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Associate Professor at the Jožef Stefan International Postgraduate
School, Ljubljana, Slovenia. He received the PhD degree in Electrical
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conferences and workshops in the field of nature-inspired algorithms from
the year 2004 till nowadays. He led and participated in several national
and European projects.

Carola Doerr is a permanent CNRS researcher at Sorbonne University in
Paris, France. Her main research activities are in the mathematical
analysis of randomized algorithms, with a strong focus on evolutionary
algorithms and other black-box optimizers. She has been very active in
the design and analysis of black-box complexity models, a theory-guided
approach to explore the limitations of heuristic search algorithms. She
has used knowledge from these studies to prove superiority of dynamic
parameter choices in evolutionary computation. Carola has received
several awards for her work on evolutionary computation, among them
the Otto Hahn Medal of the Max Planck Society and four best paper
awards at GECCO. She is/was programm committee chair of PPSN
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Version Management: Not only parameters, but also these
slides are dynamic :-) You can find the latest version on our
homepages.

http://www-ia.lip6.fr/∼doerr/DoerrGECCO20tutorial.pdf
http://cs.ijs.si/papa/files/GECCO2020tutorial.pdf

Terminology: This tutorial was designed for GECCO
attendees. If you are interested in the topic, but not familiar
with the terminology used in evolutionary computation, please
do not hesitate to contact us. We will be happy to discuss the
ideas, methods, and results in a language that avoids terms
like “fitness”, “mutation”, “crossover”, “selection”, etc.
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Survey Articles

In 110 minutes we cannot discuss all existing works. Summaries of
the state-of-the-art techniques and a good starting point for your
research can be found in these surveys (see reference list at the end for

details)

Empirical works
Karafotias, Hoogendoorn, Eiben, 2015 [KHE15]
(detailed survey of empirical works)

Aleti, Moser, 2016 [AM16]
(systematic literature survey with additional pointers)

Eiben, Hinterding, Michalewicz, 1999 [EHM99]
(classic seminal paper, introduced a now widely accepted classification

scheme)

Lobo, Lima, Michalewicz, 2007 [LLM07]
(book on parameter selection, includes chapters on tuning and control)

Theoretical works
Doerr, Doerr, 2020 [DD20]
(surveys theoretical works which prove performance bounds with

mathematical rigor; introduces the revised classification scheme discussed

below)
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Outline of the Tutorial

Part 1: Introduction
What are the goals of parameter control?

Part 2: Example: Controlling the Mutation Rate of the
(1+1) EA
Motovating example, 1/5-th success rule

Part 3: Taxonomy of Parameter Control Mechanisms
Which parameter control techniques exist, and how can we
classify them?

Part 4: Applications of Parameter Control
Where is parameter control used in practice?

Part 5: Wrap Up
Let’s stay in touch

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

Part 1:

Introduction
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All iterative optimization heuristics are parametrized

 Here is a “typical” evolutionary algorithm, a (� + �) GA with crossover

 There are quite a few parameters that need to be decided upon: population size, 

crossover rate, mutation rate, selective pressure

Initialization:

Sample at random ��, … , �� ∈ 0,1 �

Variation: For i = 1, … , � do

with prob. � do: �� ←crossover(�� , ��) for �, � ∈ � chosen at random

then/otherwise: set �� ←mutate(��) for randomly selected �

Selection:

From ��, … , ��, ��, … , �� select � search points

Stop?
Output best seen

search point(s)
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Are Parameter Values Important?

 The very early days of EC: 

“EAs are robust problem solvers”

 no need to tune parameters!

 However, it was soon realized that this hope does not (and, in fact, 

cannot, as the “no free lunch” theorems tell us) materialize. It is today 

widely acknowledged that the parameter values have a decisive 

influence on the performance of an EA. 

 Big open question (to date!): How to find good parameter values?
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Globally Good Parameter Values?

 “Sports” of the 70s/80s in EC: Finding good parameter values

 good = “globally good”, i.e., for a broad range of problems

 Examples: De Jong [DJ75], Grefenstette [Gre86] give 

recommendations for parameters such as population size, mutation 

and crossover probabilities, selection strategies, etc. 

 these recommendations are independent of problem class, 

problem size, … (absolute values)

 Mühlenbein [Müh92] and others suggest 1/� as mutation rate for 

problems of lengths � (relative values)

 Note: we know today that this choice indeed works well for a 

broad range of problems, see discussion below. However, it is 

widely acknowledged today, that problem size is not the only 

feature that matters.

 “Modern view” of parameter selection: no globally optimal parameter 

values exist 

 parameters need to be adjusted to the problem at hand 
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Difficulty of Finding Good Parameter Choices

1. Even if we find “optimal” parameter values for one problem, these may 

(!, don’t have to) be much different for similarly-looking problems

2. Small changes in one parameter can (!, don’t have to) cause huge 

performance gaps

 Many empirical works on this matter exist (again, check this year’s GECCO 

talks to see if/how much effort has been put into finding the right parameters)

3. Finding optimal parameter values is far from being trivial 

 it is basically a meta-optimization problem, typically mixed-integer, noisy, non-

smooth 

 Those of you interested in theoretical results can find in [DJS+13] or [Len18] 

examples where changing the mutation rate by a small constant factor 

changes the expected running time from a small polynomial (e.g., �(� log�)) 

to super-polynomial/exponential

4. Optimal parameter values can change during the optimization process

 e.g., more exploration in the beginning, more exploitation towards the end

(example: Simulated Annealing  increasing selective pressure)
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Parameter Control

 to identify good parameter 

values “on the fly” e.g., when prior 

training or tuning is not possible  integrate 

the tuning procedure into the optimization 

process

 to track good parameter values 

when they change during the 

optimization process 
Significant performance gains possible 

(not only constant factors!)

Goals of Parameter Control
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Part 2:

Examples & 

1/5 Success Rule
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The LeadingOnes Problem

 Classic benchmark problem often studied in the theory of evolutionary 

computation (as one the simplest examples of a non-separable function)

 Original function: 

LO: 0,1 � → ℝ, � ↦ LO � = max  ' ∈ � ∀� ≤ ': �� = 1}

 Looks like a “stupid” problem? For most EAs, it is equivalent to this game:

LO+,,: 0,1 � → ℝ, � ↦ LO+,, � = max ' ∈ � ∀� ≤ ': �, � = -, � }

1 1 0 1 1 0 1 1 LO-value: 2 (2 initial ones)

1 1 0 1 1 0 1 1 LO.,,-value: 3 (first 3 bits 

in the order prescribed by / are 

coincide with those of -)

0 0 0 1 1 0 1 1

4 8 5 1 7 2 6 3

secret code -

secret permutation /
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The (1+1) EA

 Initialization:

Choose � ∈ 0,1 � uniformly at random (u.a.r.). 

 Optimization: in iteration 0 = 1,2, … do

1. create � from � by standard bit mutation \\ “mutation”
i.e., flip each bit w/ probability 2, independently of all other bits

2. If 3 � ≥ 3 � replace � by � \\ “selection”

Critical parameter: the mutation rate 2
(often recommended choice: 2 = 1/�)
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 The expected optimization time of the (1+1) EA on LeadingOnes is 
�

567

�

�86 9:; − 1 + 2 [BDN10]

Proven Optimization Times 

(best static mutation rate)
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Fixed-Target Running Times

Expected fixed-target running times for dimension n=1000

flip >1 optimal flip 1 optimal
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Optimal Mutation Rates

 2=>? =
�

@A B C�
[BDN10,Sud13]

 �=>? =
�

@A B C�
[DW18,Doerr19]

Here: LeadingOnes, n=1000
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Measurable Gain of Dynamic Mutation Rates

These results were proven in [BDN10]

(best static mutation rate)

(best adaptive mutation rate)

12% performance gain against best tuned parameter!

21% performance gain against default value!

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

Measurable Gain of Dynamic Mutation Rates

(best static mutation rate)

(best adaptive mutation rate)

12% performance gain!

21% performance gain!

OK, nice theoretical result. 

But how can I guess such a relationship (in practice)???
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(1+1) EA with Adaptive Mutation Rates

 Initialization:

1. Choose � ∈ 0,1 � uniformly at random (u.a.r.). 

2. Initialize 2 = 1/�

 Optimization: in iteration 0 = 1,2, … do

1. create � from � by standard bit mutation w/ mutation rate 2

2. If 3 � ≥ 3 �

 replace � by � \\ selection

 replace 2 by D2 \\ parameter update

3. If 3 � < 3 �

 replace 2 by F2 \\ parameter update

based on a variant from [DW18]
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Illustration (taken from [DW18])

 Results for LeadingOnes, � = 500

 Update strengths: D = 2, F = 1/2

 Plot compares average number of bits flipped (red) vs. optimal number (black)

 Logarithmic scale, zoom into LO � ≤ 250:
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Fitness Landscape of Tuning Problem (from [DW18])

The performance gain is not very sensitive with respect to the choice of the hyper-

parameters D and F: 
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Fitness Landscape of Tuning Problem (from [DW18])

The performance gain is not very sensitive with respect to the choice of the hyper-

parameters D and F: 

Heatmap shows average optimization time for different combinations of D and F for 

the adaptive (1+1) EA on 500-dimensional LeadingOnes

(the static (1+1) EAJK needs ≈ 135,000 function evaluations, RLS 125,000) 

configurations 

w/ T<150,000

Typical values for D and F are

 D = 2, F =
�

5
(gives an avg runtime of ≈ 104,000) 

 better values exist, as we 

shall discuss next

From [DW18]
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The 1/5-Success Rule

 Probably the most famous success-based parameter adaptation rule

 Rechenberg [Rec73]:

 observed that for the sphere function and a corridor landscape the 

optimal success rate of the (1+1) ES is around 1/5 (i.e., there is some 

theoretical foundation of this rule)

 Suggestion:

 If (observed success rate > 1/5)  increase mutation rate
Informal interpretation: we seem to be in an easy part of the optimization 

problem  increasing mutation rates might result in larger progress per step

 If (observed success rate < 1/5)  decrease mutation rate
Informal interpretation: we could be approaching an optimum and should 

focus our search  decrease mutation rate for a more conservative search

 Note 1: similar rules have been proposed by 

Schumer, Steiglitz 68 [SS68] and Devroye [Dev72] 

 Note 2: the same idea can also be used to control other parameters, such as 

the population size, crossover probabilities, etc. 
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1/5 Success Rules (indirect interpretation)

 Indirect interpretation of the 1/5-success rule, suggested in [KMH+04] and 

later also used in [Aug09]

 When the success rate is around 1/5, the parameter value should be 

stable

 In our algorithm:

 Our update rule 

If 3 � ≥ 3 � : 2 ← min D2,
�

5

else 2 ← max{F2, 1/�5}

 When D =
�

Q

R
and success rate is 1/5, then after 5 iterations the 

mutation rate 2 becomes 2DFR = 2, i.e., it is stable!

 When D =
�

Q

S8�
and success rate is 1/T, then after T iterations 

the mutation rate 2 becomes 2DFS8� = 2, i.e., it is stable!
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1/5 Success Rule Can be Optimal also in Discrete Optimization

 Theorem [DDL19]: The 1/e success rule yields optimal mutation rates for 

the (1+1) EA on LeadingOnes.

Average Fixed-Target Running Times for the (1+1) EA 

with mutation rates: 

• best static 

• 1/5 success rule

• 1/e success rule
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Example 2: The (1+(�, �)) Genetic Algorithm

 Previous example (LeadingOnes): constant factor gain over best static 

mutation rate

 Now: asymptotic gain!

 The self-adjusting (1+(�, �)) GA uses the 1/5 success rule to control the 

population size �. In [DDE15] the fit between the optimal value and the 

dynamically selected � was observed to be very good: 

Theoretical result proven in 

[DD18]: 1/5 success rule 

yields linear (and thus 

asymptotically optimal !) 

performance. No static 

choice of � achieves linear 

time. 
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Part 3:

Taxonomy from

[EHM 99], [DD20]
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Main Questions in Parameter Control

1. Which parameter is adapted? 

(and who is affected: 1 individual vs. whole population)
1. Population size

2. Mutation rate, Crossover probability

3. Selection pressure

4. Fitness function (e.g., penalty terms for constraints)

5. Representation

6. …

2. What is the basis/evidence for the update?
1. time elapsed: number of fitness evaluations, generation count, CPU time

2. progress, e.g., in terms of absolute or relative fitness gain

3. diversity measures

4. …

3. How do we select the parameter(s): 
1. multiplicative updates 

2. learning-inspired parameter selection 

3. endogenous/self-adaptive parameter selection: use EAs to find good values

4. hyper-heuristics

5. …

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

Classification Scheme of [EHM99]

 Many attempts to find unifying taxonomy for parameter choices exist (see 

page 168 in [KHE15] for a survey)

 To date, the most popular classification scheme is that of Eiben, 

Hinterding, Michalewicz [EHM99]:

parameter setting

parameter controlparameter tuning

self-adaptiveadaptivedeterministic

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization
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Parameter Tuning

 Typical tuning approach: 

 run some initial tests and observe how the performance depends on 

the chosen parameter values

 choose the parameter values that seem most promising

 requires a (large) budget for the training

 Quite sophisticated tools for parameter tuning are available: 

 irace [LDC+16], SPOT [BBFKK10], GGA [AMS+15], ParamILS

[HHLBS09], SMAC [HHLB11], HyperBand [LJD+17]], BOHB [FKH18], 

…

 Advantage of these tools: automated identification of reasonable 

parameter values  supports human and reduces bias

 Disadvantage: recommended parameter values are static!

 Note: even when focusing on dynamic parameter choices, parameter 

tuning can be very essential to select good hyper-parameters, see 

[BDSS17] for an example
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Key intuition:

 Belief that optimal parameters often follow a similar pattern 

 Example pattern: “first allow for exploration, then for exploitation” 

 to stimulate or enforce such a pattern, time-dependent parameter 

settings can be used (where time = number of generations, fitness evaluations, wall-

clock time, etc.) 

 Examples: 

1. cooling schedule of the selective pressure (“temperature”) in 

selective pressure of Simulated Annealing. Often used update 

scheme: U(0) = VWU 0 (multiplicative updates)

2. start with some (large) mutation rate 2(0), decrease 2 after 

every 10,000 fitness evaluations

3. after each 1,000 iterations, draw a random mutation probability

“Deterministic” Parameter Control
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 The last example on the previous slide shows that---as already acknowledged in 

[EHM99]---the term “deterministic” is not very well chosen

 the choice can be random! 

 the only important feature is that it depends only on the time elapsed so far, 

and not on any other feedback of the optimization process

 More suitable terms could be

 “time-dependent”, “scheduled” update scheme, or

 “feedback-free”, “progress-independent” update scheme

but in lack of a widely acknowledged alternative, “deterministic update rule” is 

still the predominantly used term

 Also note that finding the optimal deterministic update rules requires tuning, i.e., 

while they bypass the disadvantage of the non-flexible static parameter values, 

they do not allow the algorithm to identify the good parameter values by itself  

“Deterministic” Parameter Control
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 Some selected examples, theory works:

 Hesser and Männer (PPSN’90) [HM90] suggested the following rule for the 

mutation strength of a GA with population size � for OneMax:

2X 0 ≔

Z

[

\
]^> 8

_`

7

� �\ where V, a, b are constants

 Jansen Wegener [JW06]: mutation rate changes in every iteration

 2W � ≔ 2�/� where ' ≡ 0 − 1 mod log � − 1 

+/- very frequent changes  non-stable algorithm

- worse performance on simple functions like OneMax, linear functions, 

LeadingOnes, etc. 

+ examples where better performance than any static choice can be proven

 Doerr, Doerr, Kötzing [DDK18]: in every iteration, a random step size is used 

for a multi-valued OneMax-type problem (this problem will be discussed in 

more detail in the next section, along with a self-adjusting parameter choice. 

the algorithm that we refer to here is the one using a static probability 

distribution from which the step sizes are sampled) 

“Deterministic” Parameter Control
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 Random Variation of the Population Size GA (RVPS) by Costa, Tavares, 

and Rosa [CTR99]

 size of the actual population is changed every N fitness evaluations, 

for a given N (according to some monotonous rule)

 Both shrinking and increasing the population size are considered

 Saw-tooth like population size growth considered by 

 Koumousis and Katsaras in [KK06] (TEC 2006): linear decrease of 

population size with eventual re-initialization of the population size by 

adding randomly selected individuals

 Hu, Harding, Banzaf [HHB10]: inverse saw-tooth like population sizes

“Deterministic” Parameter Control
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Self-Adaptive Parameter Control

 Parameter Control Idea 2:

Finding good parameter values is difficult

+ EAs are good problem solvers

= Use an EA to determine parameter values

 Many different ways to do this. Examples (sketched, much room for 

creativity here!): 

1. Create a new population of parameter values, choose from this 

parameter values, possibly apply variation to them, and employ 

them in your EA, select based on progress made

2. append to the solution candidates a string which encodes the 

parameter value, first mutate the parameter value part, then use 

this parameter to change the search point, selection as usual

1 1 0 1 0 0 1 11 1 0 0 1 1…

search point parameter value
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Self-Adaptive Parameter Choices

 We won’t discuss this in much detail, but if you are interested in such 

mechanisms, you can start your investigations with the following works

 Bäck (PPSN’92) [Bäc92] and follow-up works: extends the 

chromosome by 20 bits. Mutation works as follows:

1. Decoding the 20 bits to the individual’s own mut. rate 2X

2. Mutating the bits encoding 2X with mutation probability 2X

3. Decoding these changed bits to 2′X

4. Mutating the bits that encode the solution with mutation 

probability 2′X

 Dang, Lehre (PPSN’16) [DL16] and B. Doerr, Witt, Yang [DWY18] : 

theoretical works on a self-adaptive choice of the mutation strength in 

a non-elitist population
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Comment on Self-Adaptiveness

 Essential feature is not that parameters are encoded in genome

 Essential: each individual carries its own parameter

 Key working principle: 

survival of the fittest individuals  survival of best parameters

 Observe: improve parameter selection and fitness at the same time:

1 original optimization problem

+ 1 parameter selection problem

= 1 integrated problem

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

 Parameter Control Idea 3:

 “global” estimate for parameter quality, i.e., not individual-based

 use feedback from the optimization process 

 change the parameters according to some pre-described rule

 Relevant feedback includes:

 function values of the search points in the population

 diversity of the search points

 absolute or relative progress obtained within the last τ iterations

 …

 Examples:

 1/5-success rule (introduced above)

 CMA-ES update of covariance, step size, population size,…

 many more examples will follow…

Adaptive Parameter Control
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 The terms “deterministic”, “adaptive”, and “self-adaptive” have not been 

formally defined 

 be aware that they are not used very consistently in the literature

 Since [EHM99] almost 20 years have passed. 

 The field has advanced considerably 

(but maybe not to the extend it should have, as also noted in [KHM15])

 we feel that time has come to introduce a different taxonomy

Comment on Classification Scheme of [EHM99]



Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

Revised Classification from [DD20]

parameter setting

parameter controlparameter tuning

endogenous/

self-adaptive

success-

based

state-

dependent

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

hyper-

heuristics

learning-

inspired

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

State-Dependent Parameter Selection

 State-dependent parameter selection mechanisms do not depend on the 

history of the optimization process, but only on the current state

 Analogy for this functional dependence: take a “screenshot” of the current 

population and map it to parameter values

 Most commonly used indicators for the state of the algorithm: 

 time elapsed so far (# fitness evaluations, iteration counter, CPU time, ...) 
 corresponds to “deterministic” parameter setting in the classification [EHM99]

 function values (absolute values, diversity, ranks,…)

 genotypic properties (e.g., diversity of the population)  

2 = 0.006
� = 0.78
� = 13
� = 27
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Revised Classification from [DD20]

parameter setting

parameter controlparameter tuning

endogenous/

self-adaptive

success-

based

state-

dependent

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

hyper-

heuristics

learning-

inspired

diversity-dependent
(see [KHE15] for examples)

…time-dependent
(see page 41)

fitness-dependent
(examples follow)

rank-dependent
(examples follow)
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Fitness-Dependent Parameter Selection

 Requires a good understanding of how the parameters should depend on 

the function values

 Has been looked at 

 empirically, e.g., Bäck [Bäc92,Bäc96], Fialho, Da Costa, Schoenauer, 

Sebag PPSN’08 [FCSS08] and follow-up works for OneMax

 theoretically, e.g., 

[BD19, DDY16b,BLS14] for OneMax and 

[Doe19,BDN10,Sud13,DW18,LOW17] for LeadingOnes

 surprise: good understanding for LeadingOnes, 

not so good understanding for OneMax!
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Rank-Dependent Parameter Selection

 Basic idea: 

 bad search points should undergo large variation ( large mutation rates)

 good individuals should be modified only moderately ( small mutation rates)

 Example: 

 Cervantes, Stephens IEEE TEC [CS09]:

 rank search points in the current population

 each search point is assigned a mutation rate that depends on its 

rank:

 rank 1: mutation rate 2nop // best individual of population

 ...       (linear interpolation)

 rank s: mutation rate 2nq^ // worst individual of population

 the rank-based GA first selects an individual from the population 

and then modifies it with the mutation rate given by this ranking

 Theoretical study of this algorithm are available in [OLN09]
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Success-Based Parameter Selection

 Basic idea: after each (or after every r) iteration(s) adjust the current 

parameter value depending on whether or not the last (r) iteration(s) have 

been successful

 Examples for “success”: finding

 a strictly better search point

// this is probably the most common measure

 a search point that is integrated into population 

// used by the adaptive (1+1) EAJK from [DW18]

 a fitness-increase of at least x%

 point(s) that increase the diversity of the population

 …

 Success-based parameter selection is classified as “adaptive parameter 

control” in the taxonomy of [EHM99]

 Example: 1/5 success rule
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Example ≠ 1/5 success rule: 2-rate adaptation

In [DGWY19] the following mechanism is suggested for controlling the 

mutation rate in a 1 + � EA: 

 let 2 be the current mutation rate

 in each iteration do: 

 create �/2 offspring with mutation rate 22

 create �/2 offspring with mutation rate 2/2

 update 2 as follows (capping at 2/� and 1/4, respectively)

 with probability 1/2 set it to the value for which the best offspring 

has been found

 with probability 1/2, independently of the last iteration, randomly 

decide whether to replace 2 by either 2/2 or by 22

 Main result: this simple mechanism achieves the asymptotically 

optimal1 Ut]p = Θ
�

v=t �
+

� v=t �

v=t �
performance on OneMax.

1Optimality follows from [BLS14]
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Learning-Inspired Parameter Control - Key Ideas

 The main idea for learning-/reward-type adjustment rules is

 have a set/”portfolio” w of possible parameter values

 according to some rule, test one (or some) of these values

 based on the feedback from the optimization process, update the 

likelihood to employ the tested value

 Picture to have in mind: multi-armed bandits (MAB)

 x experts

 in each round, you have to chose one of them and you follow his advice

 you update your confidence in this expert depending on the quality of his 

forecast

� = 1 � = 2 � = 3 � = 4 � = 5
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Learning-Inspired Parameter Control - Key Ideas

 The main idea for learning-/reward-type adjustment rules is

 have a set/”portfolio” w of possible parameter values

 according to some rule, test one (or some) of these values

 based on the feedback from the optimization process, update the 

likelihood to employ the tested value

 Picture to have in mind: multi-armed bandits (MAB)

 x experts

 in each round, you have to chose one of them and you follow his advice

 you update your confidence in this expert depending on the quality of his 

forecast

� = 1 � = 2 � = 3 � = 4 � = 5

 Key questions are again similar: 

 How to UPDATE the confidences? 

 How to SELECT based on the confidences (greedy, random in 

proportion to confidence, …)
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(Another) Exploration/Exploitation Trade-Off

 Main difficulty: exploitation vs. exploration trade off

exploitation: we want, of course, to use an optimal parameter value as 

often as possible

exploration: we want to test each parameter value sufficiently often, to 

make sure that we select the “optimal” one (in particular when the 

quality of its “advice” changes, which is the typical situation that we face 

in evolutionary optimization)
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Learning-Type Updates, Remarks

 Frequently found feature: time-discounted methods. That is, a good 

advice in the past is worth less than a good advice now

 different update mechanisms and “forgetting rates” have been 

experimented with, see discussion below

 note that such mechanisms are in particular useful when the quality of 

advice (in our setting, this could be the expected fitness gain, the 

expected decrease in distance to the optimum, or some other 

quantity) changes over time

 Note: such learning mechanisms are referred to as “operator selection” in 

[KHE15]. Another keywords to search for is “credit assignment”. It may also be 

worth to look into literature from learning, in particular on multi-armed bandit 

algorithms (main goal: maximize reward “on the go”, i.e., while learning) and on 

reinforcement learning (possibly have dedicated “learning” iterations, a notion of 

state is introduced and the hope is to learn for each state which operator 

maximizes expected progress). Some hyper-heuristics are also learning-based.

 Again we have to focus on a few selected works here. Much more work 

has been done, see Section IV.C.4 in [KHE15] for a survey. There is still 

much room for further creativity and much research is needed to 

understand which mechanisms are most useful in which situations!
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Dynamic Multi-Armed Bandits View

 x different parameter values

 2W
� probability to chose operator ' in iteration 0 (2W

�, 2W
5, … , 2W

y)

 �W
� confidence in operator ' at iteration 0 (�W

�, �W
5, … , �W

y)

 Main questions: how to update probabilities? how to updates confidence?

 well-studied questions in machine learning!

 But: main focus in ML is for static “rewards”

 main difference to EC: our “rewards” (success rate, fitness increase, etc) 

change over time. 

 2 first ideas: 

1. Probability Matching:

 �WC�
� = 1 − V  �W

� + VzW, where ' is the operator selected in iteration 0
and zW is the reward of that iteration

 2WC�
� = 2nop + 1 − x2nop    

{`|;
}

∑ {`|;
�\

��;,…,�

, 

 2W
� is proportional to �W

� while maintaining a minimal amount of 

exploration

V controls the speed of 

confidence adaptation

minimal level of exploration
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Dynamic Multi-Armed Bandits View

 x different parameter values

 2W
� probability to chose operator ' in iteration 0 (2W

�, 2W
5, … , 2W

y)

 �W
� confidence in operator ' at iteration 0 (�W

�, �W
5, … , �W

y)

 Main questions: how to update probabilities? how to updates confidence?

 well-studied questions in machine learning!

 But: main focus in ML is for static “rewards”

 main difference to EC: our “rewards” (success rate, fitness increase, etc) 

change over time. 

 2 first ideas: 

2. Adaptive Pursuit [Thi05]:

 �WC�
� = 1 − V  �W

� + VzW, where ' is the operator selected in iteration 0
and zW is the reward of that iteration

 2WC�
� = 1 − a 2W

� + a2nq^ , for current best “arm” ' = '∗

 2WC�
� = 1 − a 2W

� + a2nop , for other arms ' ≠ '∗

 “winner takes it all”
controls speed of 

selection adaptation

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

UCB-Based Dynamic Multi-Armed Bandits

 Da Costa, Fialho, Schoenauer, Sebag (GECCO’08) [CFSS08] and follow-up 

works suggest a parameter control mechanism that hybridizes 

 a multi-armed bandit algorithm (Upper Confidence Bound UCB-type, see 

next slide) with 

 the statistical Page-Hinkley test (which triggers a restart of the UCB 

mechanism if positive, indicating a change in the time series)
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UCB = Upper Confidence Bound

 Upper Confidence Bound, aka UCB-mechanisms are well known in 

learning theory, see work by Auer, Cesa-Bianchi, Fischer ML’02 

[ACBF02]

 Main ideas:

 cUCB greedily selects the operator (the “arm”) maximizing the 

following expression: 

expected reward + � log
∑ ��,`

\
�

��,`

\
, 

where

 ��,W is the number of times the �-th arm has been pulled in the 

first 0 iterations and 

 � is a parameter that allows to control the exploration likelihood 

(vs. exploitation, which is controlled by the first summand)

 tuned and other variants of this algorithm exist, see [ACBF02] for 

details and empirical evaluations

 These ideas can be used in operator selection, but note that in contrast 

to the classical setting in multi-armed bandit theory the rewards change 

over time (dynamic multi-armed bandit scenario)
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Extreme Value-Based Adaptive Operator Selection

 In [FCSS08], Fialho, Da Costa, Schoenauer, and Sebag argue that, for 

many problems, 

 rare large fitness improvements are often better than

 many small fitness improvements

 They suggest to distribute confidence based on the largest fitness 

improvement that an operator has produced in the last � iterations in 

which it has been used (sliding window of size �) 

 Sizing � is again non-obvious, too small � makes it difficult for an 

operator with rare but large fitness improvements to be chosen, while 

too large � makes it more difficult to adjust the search to the current 

state of the optimization process

 In [FCSS10] the authors suggest the following changes:

 increase the reward with the time elapsed since the last application of 

the operator

 decrease it with the number of times the operator has been used in 

the last iterations
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Randomized Local Search w/ �-greedy parameter control (1/2)

Theoretical result for learning-inspired parameter control available in [DDY16a]:

 studies dynamic �-greedy parameter selection:

 Fix a small number of possible mutation strengths z ≔ {1, 2, … , z}

 Estimate the expected fitness gain �W8�[�] from using �-bit flips (using data from 

the past, see next slide)

 In iteration 0

 with probability �, use a random � ∈ [z] “exploring mut. strengths”

 with prob. 1 − �, use a � that maximized �W8�[�] “take the most efficient �”

 Update the expected fitness gain estimations

 It is shown in [DDY16a] that this adaptive mechanism yields almost optimal running 

time on OneMax (the difference is tiny). 

It performs better than any static parameter choice.

 This algorithm with the same budget computes a solution that asymptotically is 

13% closer to the optimum than Randomized Local Search 

(provided that the budget is at least 0.2675�).
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Randomized Local Search w/ �-greedy parameter control (2/2)

 Expected fitness gain estimation for using a �-bit flip:

�W � ≔
∑ 1���� 1 − � W8S 3 �S − 3 �S8�

W
S��

∑ 1���� 1 − � W8SW
S��

 1/�: “forgetting rate”, determines the decrease of the importance of older 

information. 1/� is (roughly) the information half-life

 The “velocity” can be computed iteratively in constant time by introducing 

a new parameter �W z ≔ ∑ ����� 1 − � W8SW
S��

 This mechanism seems to work well also for other problems

 So far, no other theoretical results available

 A few experimental results for LeadingOnes and the Minimum 

Spanning Tree problem exist, see next 2 slides (these results were 

also presented in [DDY16a])

 Again, much more work is needed to see how the algorithm performs 

on other problems and how to set the parameters � and �
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Comments on Hyper-Heuristics

 Not covered in detail here, because there is a separate tutorial at 

GECCO dedicated to hyper-heuristics [TW19]

 Several ideas presented above can also be found in the hyper-heuristics 

literature. In fact, many hyper-heuristics could be easily integrated in the 

above. 

 Why do they have their own category in the classification? 

historical reasons, 2 “sub-communities” with similar ideas

 Note that hyper-heuristics covers much more than controlling parameters 

 the main idea is to control the whole algorithm, in the sense of 

dynamically choosing which heuristic is best at a given state 

 Surveys: [BGH+13,TW19]

 Recent theoretical works: [LOW19,DLOW18,LOW17]
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Controlling Multiple Parameters

 Most EAs have several parameters 

 Intuitively, there is no reason to not control more than one or even all of 

them

 A few works on controlling more than 1 parameter exists, see [KHE15]

 The problem how to best control several parameters is, however, widely 

open (given the non-conclusive state-of-the-art in controlling one parameter, this 

is perhaps not very surprising)
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Controlling Mutation Rate and Variance

Example for controlling more than 1 parameter, taken from [YDB19]:

 Instead of choosing mutation strength from Bin(�, 2) [as done by standard bit 

mutation], sample from � �, /5

 /5 = 0 : deterministic �, 

 Randomized Local Search with variable neighborhood size

 /5 = �2(1 − 2) : very similar to standard bit mutation [central limit theorem]

 Evolutionary Algorithm

 Introducing variance yields a meta-algorithm

Online Parameter Selection  Online Algorithm Selection

 quite efficient on OneMax and LeadingOnes key tool: 

 use 3 � ≥ 3 � to control mean mutation rate �

 use # of iterations without parameter change to control variance
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Part 4:

Applications

Real-world optimization
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Real-world optimization

Real-world optimization problems occur in many applications

Engineering design,
Scientific modelling,
Image processing,
Production,
Transportation,
Bioinformatics,
Finances, etc.

Real-world systems are, in general, large and very complex.
They need to process a large amount of data, to perform
complex optimization and make decisions fast [KBP13].
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Real-world optimization

Real-world problems in general

Contain non-linear objective functions of mixed design
variables (i.e. continuous and discrete)
Contain linear as well as non-linear constraints
Might have several local optima

For a wide range of real-world optimization problems, a
near-optimal or a better-than-known solution is considered a
satisfactory result of an optimization problem.
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Real-world optimization

There are several characteristics that increase the complexity
of the optimum solution search and for which parameter
control could be advantageous

Number and type of variables: a large number of decision

variables, including mixed-integer problems, where different types of

variables are optimised

Dynamic problems: problems that are changing over time

Problems under uncertainty: the variables of the problem have

some uncertainty

Number of objectives: problems that require optimizing more than

one objective function simultaneously and need to be solved by a

multi/many-objective approach

Nested problems: multi/bi-level optimization, where one

optimization problem has another optimization problem as a constraint

Some problems have combination of these characteristics
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Real-world optimization

Properly defined control parameters play a crucial role in
effectively handling the mentioned characteristics and solving
such problems.

For example: with increasing dimensionality of the problem its
landscape complexity grows and the search space increases
exponentially.

But

An optimization algorithm must still be able to explore the entire
search space efficiently
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Large scale global optimization
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Large scale global optimization

LSGO [OLML19] - the problem dimension D (the number of
variables to be optimised) has an order of magnitude of up to
several thousand (for real values) or even billions (for integer
or binary values)

An active research field due to the growing number of
large-scale optimization problems in engineering,
manufacturing and economy applications (such as
bio-computing, data or web mining, scheduling, vehicle
routing, etc.) [Cab16], [LTSY15]

Advances in machine learning and the wide use of deep
artificial neural networks result in optimization problems with
over a billion variables [HS06]

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

Large scale global optimization

A major challenge of large-scale optimization

Most engineering problems have an exponential increase in the
number of required decision variables [OYM+17], [Van02]

The challenges motivated the design of many kinds of
efficient, effective, and robust kinds of metaheuristic
algorithms to solve LSGO problems with high-quality solutions
and high convergence performance as well as with low
computational cost [MA17]
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Large scale global optimization

To achieve acceptable results even for the same problem,
different parameter settings along with different reproduction
schemes at different stages of optimization process are needed

Several techniques (e.g., [ZBBv08], [DMS16]) have been
designed to adjust control parameters in an adaptive or
self-adaptive manner (instead of a trial-and-error procedure)
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Large scale global optimization

Some examples of LSGO

Data analytic and learning problems [ZCJW14]
Shape design optimization for aircraft wings and turbine blades
[YSTY16]
Satellite layout design [TCZ+10]
Parameter calibration of water distribution system [WHD+13]
Seismic waveform inversion [WG12]

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices



Dynamic optimization
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Dynamic optimization

Real-world optimization problems are usually subject to
changing conditions over time

The effects of these changes could influence several aspects of
the problem, such as the objective function, the problem
instance, its constraints, etc.

The optimal solution of the problem might change over time.

Dynamic optimization

Changing problems, when solved by an adaptive optimization
algorithm on-the-fly, are called dynamic optimization problems
(DOPs) [NYB12]
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Dynamic optimization

The algorithm is expected to be able to track the current
optimal solution as well as the changing optimal solution over
time

The optimization procedure has to be able to detect these
changes and react quick enough

This also requires dynamic change of the ratio for exploration
and exploitation parts of the search
Both adaptive [WWY09] and self-adaptive [BZB+09]
parameter control can be used
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Dynamic optimization

Based on a comprehensive survey [Bra01], four different
strategies can be used to help evolutionary/population-based
algorithms to adapt in dynamical environments:

Increasing diversity of the population after a change is
detected, (e.g., by increasing mutation rate every N generations)

Maintaining diversity throughout the run, to avoid
convergence of the population on one point
Memory based approaches, taking into consideration older
solutions and sometimes making predictions based on historical
data
Multi-population approaches, where many small populations
track their own peaks as the environment changes
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Dynamic optimization

Some examples of dynamic optimization

Production scheduling [Yil13]
Energy demand optimization [GZ15]
Transportation [YLLF18], [LEC12]
Financial optimization [HJS11]
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Optimization under uncertainty
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Optimization under uncertainty

The presence of (a range of) uncertainties has to be taken
into account for solving many real-world applications with
evolutionary algorithms

[JB05] categorize the uncertainties that influence EA
performance into four types

When there is some noise in the fitness function
When there are changes of design and environmental
parameters after the optimization
When fitness function is an approximation
When the optimum changes over time (as in dynamic

optimization).
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Optimization under uncertainty

Methodologies for addressing noisy fitness function

Explicit averaging by calculating the average of the fitness
values over a number of randomly sampled disturbances
[Gre96], [Mil97]
Implicit averaging sample size as an inverse function of the
population size [FG88]
Fitness inheritance where the offspring inherits also the mean
and standard deviation of the objective value [BAE05]
Selection modification [Tei01]

These methods assume that the search space follows a
homogeneous noise distribution, such as a uniform or a
normal distribution [VC16]
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Optimization under uncertainty

Some examples of optimization under uncertainty

Financial optimization [HJS11]
Transportation in unknown environments [ZHA16]
Space applications [VML11], [BS06]

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

Multi-objective optimization
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Multi-objective optimization

Multi-objective (and also many-objective) optimization
approaches are used for optimization problems where several
criteria need to be optimised, but they are equally treated and
not merged (e.g., by weights) into one single objective

The output of multi-objective optimization is a set of
solutions that approximates the Pareto front

There is no unique measure that would indicate how good a
current approximation of the Pareto front is

In multi-objective cases

Adaptive parameter control is a bit more complicated to design
and additional considerations are needed to design phenotype
feedback collection part

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

Multi-objective optimization

Possible assessment of the optimization process stage

Monitor the proportion of non-dominated solutions in the
population [YJG09]
Convergence detection [NT09]

The most common indicators that are also used as input to
parameter control are the crowding distance and the
contributing hyper-volume [IHR07], [BNE07]
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Multi-objective optimization

Other metrics can also be applied

ε-dominance
Generational distance
Delta indicator
Two set coverage, and so on [RVLB15].

Compared to adaptive control, self-adaptive control is easier
to design and implement because less modifications are
needed to upgrade an existing multi-objective optimization
algorithm [WWY10] [CLW07].
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Multi-objective optimization

Some examples of multi-objective optimization

Engineering design [GBX+18]
Transportation [SBD19], [LMR+18]
Production [GNB+19], [AYGL18]
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Multilevel optimization
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Multilevel optimization

In many real-world processes there is a hierarchy of
decision-makers and decisions are taken at different levels
[MPV12]

The constraint domain associated with a multilevel problem is
implicitly determined by a series of optimization problems
which must be solved in a predetermined sequence

The simplest form of a multilevel problem has two levels (i.e.,
bi-level optimization problem)

The optimization of such problem aims to achieve the
optimum solution of the upper level, while the optimum of the
lower optimization level is also taken into account
Since the lower level landscape changes for every upper level
vector, parameter control seems to be useful approach
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Multilevel optimization

An interesting application of bilevel optimization is connected
to parameter tuning of EAs as bilevel optimization problem

[SMXD14] propose the parameter tuning problem as an
inherently bilevel programming problem involving algorithmic
performance as the objective(s)
[And18] created a bilevel framework for parallel tuning of
optimization control parameters, and compared it to irace
proving that it can be competitive
Bilevel control parameter tuning can be used to design a
parameter control mechanism [ABNS15]
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Examples
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Image processing: Feature selection

LS

Feature selection for reducing the dimensionality in
classification of hyperspectral images [DGG11]

Self-adaptive differential evolution SADE is used

SADE is used in combination with Fuzzy kNN classifier

Compared to GA-based and ACO-based approaches [SP10]

Significant improvement for overall classification accuracy and
Kappa coefficient
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Image processing: Animated Tree Reconstruction

LS

UN

Feature extraction to reconstruct three dimensional procedural
models of trees; to lower problem dimensionality needed for
encoding local parameters [ZB14]

The reconstruction is iteratively optimized using DE, which
samples procedural tree model parameters to obtain a
parameterized procedural model for instantiating a
geometrical model

jDE is used

DE with self-adaptive control parameter settings [BGB+06]

Examples of reconstructed model animation are shown, such
as simulation of its growth, sway in the wind, or adding leaves
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Production: Scheduling

DY

Optimal operations scheduling in the production of different
components considering various constraints [PVK12]

PLES algorithm is used

PLES is based on general GA with modified implementation of
functions that allow varying population size, mutation and crossover
[Pap13]

Compared to standard non-adapting GA and GA with customized
local search [KPV10]

Faster convergence of PLES and comparable results to GA for
various problem instances
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Transport: Scheduling

DY

Solving a constrained transportation scheduling problem, for
transporting goods in emergency situations [KP13]

PLES algorithm is used

PLES is based on general GA with modified implementation of
functions that allow varying population size, mutation and crossover
[Pap13]

Compared to non-adaptive Ant-stigmergy algorithm [K12]

The satisfying performance in finding solutions and escaping
from local optima, for different transportation modes
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Power systems: Scheduling

LS

DY

Addressing total fuel costs and emissions minimization by
appropriate hydro and thermal generation schedules [GZ15]

NPdynεjDE and PSADEs algorithms are used

NPdynεjDE is based on jDE self-adaptation [BZM06], population
size reduction [BM08], and ε level adjustment [ZBBZ09]

Surrogate parallel self-adaptive DE (PSADEs) is based on
self-adaptation [GGK+14], with pre-computed surrogate model

The satisfied 24-h system demand is obtained by using a new
DE architecture
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Water pipeline system: Parameter calibration

LSParameter calibration strengthens the model accuracy of the
water distribution system. Many factors influence the
reliability of WDS simulation [WHD+13]

ensemble optimization evolutionary algorithm (EOEA) is used

Combining global shrinking stage (to shrink the searching scope to
the promising area) [BM08] and local exploration [YTY08] stage
with self-adaptive group sizing

Different problems were constructed/tested: 100D, 200D, 300D and
454D

Results show good scalability of EOEA on this real-world
application
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Appliance controller: Setting configuration

UNOptimal performance of a refrigerator/freezer to cool to the
desired temperature using the lowest possible power
consumption [PM10]

PLES algorithm is used

PLES is based on general GA with modified implementation of
functions that allow varying population size, mutation and crossover
[Pap13]

The results show correlation between simulated and measured
duty cycle of the compressor and with energy consumption
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Seismic waveform inversion: Configuration

LS

UN

Waveform inversion for whole Earth geophysics and
exploration geophysics, to develop an accurate Earth model
and for understanding of subsurface structures [WG12]

cooperative coevolutionary DE (CCDE) algorithm is used

All subcomponents are cooperatively evolved to solve
high-dimensional optimization problems through decomposition

The next generations are selected according to the global fitness
values

The parameter adaptation scheme of jDE [BGB+06] is used

The CCDE results are very effective and have significant
advantages over some other methods. CCDE is not sensitive
to the size of the parameters
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Underwater glider: Path planning

DY

UN

Optimization of a short-term sea trajectory, with opportunistic
sampling of dynamic mesoscale ocean structures (eddies),
which offer short-term opportunities for underwater glider
path optimization [ZH14] [ZHA16]

jDE is used

Slightly modified jDE [BGB+06], combining DE and underwater
glider path planning (UGPP)

Gliders operational capabilities benefit from improved path
planning, especially when dealing with opportunistic
short-term missions focused on dynamic structures
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Underwater glider: Path planning 2

DY

UN

Optimization of a sea trajectory for underwater glider path
optimization [ZS19]

Success-History Based Adaptive Differential Evolution Algorithm
(SHADE) including Linear population size reduction (L-SHADE) is
used

L− SHADE5 was used including different population sizes and
population sizing strategies

Increased opportunity for mission scenario re-tests or in very
hard scenarios
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Electrical motor: Geometry selection

UNOptimization of geometrical parameters of the electrical motor
rotor and stator geometry [Pap08]

PLES algorithm is used

PLES is based on general GA with modified implementation of
functions that allow varying population size, mutation and crossover
[Pap13]

Compared to generational evolutionary algorithm (GEA) [TKP+07]
and multilevel ant stigmergy algorithm (MASA) [Kv05]

The results show fast convergence of the PLES but is not
always able to find global optimum
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Target shape design optimization

LS

MO

To tackle the target shape design optimization problems
(TSDOPs) with B-spline as the geometry representation
[YSTY16]

CMA-ES-CC algorithm is used

CMA-ES with Cooperative Coevolution was implemented

Compared with CMA-ES, iES [PXL+07], RCGA [DAJ02]

The performance of CMA-ES-CC was stable, and the results
of CMA-ES-CC were significantly better than with other EAs
for TSDOPs
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Pendulum: Reinforcement learning

DYConsiders modeling of inverted pendulum and
double-pendulum swing-up [DVC19]

CMA-ES algorithm is used

CMA-ES uses reproducing kernel Hilbert space (RKHS)

Compared to standard CMA-ES and adaptive CMA-ES direct policy
search CMA-ES-A

The results show that CMA-ES-RKHS is able to avoid local
optima and clearly outperformes other methods
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Topology optimization

MOTopology optimization was performed with two different
compliances (structure in different load cases are used as two
different objective functions to be minimized) were considered
as conflicting objective functions [RM18]

Adaptive weight multi-objective algorithm is used

Conflicting objective functions are converted to a single objective
function by applying weights, and these weights are adaptively
updated to find evenly distributed solutions on the Pareto front.

The results confirm that optimized solutions, obtained by
using the proposed method, are evenly distributed on the
Pareto front
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Urban mass rapid transit: Transport

DY

MO

Multi-objective simulation-based headway optimization for
complex urban mass rapid transit systems in Vienna [SBD19]

CMA-ES algorithm is used

multi-objective version of CMA-ES (MO-CMA-ES) is compared to
single objective version (SO-CMA-ES) and NSGA-II

The results show similar performance of all tested algorithms
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Aerobic fermentation process: Production

DY

MO

The optimization of the oxygen mass transfer coefficient in
stirred bioreactors in the presence of n-dodecane as oxygen
vector, where the oxygen transfer in the fermentation broths
has a significant influence on the growth of cultivated
microorganism [DCGC13]

SADE-NN-1 algorithm is used

An improved, simple, and flexible self-adaptive variant of DE, in
combination (hybridized) with neural networks

The improvements (hybridization) of the algorithm resulted in
higher efficiency of the whole methodology
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Summary
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Summary

The distribution of presented cases according to problem
characteristics

large-scale dynamic uncertain multi-objective nested

6 8 6 4 –
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Summary

You are welcome to contribute to this overview of the
real-world cases of parameter control implementations

Send your suggestions/cases to: gregor.papa@ijs.si
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Part 5:

Wrap Up
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Wrap Up

 Our hope was  

To inspire and to enable you to test parameter control mechanisms

 We hope that you are (now) convinced that

 Dynamic parameter choices can help to significantly improve the 

performance of your EA

 Already quite simple mechanisms can be surprisingly efficient

 Research on parameter control can be fun 

 non-static parameter values should be the new standard in the field 

 As mentioned in the tutorial, a lot needs to be done to make this change happen 

 enjoy! 

 don’t get frightened by the fact that quite some work has been done already. 

There is still much room for creativity and we are just starting to understand 

how good mechanisms look like!

 … and, last but not least, keep in touch 

 If you get to work on parameter control, we would be very much interested in 

your results, positive and negative!

Gregor.Papa@ijs.si and Carola.Doerr@lip6.fr 
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[BZB+ 09] Janez Brest, Aleš Zamuda, Borko Bošković, Mirjam Sepesy Maučec, and Viljem Žumer, Dynamic optimization using self-adaptive differential evolution, IEEE
Congress on Evolutionary Computation, 2009. CEC’09, IEEE, 2009, pp. 415–422.

[BZM06] J. Brest, V. Zumer, and M. S. Maucec, Self-adaptive differential evolution algorithm in constrained real-parameter optimization, 2006 IEEE International
Conference on Evolutionary Computation, 2006, pp. 215–222.

[Cab16] Daniel Molina Cabrera, Evolutionary algorithms for large-scale global optimisation: a snapshot, trends and challenges, Progress in Artificial Intelligence 5
(2016), no. 2, 85–89.
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[LDC+ 16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas Stützle, The irace package: Iterated racing for automatic
algorithm configuration, Operations Research Perspectives 3 (2016), 43–58.

[LEC12] T.W. Liao, P.J. Egbelu, and P.C. Chang, Two hybrid differential evolution algorithms for optimal inbound and outbound truck sequencing in cross docking
operations, Applied Soft Computing 12 (2012), no. 11, 3683 – 3697.

[Len18] Johannes Lengler, A general dichotomy of evolutionary algorithms on monotone functions, Proc. of Parallel Problem Solving from Nature (PPSN’18), Lecture
Notes in Computer Science, vol. 11102, Springer, 2018, pp. 3–15.

[LJD+ 17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar, Hyperband: A novel bandit-based approach to hyperparameter
optimization, J. Mach. Learn. Res. 18 (2017), no. 1, 6765–6816.
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[ZS19] Aleš Zamuda and José Daniel Hernández Sosa, Success history applied to expert system for underwater glider path planning using differential evolution,
Expert Systems with Applications 119 (2019), 155 – 170.

Gregor Papa and Carola Doerr GECCO 2020 Tutorial: Dynamic Control Parameter Choices

https://arxiv.org/abs/1801.07546

	Tutorial Organization
	Motivation, Examples, and Taxonomy
	Applications
	Large scale global optimization
	Dynamic optimization
	Optimization under uncertainty
	Multi-objective optimization
	Multilevel optimization
	Examples
	Summary
	Acknowledgement
	References

