.org/10.7326/M16-0402. 35 [22] Karam N, Marijon E, Dumas F, Offredo L, Beganton F, Bougouin W, et al. 36 Characteristics and outcomes of out-of-hospital sudden cardiac arrest according to the 37 time of occurrence. Resuscitation 2017;116:16-21. 38 https://doi.org/10.1016/j.resuscitation.2017.04.024. 39 [23] Waldmann V, Bougouin W, Karam N, Dumas F, Sharifzadehgan A, Gandjbakhch E, et 40 al. Characteristics and clinical assessment of unexplained sudden cardiac arrest in the 41 real-world setting: focus on idiopathic ventricular fibrillation. Eur Heart J 42 2018;39:1981-7. https://doi.org/10.1093/eurheartj/ehy098. 43 [24] Pechmajou L, Sharifzadehgan A, Bougouin W, Dumas F, Beganton F, Jost D, et al. Does 44 occurrence during sports affect sudden cardiac arrest survival? Resuscitation 45 2019;141:121-7. https://doi.org/10.1016/j.resuscitation.2019.06.277. 46 [25] Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac 47 Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein 48 Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for 49 Healthcare Professionals From a Task Force of the International Liaison Committee on 50 Resuscitation (American Heart Association, European Resuscitation Council, Australian

- 1 and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada,
- 2 InterAmerican Heart Foundation, Resuscitation Council of Southern Africa,
- 3 Resuscitation Council of Asia); and the American Heart Association Emergency
- 4 Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care,
- 5 Perioperative and Resuscitation. Resuscitation 2015;96:328–40.
- 6 https://doi.org/10.1016/j.resuscitation.2014.11.002.
- [26] Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al.
 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute
- 9 coronary syndromes: a report of the American College of Cardiology/American Heart
- Association Task Force on Practice Guidelines. Circulation 2014;130:e344-426.
 https://doi.org/10.1161/CIR.0000000000134.
- [27] Lemkes JS, Janssens GN, van der Hoeven NW, Jewbali LSD, Dubois EA, Meuwissen
 M, et al. Coronary Angiography after Cardiac Arrest without ST-Segment Elevation. N
 Engl J Med 2019;380:1397–407. https://doi.org/10.1056/NEJMoa1816897.
- [28] Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, Thiene G. Trends in sudden
 cardiovascular death in young competitive athletes after implementation of a
 preparticipation screening program. JAMA 2006;296:1593–601.
 https://doi.org/10.1001/jama.206.12.1502
- 18 https://doi.org/10.1001/jama.296.13.1593.
- [29] Marijon E, Tafflet M, Celermajer DS, Dumas F, Perier M-C, Mustafic H, et al. Sportsrelated sudden death in the general population. Circulation 2011;124:672–81.
 https://doi.org/10.1161/CIRCULATIONAHA.110.008979.
- [30] Rosengren A, Wallentin L, Simoons M, Gitt AK, Behar S, Battler A, et al. Age, clinical
 presentation, and outcome of acute coronary syndromes in the Euroheart acute coronary
 syndrome survey. Eur Heart J 2006;27:789–95. https://doi.org/10.1093/eurheartj/ehi774.
- [31] Bougouin W, Marijon E, Puymirat E, Defaye P, Celermajer DS, Le Heuzey J-Y, et al.
 Incidence of sudden cardiac death after ventricular fibrillation complicating acute
 myocardial infarction: a 5-year cause-of-death analysis of the FAST-MI 2005 registry.
 Eur Heart J 2014;35:116–22. https://doi.org/10.1093/eurheartj/eht453.
- [32] Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and
 sudden death related to exertion in men with coronary artery disease. JAMA
 1999;281:921–6.
- [33] Karam N, Bataille S, Marijon E, Giovannetti O, Tafflet M, Savary D, et al. Identifying
 Patients at Risk for Prehospital Sudden Cardiac Arrest at the Early Phase of Myocardial
 Infarction: The e-MUST Study (Evaluation en Médecine d'Urgence des Stratégies
 Thérapeutiques des infarctus du myocarde). Circulation 2016;134:2074–83.
 https://doi.org/10.1161/CIRCULATIONAHA.116.022954.
- [34] Dumas F, Bougouin W, Geri G, Lamhaut L, Rosencher J, Pène F, et al. Emergency
 Percutaneous Coronary Intervention in Post-Cardiac Arrest Patients Without ST Segment Elevation Pattern: Insights From the PROCAT II Registry. JACC Cardiovasc
- 40 Interv 2016;9:1011–8. https://doi.org/10.1016/j.jcin.2016.02.001.
- 41 [35] GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden
 42 in 195 countries and territories, 1990-2015: a systematic analysis from the Global
 43 Burden of Disease Study 2015. Lancet 2017;389:1885–906.
- 44 https://doi.org/10.1016/S0140-6736(17)30819-X.
- 45
- 46

1 **Figures legends**

- 2
- 3 Figure 1. Causes of SCA in young adults
- 4 Details of SCA causes identified in 244 patients < 40 years admitted alive to hospital.
- ARVC, Arrhythmogenic right ventricular cardiomyopathy; LVNC, left ventricle non-compaction; SADS,
- 5 6 7 sudden arrhythmic death syndrome; SCA, sudden cardiac arrest; SUDS, sudden unexplained death
- syndrome; VF, ventricular fibrillation; WPW, Wolff-Parkinson-White
- 8
- 9 Figure 2. SCA etiologies identified by age groups (dark blue representing acute coronary syndrome
- 10 and light blue chronic coronary artery disease).
- 11 *Etiologies of SCA by age group (<30 years, 30-40 years, \geq40 years).*
- 12
- 13 Figure 3. Evolution of the rate of immediate coronary angiography at hospital admission in patients
- \geq 40 years (n = 3,170) compared with patients < 40 years (n = 409). 14
- 15

1 Tables

2

Table 1. General characteristics and resuscitation data of SCA admitted alive to hospital.

Sudden Cardiac Arrests	All n/3,579 (%)	18-40 y n/409 (%)	≥40 y n/3,170 (%)	р
Age (years±SD)	59.3±15.6	32.3±6.2	62.8±12.8	<0.001
Male gender	2,616 (73.1)	285 (69.7)	2,331 (73.5)	0.111
Prior known cardiac disease	1,099 (33.1)	59 (15.8)	1,040 (35.3)	< 0.001
Coronary artery disease	592 (17.9)	4 (1.1)	588 (20.1)	< 0.001
Non-ischemic heart disease	300 (8.5)	41 (10.1)	259 (8.3)	0.251
AF or flutter	338 (10.2)	6 (1.6)	332 (11.3)	< 0.001
Pacemaker	89 (2.7)	4 (1.1)	85 (2.9)	0.040
Implantable cardioverter				
defibrillator	28 (0.8)	2 (0.5)	26 (0.9)	0.763
\geq 1 cardiovascular risk factor	2,715 (81.6)	202 (53.6)	2,513 (85.2)	< 0.001
Hypertension	1,271 (38.3)	24 (6.4)	1,247 (42.4)	<0.001
Overweight (BMI > 25 kg/m2)	1,189 (35.6)	88 (23.2)	1,101 (37.2)	<0.001
Current smoking	1,128 (34.1)	134 (35.4)	994 (34.0)	0.641
Dyslipidemia	745 (22.5)	15 (4.0)	730 (24.9)	< 0.001
Diabetes mellitus	583 (17.6)	8 (2.1)	575 (19.6)	< 0.001
Family history of CAD	184 (5.6)	24 (6.4)	160 (5.5)	0.471
Chronic respiratory failure	215 (6.5)	4 (1.1)	211 (7.2)	< 0.001
Chronic renal failure	178 (5.4)	7 (1.9)	171 (5.8)	0.001
Stroke	176 (5.3)	4 (1.1)	172 (5.9)	< 0.001
Family history of SCA	84 (2.5)	30 (8.0)	54 (1.8)	< 0.001
Sports-related	176 (5.0)	49 (12.2)	127 (4.1)	< 0.001
Public place (vs home)	1,625 (45.5)	189 (46.2)	1,436 (45.4)	0.785
Witnessed SCA	3,262 (91.2)	367 (89.7)	2,895 (91.4)	0.319
Witnessed-CPR	2,347 (71.8)	271 (73.8)	2,076 (71.5)	0.383
Time from collapse to basic life	,- (, , , , , , , , , , , , , , , , , ,			
support, median (IQR)	3.0 (0.0-8.3)	4.0 (0.0-10.0)	3.0 (0.0-8.0)	0.253
Time from EMS call to EMS	· · · ·			
arrival, median (IQR)	9.0 (7.0-12.0)	9.0 (7.0-12.0)	9.0 (7.0-12.0)	1
Initial shockable rhythm	1,905 (55.7)	231 (58.2)	1,674 (55.4)	0.314
Epinephrine use	2,149 (62.1)	264 (67.2)	1,885 (61.4)	0.030
ST segment elevation on first ECG	1,043 (33.1)	77 (23.5)	966 (34.2)	< 0.001
Discharged alive	996 (27.9)	129 (31.6)	868 (27.4)	0.103
CPC score 1-2 at discharge	931 (26.0)	119 (29.1)	812 (25.6)	0.224
	20.0)		012 (2010)	<u>_</u> 1

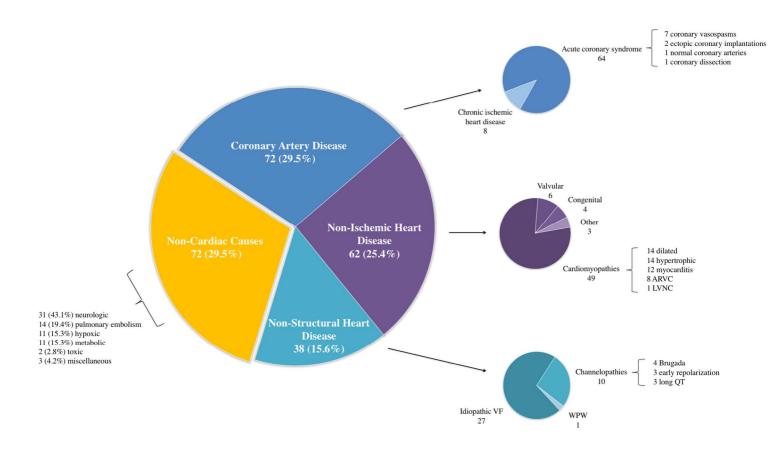
⁴

5	AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; CPR,
6	cardiopulmonary resuscitation; ECG, electrocardiogram; EMS, emergency medical service;
7	SCA, sudden cardiac arrest; SD, standard deviation
8	
9	

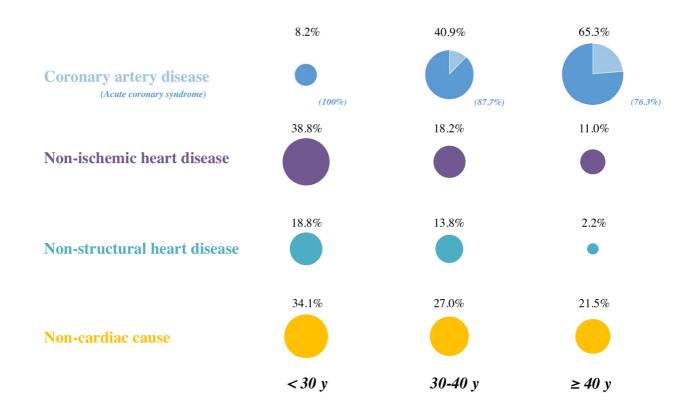
Sudden Cardiac Arrests	< 40 y Coronary angiography - n / 238 (%)	< 40 y Coronary angiography + n / 170 (%)	р
			Ľ
Age (years±SD)	31.5±6.3	33.3±5.8	0.00
Male gender	157 (66.0)	128 (75.3)	0.04
Sports-related	18 (7.7)	31 (18.5)	0.00
Public location	98 (41.2)	91 (53.5)	0.01
Witnessed SCA	208 (87.4)	158 (92.9)	0.09
Witnessed-CPR	141 (67.8)	130 (82.3)	0.00
Time from collapse to basic life			
support, median (IQR)	4.5 (0.0-10.0)	3.0 (0.0-7.0)	0.01
Time from EMS call to EMS arrival,			
median (IQR)	9.0 (7.0-12.0)	9.0 (7.0-11.0)	0.00
Initial shockable rhythm	95 (41.1)	135 (81.8)	<0.00
Epinephrine use	179 (77.8)	84 (51.9)	<0.00
ST segment elevation on first ECG	7 (4.1)	70 (44.0)	< 0.00

Table 2. Characteristics of young patients referred or not for immediate coronary angiography

CPR, *cardiopulmonary resuscitation; ECG*, *electrocardiogram; EMS*, *emergency medical service;*

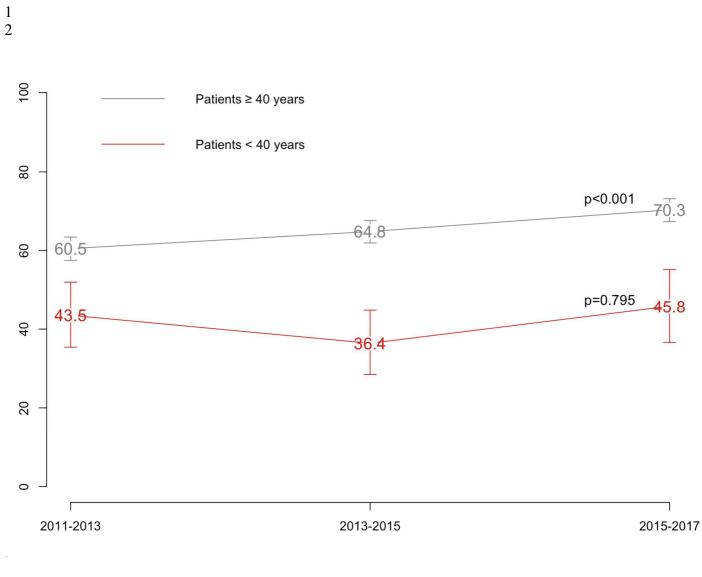

6 IQR: interquartile range; SCA, sudden cardiac arrest; SD: standard deviation

- **Table 3.** Factors associated with immediate coronary angiography performance (among 3,579
- 2 SCA patients admitted alive at hospital).


	Univariate analysis		Multivariate analysis	
	OR (95% CI)	р	OR (95% CI)	р
Age, < 40 years	0.38 (0.31-0.47)	<0.001	0.34 (0.25-0.47)	<0.001
Male gender	1.91 (1.65-2.22)	<0.001	1.49 (1.18-1.87)	<0.001
Public location	1.74 (1.52-2.00)	<0.001	1.29 (1.04-1.60)	0.023
Witnessed SCA	1.89 (1.50-2.38)	< 0.001	0.91 (0.19-4.79)	0.902
Witnessed-CPR	1.37 (1.17-1.61)	< 0.001	1.28 (0.98-1.69)	0.075
Time from collapse to basic life support, > 3 min	0.87 (0.75-1.01)	0.055	1.31 (1.02-1.69)	0.038
Time from EMS call to EMS arrival, > 9 min	0.87 (0.75-0.99)	0.043	0.97 (0.78-1.19)	0.762
Initial shockable rhythm	5.19 (4.47-6.05)	<0.001	3.35 (2.70-4.17)	<0.001
Epinephrine use	0.34 (0.29-0.40)	< 0.001	0.43 (0.34-0.54)	<0.001
ST segment elevation on first ECG	9.71 (7.72-12.37)	<0.001	7.14 (5.36-9.67)	<0.001

CI, confidence interval; CPR, cardiopulmonary resuscitation; ECG, electrocardiogram; EMS,

- 6 emergency medical service; SCA, sudden cardiac arrest


- 3 Figure 1. Causes of SCA in young adults
- 4 Details of SCA causes identified in 244 patients < 40 years admitted alive to hospital.
- 5 ARVC, Arrhythmogenic right ventricular cardiomyopathy; LVNC, left ventricle non-compaction; SADS,
- sudden arrhythmic death syndrome; SCA, sudden cardiac arrest; SUDS, sudden unexplained death
 syndrome; VF, ventricular fibrillation; WPW, Wolff-Parkinson-White
- 7 syndrome; VF, ventricular fibrillation; WPW, Wolff-Parkinson-White

2.

Figure 2. SCA etiologies identified by age groups (dark blue representing acute coronary syndrome

7	and light blue chronic	coronary artery disease).
---	------------------------	---------------------------

5 Figure 3. Evolution of the rate of immediate coronary angiography at hospital admission in patients 6 \geq 40 years (n = 3,170) compared with patients < 40 years (n = 409).

1 Data Supplement– List of Paris-Sudden Death Expertise Center Investigators

3	Adnet F, AP-HP, Paris 13 University, Avicenne Hospital, Emergency Medical Services
4	(SAMU) 93, Bobigny, France
5	Agostinucci JM, AP-HP, Paris 13 University, Avicenne Hospital, Emergency Medical
6	Services (SAMU) 93, Bobigny, France
7	Aissaoui-Balanant N, AP-HP, Georges Pompidou European Hospital, Medical Intensive
8	Care Unit, Paris, France
9	Algalarrondo V, AP-HP, Antoine Beclere University Hospital, Department of Cardiology,
10	Clamart, France
11	Alla F, French National Health Insurance (CNAMTS), Paris, France
12	Alonso C, Clinique Ambroise Paré, Department of Cardiology, Neuilly, France
13	Amara W, Hospital Group of Montfermeil – Le Raincy, Department of Cardiology,
14	Montfermeil, France
15	Annane D, AP-HP, INSERM U1173 (Laboratory of Inflammation and Infection), University
16	of Versailles - Saint Quentin en Yvelines, Raymond Poincare Hospital, General
17	Intensive Care Unit, Garches, France
18	Antoine C, Biomedecine agency, Saint-Denis-la-Plaine, France
19	Aubry P, AP-HP, Bichat Hospital, Department of Cardiology, Paris, France
20	Azoulay E, AP-HP, Paris Diderot Sorbonne University, Saint Louis Hospital, Medical
20	Intensive Care Unit, Paris, France
21	Beganton F, INSERM U970 - PARCC, Paris, France
22	Benhamou D , AP-HP, Bicetre Hospital, Department of Anaesthesia and Intensive Care
23 24	Medicine, Le Kremlin-Bicetre, France
25 26	Billon C , AP-HP, Georges Pompidou European Hospital, Department of Genetic, Paris, France
26	
27	Bougouin W, INSERM U970 - PARCC, Paris, France
28	Boutet J , AP-HP, Raymond Poincare Hospital, Emergency Medical Services (SAMU) 92,
29	Garches, France
30	Bruel C, Saint Joseph Hospital, Medical-Surgical Intensive Care Unit, Paris, France
31	Bruneval P, AP-HP, Georges Pompidou European Hospital, Pathology Department, Paris,
32	France
33	Cariou A, AP-HP, Cochin Hospital, Medical Intensive Care Unit, Paris, France
34	Carli P, AP-HP, Paris Descartes University, Necker - Enfants Malades Hospital, Emergency
35	Medical Services (SAMU) 75, Intensive Care Unit, Paris, France
36	Casalino E, AP-HP, Emergency Medical Services (SAMU) 92, Clichy, France
37	Cerf C, Foch Hospital, Intensive Care Unit, Suresnes, France
38	Chaib A, Andre Gregoire Hospital, Department of Cardiology, Montreuil, France
39	Cholley B, AP-HP, Georges Pompidou European Hospital, Department of Anaesthesia and
40	Surgical Intensive Care Medicine, Paris, France
41	Cohen Y, AP-HP, Avicenne Hospital, Medical-Surgical Intensive Care Unit, Bobigny,
42	France
43	Combes A, AP-HP, Pitié-Salpetriere Hospital, Cardiology Institute (ICAN), Intensive Care
44	Unit, Paris, France
45	Crahes M, AP-HP, Georges Pompidou European Hospital, Pathology Department, Paris,
46	France
47	Da Silva D, Delafontaine Hospital, Intensive Care Unit, Saint-Denis, France
48	Das V, Andre Gregoire Hospital, Medical-Surgical Intensive Care Unit, Montreuil, France

- Demoule A, AP-HP, Pitie Salpetriere Hospital, Medical Intensive Care Unit and Respiratory
 Division, Paris, France
- 3 **Denjoy I,** AP-HP, Bichat Hospital, Department of Cardiology, Paris, France
- 4 Deye N, AP-HP, Lariboisiere Hospital, Intensive Care Unit, Paris, France
- 5 Dhonneur G, AP-HP, Henri Mondor Hospital, Department of Anaesthesia and Surgical
 6 Intensive Care Medicine, Creteil, France
- Diehl JL, AP-HP, Georges Pompidou European Hospital, Medical Intensive Care Unit, Paris,
 France
- 9 Dinanian S, AP-HP, Antoine Beclere Hospital, Department of Cardiology, Clamart, France
- 10 Domanski L, Brigade de Sapeurs Pompiers de Paris (BSPP), Paris, France
- 11 Dreyfuss D, AP-HP, Louis Mourier Hospital, Intensive Care Unit, Colombes, France
- 12 **Duboc D**, AP-HP, Cochin Hospital, Department of Cardiology, Paris, France
- 13 Dubois-Rande JL, AP-HP, Henri Mondor Hospital, Department of Cardiology, Creteil,
 14 France
- 15 **Dumas F**, AP-HP, Cochin Hospital, Department of Emergency, Paris, France
- 16 Empana JP, INSERM U970 PARCC, Paris, France
- 17 Extramiana F, AP-HP, Bichat Hospital, Department of Cardiology, Paris, France
- Fartoukh M, AP-HP, Sorbonne University (Paris 6), Tenon Hospital, Intensive Care Unit,
 Paris, France
- 20 Fieux F, CHI Montfermeil, Intensive Care Unit, France
- 21 Gabbas M, French National Health Insurance (CNAMTS), Paris, France
- Gandjbakhch E, AP-HP, Pitie-Salpetriere Hospital, Cardiology Institute (ICAN),
 Department of Cardiology, Paris, France
- 24 Geri G, AP-HP, Ambroise Pare Hospital, Intensive Care Unit, Boulogne-Billancourt, France
- Guidet B, AP-HP, Sorbonne University (Pierre et Marie Curie University Paris 6), Saint
 Antoine Hospital, Intensive Care Unit, Paris, France
- 27 Halimi F, Private Hospital of Parly 2, Department of Cardiology, Le Chesnay, France
- Henry P, AP-HP, Sorbonne Paris Cite University (Paris Diderot University), Lariboisiere
 Hospital, Department of Cardiology, Paris, France
- Hidden Lucet F, AP-HP, Pitie-Salpetriere Hospital, Cardiology Institute (ICAN),
 Department of Cardiology, Paris, France
- 32 Jabre P, INSERM U970 PARCC, Emergency Medical Services (SAMU) 75, Paris, France
- Jacob L, AP-HP, Saint Louis Hospital, Department of Anaesthesia and Surgical Intensive
 Care Medicine, Paris, France
- 35 Joseph L, Bicetre Hospital, Transplant Coordination, Le Kremlin-Bicetre, France
- 36 Jost D, Brigade de Sapeurs Pompiers de Paris (BSPP), Paris, France
- Jouven X, AP-HP, Georges Pompidou European Hospital, Department of Cardiology, Paris,
 France
- Karam N, AP-HP, Georges Pompidou European Hospital, Department of Cardiology, Paris,
 France
- 41 Kassim H, INSERM U970 PARCC, Paris, France
- 42 Lacotte J, Private Hospital Jacques Cartier, Department of Cardiology, Massy, France
- 43 Lahlou-Laforet K, AP-HP, Georges Pompidou European Hospital, Department of
 44 Psychiatry, Paris, France
- Lamhaut L, AP-HP, Paris Descartes University, Necker Enfants Malades Hospital,
 Emergency Medical Services (SAMU) 75, Intensive Care Unit, Paris, France
- 47 Lanceleur A, Foch Hospital, Intensive Care Unit, Suresnes, France
- 48 Langeron O, AP-HP, Pitie-Salpetriere Hospital, Department of Anaesthesia and Surgical
 49 Intensive Care Medicine, Paris, France

- 1 Lavergne T, AP-HP, Georges Pompidou European Hospital, Department of Cardiology, 2 Paris, France 3 Lecarpentier E, AP-HP, Henri Mondor Hospital, Emergency Medical Services (SAMU) 94, 4 Creteil, France 5 Leenhardt A, AP-HP, Bichat Hospital, Department of Cardiology, Paris, France 6 Lellouche N, AP-HP, Henri Mondor Hospital, Department of Cardiology, Creteil, France 7 Lemiale V, AP-HP, Paris Diderot University, Saint Louis Hospital, Medical Intensive Care 8 Unit, Paris, France 9 Lemoine F, Brigade de Sapeurs Pompiers de Paris (BSPP), Paris, France 10 Linval F, AP-HP, Paris 13 University, Avicenne Hospital, Emergency Medical Services (SAMU) 93, Bobigny, France 11 12 Loeb T, AP-HP, Raymond Poincare Hospital, Emergency Medical Services (SAMU) 92, 13 Garches, France 14 Ludes B, Institute of Legal Medicine, Paris Descartes University, Paris, France 15 Luyt CE, AP-HP, Pitie-Salpetriere Hospital, Cardiology Institute (ICAN), Intensive Care 16 Unit, Paris, France 17 Maltret A, AP-HP, Necker - Enfants Malades Hospital, Department of Pediatric Cardiology, 18 Paris, France 19 Mansencal N, Ambroise Pare Hospital, Department of Cardiology, Boulogne-Billancourt, 20 France 21 Mansouri N, AP-HP, Henri Mondor Hospital, Emergency Medical Services (SAMU) 94, 22 Creteil, France 23 Marijon E, AP-HP, Georges Pompidou European Hospital, Department of Cardiology, Paris, 24 France 25 Marty J, AP-HP, Henri Mondor Hospital, Emergency Medical Services (SAMU) 94, Creteil, 26 France 27 Maury E, AP-HP, Sorbonne University (Pierre et Marie Curie University – Paris 6), Saint 28 Antoine Hospital, Intensive Care Unit, Paris, France 29 Maxime V, AP-HP, Raymond Poincare Hospital, General Intensive Care Unit, Garches, 30 France 31 Megarbane B, AP-HP, Lariboisiere Hospital, Intensive Care Unit, Paris, France 32 Mekontso-Dessap A, AP-HP, DHU A-TVB, CARMAS Research Group, Henri Mondor 33 Hospital, Intensive Care Unit, Creteil, France 34 Mira JP, AP-HP, Cochin Hospital, Medical Intensive Care Unit, Paris, France 35 Monnet X, AP-HP, Bicetre Hospital, Medical Intensive Care Unit, Le Kremlin-Bicetre, 36 France 37 Naravanan K, INSERM U970 - PARCC, Paris, France 38 Ngoyi N, AP-HP, Paris 7 University, Beaujon Hospital, Emergency Medical Services 39 (SAMU) 92, Clichy, France 40 Perier MC, INSERM U970 - PARCC, Paris, France 41 Piot O, Centre Cardiologique du Nord, Department of Cardiology, Saint-Denis, France 42 Pirraccchio R, AP-HP, Georges Pompidou European Hospital, Intensive Care Unit, Paris, 43 France Plaisance P, Emergency Medical Services (SAMU) 75, Lariboisière SMUR, Paris, France 44 45 Plu I, AP-HP, Pitie-Salpetriere Hospital, Neuropathology Escourolle, Paris, France 46 Raux M, AP-HP, Pitié Salpétrière Hospital, Department of Anesthesiology and Critical Care, 47 Paris, France 48 Revaux F, AP-HP, Henri Mondor Hospital, Emergency Medical Services (SAMU) 94, 49 Creteil, France
- 50 Ricard JD, AP-HP, Louis Mourier Hospital, Intensive Care Unit, Colombes, France

1	Richard C, AP-HP, Bicetre Hospital, Medical Intensive Care Unit, Le Kremlin-Bicetre,
2	France
3	Riou B, AP-HP, Pitie-Salpetriere Hospital, Sorbonne University (Pierre et Marie Curie
4	University – Paris 6), Department of Emergency Medicine and Surgery, Paris,
5	France
6	Roussin F, AP-HP, Saint Louis Hospital, Department of Anaesthesia and Surgical Intensive
7	Care Medicine, Paris, France
8	Santoli F, Robert Ballanger Hospital, Intensive Care Unit, Aulnay-sous-Bois, France
9	Schortgen F, Centre Hospitalier Intercommunal Créteil, Intensive Care Unit, Creteil, France
10	Sharifzadehgan A, AP-HP, Georges Pompidou European Hospital, Department of
11	Cardiology, Paris, France
12	Sideris G, AP-HP, Sorbonne Paris Cite University (Paris Diderot University), Lariboisiere
13	Hospital, Department of Cardiology, Paris, France
14	Spaulding C, AP-HP, Georges Pompidou European Hospital, Department of Cardiology,
15	Paris, France
16	Teboul JL, AP-HP, Bicetre Hospital, Medical Intensive Care Unit, Le Kremlin-Bicetre,
17	France
18	Timsit JF, AP-HP, Bichat Hospital, Medical Intensive Care Unit, Paris, France
19	Tourtier JP, Brigade de Sapeurs Pompiers de Paris (BSPP), Paris, France
20	Tuppin P, French National Health Insurance (CNAMTS), Paris, France
21	Ursat C, AP-HP, Raymond Poincare Hospital, Emergency Medical Services (SAMU) 92,
22	Garches, France
23	Varenne O, AP-HP, Cochin Hospital, Department of Cardiology, Paris, France
24	Vieillard-Baron A, AP-HP, Ambroise Pare Hospital, Intensive Care Unit, Boulogne-
25	Billancourt, France
26	Voicu S, AP-HP, Lariboisiere Hospital, Intensive Care Unit, Paris, France
27	Wahbi K, AP-HP, Cochin Hospital, Department of Cardiology, Paris, France
28	Waldmann V, AP-HP, Georges Pompidou European Hospital, Department of Cardiology,
29	Paris, France
30	
31	