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Mutation Rate Control in the (1 + λ)
Evolutionary Algorithm with a Self-adjusting

Lower Bound?
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2 Sorbonne Université, CNRS, LIP6, Paris, France

Abstract. We consider the 2-rate (1 + λ) Evolutionary Algorithm, a
heuristic that evaluates λ search points per each iteration and keeps in
the memory only a best-so-far solution. The algorithm uses a dynamic
probability distribution from which the radius at which the λ “offspring”
are sampled. It has previously been observed that the performance of the
2-rate (1 + λ) Evolutionary Algorithm crucially depends on the thresh-
old at which the mutation rate is capped to prevent it from converging
to zero. This effect is an issue already when focusing on the simple-
structured OneMax problem, the problem of minimizing the Hamming
distance to an unknown bit string. Here, a small lower bound is prefer-
able when λ is small, whereas a larger lower bound is better for large
λ.
We introduce a secondary parameter control scheme, which adjusts the
lower bound during the run. We demonstrate, by extensive experimental
means, that our algorithm performs decently on all OneMax problems,
independently of the offspring population size. It therefore appropriately
removes the dependency on the lower bound. We also evaluate our algo-
rithm on several other benchmark problems, and show that it works fine
provided the number of offspring, λ, is not too large.

Keywords: Parameter Setting · Evolutionary Computation ·Metaheuris-
tic · Algorithm Configuration · Mutation rate

1 Introduction

Evolutionary algorithms (EAs) are a class of iterative optimization heuristics
that are aimed to produce high-quality solutions for complex problems in a
reasonably short amount of time [9,16,5]. They are applied to solve optimization
problems in various areas, such as industrial design and scheduling [2], search-
based software engineering [12], bioinformatical problems (for example, protein
folding or drug design) [11], and many more.

EAs perform black-box optimization, i.e. they learn the information about
the problem instance by querying the fitness function value of a solution can-
didate (also referred to as individual within the evolutionary computation com-
munity). The structure of an EA is inspired by the ideas of natural evolution:
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mutation operators make changes to individuals, crossover operators create off-
spring from parts of the existing individuals (parents), while a selection operator
decides which individuals to keep in the memory (population) for the next iter-
ation (generation).

The performance of an EA depends on the setting of its parameters. Existing
works on choosing these parameters can be classified into two main categories:
Parameter tuning aims at fitting the parameter values to the concrete problem
at hand, typically through an iterated process to solve this meta-optimization
problem. While being very successful in practice [13], parameter tuning does
not address an important aspect of the parameter setting problem: for many
optimization problems, the optimal parameter settings are not static but change
during the optimization stages [10,14,3]. Parameter control addresses this
observation by entailing methods that adjust the parameter values during the
optimization process, so that they not only aim at identifying well-performing
settings, but to also track these while they change during the run [6].

Our work falls in the latter category. More precisely, in this work we ad-
dress a previously observed shortcoming of an otherwise successful parameter
control mechanism, and suggest ways to overcome this shortcoming. We then
perform a thorough experimental analysis in which we compare our algorithm
with previously studied ones.

We continue previous work summarized in [18], where we have studied the
so-called 2-rate (1 + λ) EAr/2,2r algorithm suggested in [4]. The 2-rate (1 +
λ) EAr/2,2r is an EA of (1 + λ) EA type with self-adjusting mutation rates.
Intuitively, the mutation rate is the expected value of the search radius at which
the next solution candidates are sampled. More precisely, this radius is sampled
from a binomial distribution Bin(n, p), where n is the problem dimension and p
the mutation rate. After sampling the search radius from this distribution, the
“mutation” operator samples the next solution candidate uniformly at random
among all points at this distance around the selected parent (which, in the
context of our work, is always a best-so-far solution).

It has been proven in [4] that the 2-rate (1+λ) EAr/2,2r achieves the asymp-
totically best possible expected running time on the OneMax problem, the prob-
lem of minimizing the Hamming distance to an unknown bit string z ∈ {0, 1}n.
In evolutionary computation, as in other black-box settings, the running time
is measured by number of function evaluations performed before evaluating for
the first time an optimal solution.

The main idea of the 2-rate (1 + λ) EAr/2,2r algorithm is to divide the
offspring population in two equal subgroups and to create the offspring in each
subgroup with a group-specific mutation rate. The offspring in the first group
are generated by mutating each bit of the parent individual with probability
r/2, whereas a mutation rate of 2r is applied to the second group. At the end of
each iteration, the mutation rate r is updated as follows: with probability 1/2, it
is updated to the rate used in the subpopulation that contains the best among
all offspring (ties broken uniformly at random), and with probability 1/2 the
mutation rate is updated to r/2 or 2r uniformly at random.
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When running the 2-rate (1 + λ) EAr/2,2r, it is convenient to define a lower
bound lb for the mutation rate, to prevent it from going to zero, in which case the
algorithm would get stuck. The original algorithm in [4] uses as lower bound lb =
1/n. In our previous work [18], however, we observed that a more generous lower
bound of 1/n2 can be advantageous. In particular, we observed the following
effects on OneMax, for problem dimension n up to 105 and offspring population
size λ up to 32 · 103:

- it is more preferable to use 1/n2 as a lower bound for the mutation rate
when the population size is small (5 ≤ λ ≤ λ1 ∈ (50, 100)), while for large
population sizes (λ1 ≤ λ ≤ λ2 ∈ (800, 3200)) a lower bound of 1/n seems to
work better;

- these results hold for all considered problem dimensions.

We consider the first property as a disadvantage of the 2-rate (1+λ) EAr/2,2r

because its efficiency depends on the lower bound and for different values of λ
different lower bounds should be used. The aim of the current paper is to propose
and to test an algorithm based on the 2-rate (1 + λ) EAr/2,2r, which manages
to adapt the lower bound lb automatically.

The main idea of the 2-rate (1 +λ) EAr/2,2r improvement which we propose
in this paper could be briefly described in the following way. First we start with
the higher lower bound of 1/n. Then in each population, we count the amount of
individuals that were better than the parent separately for the cases of a higher
mutation rate and for a lower one, which we call as the number of votes for a
certain mutation rate. If a certain number of total votes is reached, we check if
there are enough votes for the lower mutation rate among them, and decrease
the value of the lower bound lb in this case. Hence, the lower bound tend to
become more generous closer to the end of optimization, as it never increases
and has a chance to decrease.

The proposed algorithm is shown to be efficient on OneMax for all consid-
ered population sizes λ, which we vary from 5 to 3200. Our approach therefore
solves the disadvantageous behavior of the 2-rate (1 + λ) EAr/2,2r described
above. We also tested our modification on other benchmark problems and ob-
served good efficiency at least on sufficiently small population sizes, i.e. on
5 ≤ λ ≤ 20 for LeadingOnes and on 5 ≤ λ ≤ 16 for W-Model transfor-
mations of OneMax.

2 Description of the Proposed Algorithm

2.1 Preliminaries

Throughout the paper we consider the maximization of a problem that is ex-
pressed as a “fitness function” f : {0, 1}n → R. That is, we study single-
objective optimization of problems with n binary decision variables. Particularly,
we study maximization of the benchmark functions OneMax, LeadingOnes,
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and some problems obtained through so-called W-Model transformations ap-
plied to OneMax. These functions will be formally introduced in Sections 3.1,
3.2, and 3.3, respectively.

All the considered algorithms are based on the (1 + λ) EA0→1. Just like the
2-rate (1 + λ) EAr/2,2r, the algorithm keeps in its memory only one previously
evaluated solution, the most recently evaluated one with best-so-far “fitness”
(ties among the λ points evaluated in each iteration are broken uniformly at
random). Each of the λ “offspring” is created by the shift mutation operator
discussed in [17], which – instead of sampling the search radius from the plain
binomial distribution Bin(n, p) – shifts the probability mass from 0 to 1. That is,
the search radius is sampled from the distribution Bin0→1(n, p), which assigns to
each integer 0 ≤ k ≤ n the value Bin0→1(n, p)(k) = Bin(n, p)(k) for 1 < k ≤ n,
but sets Bin0→1(n, p)(0) = 0 and Bin0→1(n, p)(1) = Bin(n, p)(1) + Bin(n, p)(0).
Given a search radius k, the offspring is then sampled uniformly at random
among all the points at Hamming distance k from the parent (i.e., the point in the
memory). For each offspring, the search radius k is sampled from Bin0→1(n, p)
independently of all other decisions that have been made so far. Note that shift-
ing the probability mass from 0 to 1 can only improve (1+λ)-type algorithms, as
evaluating the same solution candidate is pointless in our static and non-noisy
optimization setting.

As mentioned previously, our main performance criterion is optimization
time, i.e., the number of evaluations needed before the algorithm evaluates an
optimal solution. In all our experiments, however, the value of λ remains fixed,
so that – for a better readability of the plots – we report parallel optimization
times instead, i.e., the number of iterations (generations) until the algorithm
finds an optimal solution. Of course, the parallel optimization time is just the
(classical, i.e., sequential) optimization time divided by λ.

2.2 General Description

Using the mentioned observations from the paper [18], we developed the 2-rate
(1 +λ) EAr/2,2r with voting that is aimed to solve the issues of the conventional
2-rate (1 + λ) EAr/2,2r. The pseudocode of the proposed algorithm is shown in
Algorithm 1. Let us first introduce the notation and then explain the algorithm
following its pseudocode:

– Voting - individuals from a population vote for the mutation rates. Only
individuals which are better than the parent vote. Each voting individual
votes for the mutation rate with which it was obtained;

– v - the number of individuals voted for decreasing of the mutation rate used
on the current optimization stage;

– cnt - the total number of voted individuals;

– quorum - a constant value which is calculated as described in Section 2.3.
It actually depends on n and λ but those are fixed during the optimization
stage;
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Algorithm 1: 2-rate (1 + λ) EAr/2,2r with voting

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 r ← 2/n; v ← 0; cnt← 0; lb← 1/n;
3 Optimization: for t = 1, 2, 3, . . . do
4 voices[r/2]← 0; voices[2r]← 0;
5 for i = 1, . . . , bλ/2c do
6 Sample `(i) ∼ Bin0→1(n, r/2), create y(i) ← flip`(i)(x), and evaluate

f(y(i));

7 if f(y(i)) > f(x) then voices[r/2]← voices[r/2] + 1;

8 for i = bλ/2c+ 1, . . . , λ do

9 Sample `(i) ∼ Bin0→1(n, 2r), create y(i) ← flip`(i)(x), and evaluate

f(y(i));

10 if f(y(i)) > f(x) then voices[2r]← voices[2r] + 1;

11 v ← v + voices[r/2];
12 cnt← cnt + voices[r/2] + voices[2r];

13 x∗ ← arg max{f(y(1)), . . . , f(y(λ))} (ties broken u.a.r.);
14 if f(x∗) ≥ f(x) then x← x∗;
15 Perform one of the following two actions equiprobably;
16 I replace r with the mutation rate that x∗ has been created with;
17 I replace r with either 2r or r/2 equiprobably.;
18 if r < lb then
19 if cnt ≥ quorum then
20 if v ≥ d · quorum then
21 lb ← max(k· lb, LB) ;

22 cnt ← 0; v ← 0;

23 r ← lb;

24 if r > UB then
25 r ← UB ;

– lb - the current lower bound of the mutation rate. In our algorithm, we
interpret this bound as a parameter and adjust it during the optimization.
Offspring votes are used as feedback for the adjustment;

– LB - the all-time lower bound of the mutation rate. It stays constant during
all the execution time;

– UB - the all-time upper bound of the mutation rate. Analogically with LB it
stays constant during all the execution time;

– voices - the map where we store voices;
– 0 < d < 1 - the portion of votes which is needed to decrease the current

lower bound lb;
– 0 < k < 1 - the multiplier which is used to decrease lb.

Let us explain the algorithm following the pseudocode. At the initialization
stage a current solution x is generated as a random bit string of length n and
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the mutation rate r is initialized with an initial value 2/n (we use this value
following [4]). Also we initialize the variables that are used at the optimization
stage.

The optimization stage works until we end up with the optimal solution
or until a certain budget is exhausted. In the first cycle in line 6 we perform
mutation of the first half of the current population using the mutation rate
r/2. Also we calculate the number of individuals which are better than their
parents (line 7). The next cycle in line 9 does the same for the second half of
the population using the mutation rate 2r.

After all the mutations are done we update the number of individuals v voted
for decreasing the mutation rate (line 11) and the total amount cnt of offspring
who appeared to be better than the parent (line 12). Then we pick the individual
with the best fitness function among the generated offspring as a candidate to
become a new parent (line 13). In line 14 we check if the candidate is eligible for
that by comparing its fitness f(x∗) with the fitness of the current parent f(x).
After that in lines 15-17 we perform the usual for 2-rate (1 + λ) EAr/2,2r stage
which adapts the value of the mutation rate.

Then in line 18 we check whether the adapted mutation rate r is less than
the current lower bound lb. In this case we update r in line 23 after adapting
the lower bound lb in lines 19-22.

The adaptation of the lower bound is the key contribution of our approach.
It is adapted on the basis of offspring votes. We decrease lb in line 21 if there
are enough voted individuals (cnt ≥ quorum) and a sufficient portion of them
voted for decreasing of the mutation rate (v ≥ d ·quorum). Note that at the same
time lb may not become lower than the all-time lower bound LB. If the required
number of voted individuals (cnt ≥ quorum) is reached, regardless whether lb

was changed or not, we also always start the calculation of cnt and v votes from
scratch in line 22. Finally, in lines 24, 25 we make sure that the mutation rate
does not exceed the all-time upper bound UB.

Let us notice that the described approach is not restricted to be applied only
in the 2-rate (1 + λ) EAr/2,2r algorithm, but in principle may also be applied in
other parameter control algorithms with simple update rules, such as one-fifth
rule, to control lower bounds of the adapted parameters.

2.3 Selection of quorum

The quorum value used in Algorithm 1 is calculated as quorum(n, λ) = A(n, λ) ·
B(λ), whereA(n, λ) = (8n/9000+10/9)λ andB(λ) = (1+(−0.5)/(1+(λ/100)2)2).
Below we describe how this dependency was figured out.

In general the formula for quorum consists of two parts: A(n, λ) and B(λ)
which were obtained experimentally. Part A(n, λ) is linear in n and λ, while part
B(λ) depends on 1/λ4.

In early experiments on OneMax only the A(n, λ) part was used. Let us
describe how we obtained it. We observed n = 100, n = 1000, n = 10000 and
run experiments on OneMax with various values of λ and different values of
quorum. For every tested pair (n, λ) we gained the quorum that gave the best
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Fig. 1. Dependency of the optimal quorum on λ for n = 1000

runtime and plotted the dependency quorum(λ) for a fixed n. We noticed that this
dependency was close to linear. One of such dependencies is shown in Figure 1
with blue points (which were acquired during experiments). We also plotted the
dependency quorum(n) for constant λ and noticed that it was close to linear as
well. That gave us the target formula for A(n, λ).

However, it turned out that quorum(n, λ) = A(n, λ) is not very efficient on the
LeadingOnes problem. Multiplying A(n, λ) by B(λ) allows the formula to work
on small λ on both LeadingOnes and OneMax problems. At the same time,
on large values of λ, B(λ) part does not affect A(n, λ) because B(λ) approaches
its limit which is 1. Both of these parts were chosen during the experiments
but B(λ) was chosen later on to make our method work on LeadingOnes at
least for small values of λ and to not mess anything up on OneMax. The final
approximation is shown with the black line in Figure 1.

3 Empirical Analysis

In this section we present the results of empirical analysis of the proposed algo-
rithm on OneMax, LeadingOnes, and some W-Model benchmark problems.

In all the experiments, the same parameter setting is used. The all-time
bounds are LB = 1/n2 and UB = 1/2. The parameters used for the lower bound
adaptation are d = k = 0.7, they were determined in a preliminary experiment.
We use quorum = (8n/9000 + 10/9)λ · (1 + (−0.5)/(1 + (λ/100)2)2), as described
in Section 2.3. All the reported results are averaged over 100 runs.

3.1 Benchmarking on OneMax

The classical OneMax problem is that of counting the number of ones in the
string, i.e., Om(x) =

∑n
i=1 x[i]. The algorithms studied in our work are “un-

biased” in the sense introduced in [15], i.e., their performance is invariant with
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Fig. 2. Average parallel optimization time and its standard deviation for the different
(1 + λ) EA variants to find the optimal solution on OneMax problem. The averages
are for 100 independent runs each.

respect to all Hamming automorphisms of the hypercube {0, 1}n. From the point
of view of the algorithms, the OneMax problem is therefore identical to that of
minimizing the Hamming distance H(·, z) : {0, 1}n → R, x 7→ |{i | x[i] = z[i]}|
– we only need to express the latter as the maximization problem n − H(·, z).
Since the algorithms treat all these problems indistinguishably, we will in the
following focus on Om only. All results, however, hold for any OneMax instance
n−H(·, z).

Comparison with the Existing Methods. We compare the proposed 2-rate
(1+λ) EAr/2,2r with voting, 2-rate (1+λ) EAr/2,2r with two different fixed lower
bounds, and the conventional (1 +λ) EA0→1 with no mutation rate adaptation.
All the algorithms run on OneMax using the same population sizes as in [18].
The corresponding results are presented in Figure 2 for n = 10,000 (left) and
100,000 (right) problem sizes. The plots show average number of generations, or
parallel optimization time, needed to find the optimum for each population size
λ. An algorithm is more efficient if it has a lower parallel optimization time and
hence if its plot is lower.

Let us first compare the previously known algorithms: the (1+λ) EA0→1 with
a fixed mutation rate 1/n, the 2-rate (1 + λ) EAr/2,2r which adjusts mutation
rate with respect to the 1/n lower bound and its 2-rate (1 + λ) EAr/2,2r(1/n

2)
version which uses a more generous 1/n2 lower bound. For both considered
problem sizes, a similar pattern is observed:

– for 5 ≤ λ ≤ 50 the 2-rate (1 + λ) EAr/2,2r performed the best;
– then for 50 < λ ≤ 400 the (1 + λ) EA0→1 became the best performing

algorithm;
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Fig. 3. Changing of mutation rate and number of flipped bits for λ = 50 and n = 10,000

– for 400 < λ ≤ 3200 the previous winner gave way to the 2-rate (1 +
λ) EAr/2,2r(1/n

2).

These observations confirm the results from [18], i.e. efficiency of the considered
methods are strongly dependent on λ.

Let us now consider the results obtained with the proposed 2-rate (1 +
λ) EAr/2,2r with voting. For both problem sizes and each considered value of
λ the proposed algorithm is at least as good as the previous leader observed in
the corresponding area of λ values. Hence, it is quite efficient regardless the value
of λ. Particularly, for λ = 50, 100, 200 and n = 10,000 (Figure 2, left) the pro-
posed algorithm is substantially better than the (1 + λ) EA0→1, which was the
previous best performing algorithm in this area. And the proposed algorithm is
never worse than both 2-rate (1 +λ) EAr/2,2r and 2-rate (1 +λ) EAr/2,2r(1/n

2)
in all the considered cases.

According to these observations, the proposed algorithm seem to be quite
promising. In the next sections, we analyze its behavior in more deep on One-
Max and then test it on other benchmark problems.

Analysis of Bound Switching. Let us analyze the mutation rate dependency
on the current best offspring to get deeper understanding of how the switch-
ing between the lower bounds really happens. Let us observe Figure 3, where
the average mutation rates chosen during the optimization process (a) and the
corresponding average number of flipped bits (b) are shown.

In the beginning of optimization, the mutation rate obtained using the 2-
rate (1 + λ) EAr/2,2r with voting is the same as in the 2-rate (1 + λ) EAr/2,2r

(see Figure 3 (a)) and so the amount of flipped bits is the same approximately
until the point 7 · 103 on the horizontal axis (Figure 3 (b)). When more and
more offspring generated with rate r/2 are better than the parent, algorithm
detects this and relaxes the lower bound to allow lower mutation rates. The
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Fig. 4. Any-time performance on OneMax

switching process is shown between points 7 · 103 and 9 · 103 on the horizontal
axes. You can see how mutation rate is changing during this in Figure 3 (a). This
leads to decrease of number of flipped bits (which is shown in Figure 3 (b)) and
consequently switching to the 2-rate (1 + λ) EAr/2,2r(1/n

2). Voting algorithm
finally starts to flip the same amount of bits as the 2-rate (1+λ) EAr/2,2r(1/n

2)
after the point 9 · 103.

Note that while mutation rates obtained with 2-rate (1 + λ) EAr/2,2r with
voting and 2-rate (1 + λ) EAr/2,2r(1/n

2) in the end of optimization process
are still different, the number of flipped bits tends to be the same for both al-
gorithms, namely, one bit. This is explained by the fact that after reaching a
sufficiently small mutation rate, both algorithms enter the regime of flipping ex-
actly one randomly chosen bit according to the shift mutation operator described
in Section 2.1. In this regime actual mutation rate values do not influence the
resulting performance, so 2-rate (1 + λ) EAr/2,2r(1/n

2) does not get sufficient
information to control the rate. Thus the rates are chosen randomly and the de-
viation of the mutation rate increases. This may explain the excess of the 2-rate
(1 + λ) EAr/2,2r(1/n

2) plot in Figure 3 (a) at the end of optimization process.

Any-time Performance Analysis. To further investigate how the optimiza-
tion process goes, let us observe the number of fitness function evaluations which
an algorithm needs to perform in order to reach a particular fitness value. We
refer to this point of view as any-time performance, as shown in Figure 4 for the
2-rate (1+λ) EAr/2,2r, 2-rate (1+λ) EAr/2,2r(1/n

2) and 2-rate (1+λ) EAr/2,2r

with voting.

Let us first observe the Figure 4 (b) which corresponds to a medium pop-
ulation size λ = 50. One can see that starting at some point the 2-rate (1 +
λ) EAr/2,2r(1/n

2) works better than the 2-rate (1 + λ) EAr/2,2r, and the pro-
posed 2-rate (1 + λ) EAr/2,2r with voting detects this and tries to act like the
best algorithm on each segment.
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Fig. 5. Any-time performance on LeadingOnes

The any-time performance on a small population size λ = 10 is shown in Fig-
ure 4 (a). One can see that the segment of the 2-rate (1 +λ) EAr/2,2r leadership
is quite small, hence most of the time 2-rate (1 + λ) EAr/2,2r with voting keeps
2-rate (1 + λ) EAr/2,2r(1/n

2) and so the final runtime of the proposed adaptive
algorithm is close to the 2-rate (1 + λ) EAr/2,2r(1/n

2) here.
Finally, we consider the performance on large population sizes on the example

of λ = 800 in Figure 4 (c). The larger λ is the shorter becomes the segment of
2-rate (1 + λ) EAr/2,2r(1/n

2) efficiency. Hence 2-rate (1 + λ) EAr/2,2r(1/n
2)

does not converge to the optimum faster than the 2-rate (1 +λ) EAr/2,2r at any
segment except probably the final mutation stage. The 2-rate (1 + λ) EAr/2,2r

with voting detects this and never switches to the 2-rate (1+λ) EAr/2,2r(1/n
2) so

the runtime is close to the 2-rate (1+λ) EAr/2,2r. To conclude, the observations
of this section illustrate how 2-rate (1 + λ) EAr/2,2r with voting turns out to be
never worse than 2-rate (1 + λ) EAr/2,2r and 2-rate (1 + λ) EAr/2,2r(1/n

2) for
different population sizes, as was previously seen in Figure 2.

3.2 Benchmarking on LeadingOnes

LeadingOnes is another set of benchmark functions that is often used in the-
oretical analysis of evolutionary algorithms [5]. The classical LeadingOnes
function assigns to each bit string x ∈ {0, 1}n the function value Lo(x) :=
max {i | ∀j ≤ i : x[j] = 1}. As mentioned in Section 3.1, the algorithms stud-
ied in our work are invariant with respect to Hamming automorphisms. Their
performance is hence identical on all functions Loz,σ : {0, 1}n → R, x 7→
max {i | ∀j ≤ i : x[σ(j)] = z[σ(j)]}. This problem has also been called “the hid-
den permutation problem” in [1].

Unlike OneMax, the LeadingOnes problem is not separable; the decision
variables essentially have to be optimized one by one. Most standard EAs have a
quadratic running time on this problem, and the best possible query complexity
is Θ(n log log n) [1].
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We have analyzed the adaptation process with parameters λ = 10 and n =
1500. The results of any-time performance are shown in Figure 5. We see that
the adaptation works nice here as well and 2-rate (1 + λ) EAr/2,2r with voting
achieves the best any-time performance.

In order to make sure that such positive results are invariant to λ and
n we tested 2-rate (1 + λ) EAr/2,2r with voting on λ = 5, 10, 20 and n =
500, 1500, 2000. On every pair of these parameters we gained the similar results.
Example for corner cases are shown in Figure 5 (b). Nevertheless, the adaptation
with the same quorum formula does not work for larger values of λ. Actually,
it appeared that quorum grows much slower when optimizing LeadingOnes
because in this case much less offspring vote.

To sum up, for small values of λ up to 20, the proposed adaptation works
well on both OneMax and LeadingOnes. However, for greater values of λ the
quorum formula has to be tuned to work well on LeadingOnes.

3.3 Benchmarking on W-Model Problems

Problem Description. W-Model problems were proposed in [19] as a possible
step towards a benchmark set which is both accessible for theoretical analysis
and also captures features of real-world problems. These features are:

– Neutrality. This feature means that different offspring may have the same
fitness and be unrecognizable for EA. In our experiments, the corresponding
function is implemented by excluding from the fitness calculation 10 % of
randomly chosen bits.

– Epistasis. In the corresponding problems the fitness contribution of a gene
depends on other genes. In the implementation of the fitness function the
offspring string is perturbed. The string is divided in the blocks of sub-
sequent bits and special function is applied to each block to perform this
perturbations. A more detailed description is given in [8].

– Ruggedness and deceptiveness. The problem is rugged when small changes
of offspring lead to large changes of fitness. Deceptiveness means that gra-
dient information might not show the right direction to the optimum. We
used ruggedness function r2 from [8], which maps the values of the initial
fitness function f(x) to r2(f(x)) := f(x) + 1 if f(x) ≡ n mod 2 and i < n,
r2(f(x)) := max{f(x) − 1, 0} for f(x) ≡ n + 1 mod 2 and i < n, and
r2(n) := n.

These properties are supported in the IOHprofiler [7] and we benchmarked
our algorithms with help of this tool. Details about each function implementa-
tion are described in [19]. We used IOHprofiler for our experiments, and all the
parameter values are the same as described in [8]. The F5, F7 and F9 functions
from the IOHprofiler were used, which means that the described W-Model
transformations were applied to the OneMax function.
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Fig. 6. Fixed budget results for the Epistasis (a) and the Ruggedness (b) functions,
λ = 10, n = 1000

Results. We have analyzed problem dimensions n = 500, .., 2000 with step 500
and population sizes λ = 5, .., 20. In Figures 6, 7 we show our results on the
example of λ = 10, similar results hold for all 5 ≤ λ ≤ 16. For λ > 16 the results
of the proposed algorithm get worse, we probably again need to additionally
tune the quorum formula, as it was observed for LeadingOnes.

Due to the high complexity of Epistasis and Ruggedness, 2-rate (1+λ) EAr/2,2r

takes too long to find the optimal solution, so we analyzed its performance from
the fixed budget perspective. In the fixed budget approach, we do not pursue
the goal to find the optimal solution, but we only limit the amount of fitness
function evaluations and observe the best fitness values which can be reached
within the specified budget. In the current work, we considered budget equal to
the squared dimension size.

According to the fixed budget perspective, we had to use transposed axes
compared to the previous plots in the paper, as shown for the Epistasis and
Ruggedness functions in Figure 6 (a), (b) correspondingly. In this case, a higher
plot corresponds to a better performing algorithm. The considered functions
appeared to be too hard for 2-rate (1 + λ) EAr/2,2r(1/n

2), so we did not find
any segment, where 2-rate (1 + λ) EAr/2,2r(1/n

2) appeared to be better than
2-rate (1 +λ) EAr/2,2r. Hence, for this situation results are positive when 2-rate
(1 + λ) EAr/2,2r with voting does not make 2-rate (1 + λ) EAr/2,2r worse. And
this is true for our case.

Finally, let us look at the Neutrality problem (see Figure 7). This problem
was easier to solve in a reasonable time, so we were able to use the usual stop-
ping criterion of reaching the optimal solution, and the order of axes here is the
same as in the rest of the paper. The Neutrality problem appeared to be not so
hard for the 2-rate (1 + λ) EAr/2,2r(1/n

2), so the 2-rate (1 + λ) EAr/2,2r with
voting used its advantages and worked well. Unlike for the two above problems,
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Fig. 7. Any-time performance on the Neutrality function, λ = 10, n = 1000

the promising behavior of 2-rate (1 + λ) EAr/2,2r with voting was observed for
λ > 16 as well, which may be explained by the fact that the considered Neu-
trality transformation does not change the complexity of the OneMax function
drastically.

4 Conclusion

We proposed a new mutation rate control algorithm based on the 2-rate (1 +
λ) EAr/2,2r. It automatically adapts the lower bound of the mutation rate and
demonstrates an efficient behavior on the OneMax problem for all considered
population sizes 5 ≤ λ ≤ 3200, while the efficiency of the initial 2-rate (1 +
λ) EAr/2,2r algorithm with a fixed lower bound strongly depends on λ.

We have also applied the proposed algorithm to the LeadingOnes problem
and noticed that adaptation of the lower bound worked there as well for 5 ≤
λ ≤ 20. Finally, we tested the proposed algorithm on the W-Model problems
with different fitness landscape features and observed that it behaves similarly
to the best algorithm mostly on sufficiently small values of the population size
5 ≤ λ ≤ 16.

Our next important goal is to further improve the efficiency of our algorithm
for large population sizes λ. In the long term, we are particularly interested in
efficient techniques for controlling two and more algorithm parameters. Despite
some progress in recent years, the majority of works still focus on controlling a
single parameter [14,3].
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