

Electroosmotic Coupling in Porous Media, a New Model Based on a Fractal Upscaling Procedure

Luong Duy Thanh, Damien Jougnot, Phan van Do, Aida Mendieta, Nguyen

Xuan Ca, Vu Xuan Hoa, Pham Minh Tan, Nguyen Thi Hien

▶ To cite this version:

Luong Duy Thanh, Damien Jougnot, Phan van Do, Aida Mendieta, Nguyen Xuan Ca, et al.. Electroosmotic Coupling in Porous Media, a New Model Based on a Fractal Upscaling Procedure. Transport in Porous Media, 2020, 134 (1), pp.249-274. 10.1007/s11242-020-01444-7. hal-02950764

HAL Id: hal-02950764 https://hal.sorbonne-universite.fr/hal-02950764v1

Submitted on 30 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Electroosmotic coupling in porous media, a new model based on a fractal upscaling procedure

Luong Duy Thanh^a, Damien Jougnot^b, Phan Van Do^a, Aida Mendieta^b,

⁴ Nguyen Xuan Ca^c, Vu Xuan Hoa^c, Pham Minh Tan^d, Nguyen Thi Hien^{e,f,*}

	aThuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
5	
	bSorbonne Universit´e, CNRS, EPHE, UMR 7619 Metis, F-75005, Paris, France
6	
7	cFaculty of Physics and Technology, TNU-University of Sciences, Thai Nguyen, Vietnam
,	Equilty of Fundamental Sciences, Thai Nauven University of Technology, Thai Nauven
8	aruculty of runaumental sciences, that nguyen oniversity of technology, that nguyen,
9	Vietnam
	eCeramics and Biomaterials Research Group, Advanced Institute of Materials Science,
10	
11	Ton Duc Thang University, Ho Chi Minh City, Vietnam
	fFaculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
12	

13 Abstract

Electrokinetic and electroosmotic couplings can play important roles in water and ions transport in charged porous media. Electroosmosis is the phenomena explaining the water movement in a porous medium subjected to an electrical field. In this work, a new model is obtained through a new up-scaling procedure, considering the porous medium as a bundle of tortuous capillaries of fractal nature. From the model, the expressions for the electroosmosis pressure coefficient, the relative electroosmosis pressure coefficient, the maximum back pressure, the maximum flow rate, the flow rate-applied back pressure relation and the product of the permeability and formation factor of porous media are also obtained. The sensitivity of the relative electroosmosis pressure coefficient is then analyzed and explained. The model predictions are then successfully compared with published datasets. Additionally, we deduce an expression for the relative streaming potential coefficient and then compare it with a previously published model and experimental data from a dolomite rock sample. We find a good agreement between those models and experimental data, opening up new perspectives to model electroosmotic phenomena in porous media saturated with various fluids.

June 26, 2020

- ¹⁴ *Keywords:* Electroosmosis; Electrokinetics; Water saturation; Zeta
- ¹⁵ potential; Fractal; Porous media

16

17

*Corresponding author *Email address:* nguyenthihien@tdtu.edu.vn (Nguyen Thi Hien) **1. Introduction**

Electroosmosis is one of the effects of electrokinetic phenomena that oc18 cur in porous media with surface charges when filled with one or more fluids 19 containing charged particles. It arises due to the induced movement of a liq₂₀ uid by a voltage across a porous sample and is directly linked to an electrical ²¹ double layer between the solid grain surface and the pore solution. Electroos₂₂ mosis has been studied both experimentally and theoretically for a long time ²³ (e.g., Reuss, 1809; Quincke, 1861; Smoluchowski, 1902; Nourbehecht, 1963; 24 Lyklema, 1995). Electroosmotic flow is a critical phenomenon that is used in 25 a variety of applications. For example, electroosmotic flow pumps have been 26 used in different fields of microfluidics such as biological and chemical anal₂₇ ysis (Good et al., 2006), liquid drug reagent injection/delivery (e.g., Tsai & 28 Sue, 2007; Wang et al., 2009), microelectronic chip cooling (e.g., Linan Jiang 29 et al., 2002; Singhal et al., 2004) and microfluidic devices (e.g., Hu & Li, 2007; 30 Bruus, 2008; Kirby, 2010). Solutes and nonaqueous phase liquids/dense non₃₁ aqueous phase liquids can be removed by an electroosmotic technique in the 32 vadose zone for remediation purposes (e.g., Bruell et al., 1992; Wise & Tran₃₃tolo, 1994; Han et al., 2004; Reddy et al., 1997). Additionally, electroosmo₃₄ sis has great potential for the dewatering of earth masonry structures (e.g., 35 Casagrande, 1983; Lockhart & Hart, 1988; Larue et al., 2006) or drying mois³⁶ ture ingress in existing buildings, stone and earth masonry structures (e.g., 37 Lockhart & Hart, 1988; Ottosen & Ro rig-Dalgaard, 2006; Bertolini et al.,

38 2009).

³⁹ Many studies on electroosmosis flow reported in the literature use cylin-

drical capillaries or microchannels between two parallel plates (e.g., Rice
 ⁴¹& Whitehead, 1965; Levine et al., 1975; Olivares et al., 1980; Ohshima &
 ⁴²Kondo, 1990; Mohiuddin Mala et al., 1997; Vennela et al., 2011). In

porous 43 media, electroosmotic flow has been presented using capillary bundle models 44 with different capillary geometry such as rectangular, cylindrical and annular 45 geometries (e.g., Wu & Papadopoulos, 2000; Pascal et al., 2012). Bandopad46 hyay et al. (2013) introduced the parameter of the electro-permeability that 47 relates the flow rate with the applied voltage in porous media. Based on 48 the electroosmotic flow in a single capillary, models for the height difference 49 between the U-tube experiment caused by electroosmosis in a fully saturated 50 porous medium were presented (e.g., Paillat et al., 2000; Liang et al., 2015). 51 For characterization of electroosmotic miropumps fabricated by packing non52 porous silica particles, a bundle of capillary tubes model was applied (e.g., 53 Zeng et al., 2001; Yao & Santiago, 2003). Besides capillary tubes models, 54 other approaches based on volume-averaging upscaling can be also applied 55 to calculate the electrokinetic coupling in porous media (e.g., Pride, 1994; 56 Revil & Linde, 2006; Revil et al., 2007).

⁵⁷It has been shown that natural porous media have fractal properties. ⁵⁸Their pore space is statistically self-similar over several length scales (among ⁵⁹many others, see Mandelbrot, 1982; Katz & Thompson, 1985; Yu & Cheng, ⁶⁰2002). Theory on the fractal nature of porous media has attracted much ⁶¹attention in different areas (e.g., Mandelbrot, 1982; Feder & Aharony, 1989). ⁶²Therefore, models based on the fractal theory have been applied to study ⁶³phenomena in both fully and partially saturated porous media (e.g., Cai ⁶⁴et al., 2012a,b; Liang et al., 2014; Guarracino & Jougnot, 2018; Soldi et al., ⁶⁵2019; Thanh et al., 2018, 2019). However, to the best of our knowledge, ⁶⁶the fractal theory has not yet been used to study electroosmosis in a porous ⁶⁷medium under water saturated and partially saturated conditions.

⁶⁸ In this work, we apply fractal theory in porous media to obtain a mech₆₉ anistic analytical model to describe electroosmotic flow in porous media us₇₀ ing a capillary tube model. From the derived model, the expressions for ⁷¹ the electroosmotic pressure coefficient, the relative electroosmosis pressure ⁷² coefficient, the maximum back pressure, the maximum flow rate, the flow ⁷³ rate-applied back pressure relation and the product of the formation fac₇₄ tor and permeability of porous media are also obtained. To validate the

⁷⁵ model, the sensitivity of the relative electroosmosis pressure coefficient K_{E}^{r}

⁷⁶ to irreducible water saturation S_{irr} , ratio of the minimum pore radius to the ⁷⁷ maximum pore radius α and fractal dimension for pore space D_f is analyzed ⁷⁸ and explained. The model is then compared with published results in both ⁷⁹ cases of full saturation and partial saturation. Additionally, the expression ⁸⁰ for the relative streaming potential coefficient K_S^r is also deduced from K_E^r . ⁸¹From that, the change of the relative streaming potential coefficient K_S^r with ⁸² the water saturation is predicted and compared with another model and with ⁸³ experimental data for a dolomile rock sample available in literature.

84 2. Theoretical background of electroosmosis

2.1. Theory of electroosmosis

⁸⁶Porous media are constituted by minerals (e.g., silicates, oxides, carbon⁸⁷ates) or other materials (e.g., polymers, biological materials) that are gener⁸⁸ally electrically charged due to isomorphic substitutions (e.g., Hunter, 1981;

Figure 1: (a) Sketch of the electrical double layer at the surface of a mineral in contact with water. Comparison between the Debye-Hu⁻ckel (DH) approximation (plain line, Eq. (13)) and the Poisson-Boltzman equation (dashed line) to compute (b) the electrical potential distribution and (c) the ionic species relative concentration distribution in a capillary ($R = 0.25 \ \mu$ m) containing a NaCl electrolyte with 10^{-4} mol/L (i.e., $\lambda = 0.0304 \ \mu$ m). Note that the dashed and plain lines are perfectly superimposed, validating the use of Eq. (13).

Figure 2: Electroosmosis flow in a capillary tube.

³⁹Jacob & Subirm, 2006) as shown in Fig. 1. The pore fluid nearby solid ⁹⁰ solution interface contains an excess of charges (counter-ions) to insure the 91 electro-neutrality of the entire system. These counter-ions are often cations 92 and surface charges are often negatively charged in environmental conditions. 93 Note that the surface charges strongly depend on the pH and that the sign 94 can change at low pH. The value at which the sign changes is called the point 95 of zero charge (e.g., Hunter, 1981; Leroy & Revil, 2004). This gives rise to 96 the charge distribution known as the electrical double layer (EDL) as shown 97 in Fig. 1a. The EDL is composed of a Stern layer, where counter-ions are 98 adsorbed onto the solid surface and are immobile, and a diffuse layer that 99 contains mobile counter-ions and co-ions. In the diffuse layer, the distribu¹⁰⁰ tion of ions and electric potential are governed by the Poisson-Boltzman (PB) 101 equation in quasistatic conditions. The solution to the linear PB equation 102 for a cylinder is well-known and the electric potential decays over distance 103 from the charged surface as displayed in Fig. 1b using the code provided by 104 Leroy & Maineult (2018). Further away from the solid-solution is the bulk 105 electrolyte, free from surface charge influence, it contains an equal number 106 of cations and anions and is therefore electrically neutral (Fig. 1c). The 107 shear plane or the slipping plane is the closest place to the solid in which 108 water flow occurs and the electrical potential at this plane is called the zeta 109 potential (ζ). The zeta potential depends on parameters including mineral 110 composition of porous media, ionic species that are present in the fluid, the 111 pH of the fluid, fluid electrical conductivity and temperature etc. (see Hunter 112 (1981); Davis et al. (1978); Jaafar et al. (2009) for more details). 113 Reuss (1809) carried out the

first experiment on electroosmosis by ap₁₁₄ plying a DC voltage across a water saturated porous sample in a U-tube. ¹¹⁵ When a DC voltage is applied across a capillary containing water, ions in the ¹¹⁶ EDL are submitted to an electric force and move to the electrode of oppo-

¹¹⁷ site polarity. That leads to the movement of the fluid near the solid surface ¹¹⁸ as well as the bulk liquid due to viscous forces. The net motion of liquid is ¹¹⁹ called electroosmotic flow (Fig. 2). The pressure necessary to counterbalance ¹²⁰ electroosmotic flow is defined as the electroosmotic pressure (e.g., Jacob & ¹²¹ Subirm, 2006).

122 2.2. Governing equations

¹²³ The electrokinetic coupling in a fluid saturated porous medium is de¹²⁴ scribed by two linear equations (e.g., Li et al., 1995; Pengra et al., 1999)

$$\mathbf{U}_e = -\sigma \nabla V - \Pi_{12} \nabla P. \tag{1}$$

$$\mathbf{U}^{f} = -\Pi_{21}\nabla V - \frac{k}{\eta}\nabla P,\tag{2}$$

¹²⁵ where **U**_e and **U**_f are the electric current density (A m⁻²) and Darcy flux ¹²⁶ (m s⁻¹), *V* is the electrical potential (V), *P* is the pressure that drives the ¹²⁷ flow, σ and *k* are the electrical conductivity (S m⁻¹) and permeability (m²) ¹²⁸ of the porous medium, η is the dynamic viscosity of the fluid, the off-diagonal ¹²⁹ coefficients (Π_{12} and Π_{21}) are the electrokinetic coupling coefficients. In the

- ¹³⁰ steady state, those coupling coefficients must satisfy the reciprocal relation
- ¹³¹ of Onsager: $\Pi_{12} = \Pi_{21} = \Pi$.
- ¹³² The streaming potential coefficient is defined when the electric current ¹³³ density U_e is zero (e.g., Li et al., 1995; Wang et al., 2016), leading to

$$K_S = \frac{\Delta V}{\Delta P} = -\frac{\Pi}{\sigma}.$$
(3)

¹³⁴Note that another formulation in which streaming potential coefficient for ¹³⁵ saturated porous media is described through the effective excess charge den₁₃₆ sity \hat{Q}_v (C/m³) dragged by the flow of the pore water was proposed by (e.g., ¹³⁷ Revil & Leroy, 2004; Revil & Linde, 2006)

$$K_S = -\frac{\widehat{Q}_v k}{\sigma \eta} \tag{4}$$

- The electroosmotic pressure coefficient is defined when the Darcy flux \mathbf{U}_f
- ¹³⁹ is zero (e.g., Li et al., 1995; Wang et al., 2016), leading to

Figure 3: Sketch of the considered conceptual representative elementary volume (REV): Parallel and tortuous capillary tubes with radii following a fractal distribution.

¹⁴⁰ By the volume averaging approach, Pride (1994) obtained the steady state ¹⁴¹ coupling coefficient under a thin electrical double layer assumption as

$$\Pi = \frac{\phi}{\tau} \frac{\epsilon_r \epsilon_0 \zeta}{\eta} = \frac{\epsilon_r \epsilon_0 \zeta}{F\eta},\tag{6}$$

¹⁴² where *r* is the relative permittivity of the fluid, $_0$ is the dielectric per¹⁴³ mittivity in vacuum, φ , τ and *F* are the porosity, hydraulic tortuosity and

formation factor of porous media, respectively. Note that the link $\varphi F = \tau$ has been used in Eq. (6) (e.g., Wyllie & Rose, 1950; Ghanbarian et al., 2013)

¹⁴⁷ Substituting Eq. (6) into Eq. (5), one obtains

$$K_E = -\frac{\epsilon_r \epsilon_0 \zeta}{Fk}.$$
(7)

In this work, we will obtain the analytical models for K_E as well as other quantities based on a fractal upscaling approach instead of the volume aver₁₅₀ aging approach for partially saturated porous media.

151 3. Model development

152 3.1. Electrical potential distribution at pore scale

¹⁵³ Consider binary symetric 1:1 electrolytes (e.g., NaCl) of bulk ionic con¹⁵⁴ centration C^0 (mol/m³) with an electrical potential $\psi(r)$ (V) at a distance ¹⁵⁵ r from the axis. If the excess charge density at this point is $\rho(r)$ (C m⁻³), ¹⁵⁶ then the Poisson equation is given by (e.g., Rice & Whitehead, 1965; Gierst, ¹⁵⁷ 1966)

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d\psi(r)}{dr}\right) = -\frac{\rho(r)}{\epsilon_r\epsilon_0},\tag{8}$$

¹⁵⁸ From the Boltzmann equation, the following is obtained

$$\rho(r) = NeC^0 \left[e^{-\frac{e\psi(r)}{k_b T}} - e^{\frac{e\psi(r)}{k_b T}} \right] = 2NeC^0 \sinh \frac{e\psi(r)}{k_b T}$$
(9)

- where k_b is the Boltzmann's constant, *T* is temperature (in K), *N* is the ¹⁶⁰ Avogadro number and *e* is the elementary charge.
- If $\left|\frac{e\psi(r)}{k_bT}\right| << 1$ that is called the Debye-Hu¨ckel approximation (e.g., Pride,
- ¹⁶² 1994; Hunter, 1981; Jougnot et al., 2019), $\sinh \frac{e\psi(r)}{k_bT} \approx \frac{e\psi(r)}{k_bT}$. The Boltzmann equation now becomes $1 d (d\psi(r)) = 2Ne^2C^0$

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d\psi(r)}{dr}\right) = -\frac{2Ne^2C^0}{\epsilon_0\epsilon_r k_b T}\psi(r)$$
(10)

164 or
$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d\psi(r)}{dr}\right) = -\frac{\psi(r)}{\lambda^2}$$
(11)

where $\lambda = \sqrt{\frac{\epsilon_0 \epsilon_r k_b T}{2Ne^2 C^0}}$ is defined as the Debye length (e.g., Israelachvili, 1992). The boundary conditions of Eq. (11) to be satisfied for the cylindrical ¹⁶⁷ capillary surface are (Rice & Whitehead, 1965):

$$\psi(r) = \begin{cases} \psi(R) = \zeta \\ \frac{d\psi(r)}{dr}|_{r=0} = 0 \end{cases}$$
(12)

¹⁶⁸ Under the boundary conditions given by Eq. (12), the analytical solution of ¹⁶⁹ $\psi(r)$ and $\rho(r)$ are obtained as (Rice & Whitehead, 1965)

$$\psi(r) = \zeta \frac{I_o(\frac{r}{\lambda})}{I_o(\frac{R}{\lambda})}$$
(13)

170 and

$$\rho(r) = -\frac{\epsilon_0 \epsilon \zeta}{\lambda^2} \frac{I_o(\frac{r}{\lambda})}{I_o(\frac{R}{\lambda})}$$
(14)

- where I_0 is the zero-order modified Bessel function of the first kind. Figure 1
- 172 compares the potential and concentrations of ions in the EDL calculated from 173 Eq. (13) and the exact Poisson-Boltzmann solution (see Leroy & Maineult 174 (2018) for more details). It shows that Eq. (13) is a correct approximation 175 for the Poisson-Boltzmann true solution.

176 *3.2. Velocity distribution at pore scale*

- ¹⁷⁷ Under application of an electric field *E* and a fluid pressure difference ΔP
- across a tortuous capillary of radius *R*, the fluid flow is the sum of a Poiseuille ¹⁷⁹ flow generated by ΔP and an electroosmotic flow generated by *E* acting on ¹⁸⁰ the charge density in the EDL given by Eq. (14). Consequently, the velocity ¹⁸¹ profile v(r) in a cylindrical capillary is given as (Rice & Whitehead, 1965)

$$v(r) = \frac{1}{4\eta} (R^2 - r^2) \frac{\Delta P}{L_\tau} + \frac{\epsilon_r \epsilon_0 \zeta E}{\eta} \left[1 - \frac{I_0(r/\lambda)}{I_0(R/\lambda)} \right],$$
(15)

- where L_{τ} is the length of tortuous capillaries.
- ¹⁸³ Because the electric field *E* is related to the applied voltage across the ¹⁸⁴ porous medium ΔV by $E = \Delta V/L$ (*L* is the length of the porous medium as ¹⁸⁵ shown in Fig. 3). Eq. (15) is rewritten as

$$v(r) = \frac{1}{4\eta} (R^2 - r^2) \frac{\Delta P}{L_\tau} + \frac{\epsilon_r \epsilon_0 \zeta}{\eta} \left[1 - \frac{I_0(r/\lambda)}{I_0(R/\lambda)} \right] \frac{\Delta V}{L}$$
(16)

¹⁸⁶ The volume flow rate in the capillary is

$$q(R) = \int_0^R v(r) 2\pi r dr = \frac{\pi R^4}{8\eta} \frac{\Delta P}{L_\tau} + \frac{\pi \epsilon_r \epsilon_0 \zeta R^2}{\eta} \left[1 - \frac{2\lambda I_1(R/\lambda)}{RI_0(R/\lambda)} \right] \frac{\Delta V}{L}, \quad (17)$$

- where I_1 is the first-order modified Bessel functions of the first kind.
- Figure 4 shows the variation of the nondimensional parameter of the sec₁₈₉ ond term in square brackets in Eq. (17) denoted by $C = 2\lambda I_1(R/\lambda)/(RI_0(R/\lambda))$
- with R/λ . It is seen that when the pore size is much bigger than the Debye
- length (hundred times), the term of $2\lambda I_1(R/\lambda)/(RI_0(R/\lambda))$ is much smaller
- than the unity and can be ignored (see Rice & Whitehead (1965) for more

¹⁹³ details). Under that condition called the thin EDL assumption, Eq. (17) ¹⁹⁴ becomes

$$q(R) = \frac{\pi R^4 \Delta P}{8\eta L_\tau} + \frac{\pi \epsilon_r \epsilon_0 \zeta R^2}{\eta} \frac{\Delta V}{L}$$
(18)

- ¹⁹⁵ In geological media and under most environmental conditions (i.e., ground-
- ¹⁹⁶ water for human consumption or subsurface reservoirs), ionic strengths (i.e.,

Figure 4: The variation of the unitless coefficient $C = 2\lambda I_1(R/\lambda)/(RI_0(R/\lambda))$ with the unitless ratio of the considered pore size and the Debye length (R/λ)

a proxy for ionic concentration) in potable water typically vary between 197 10⁻³ and 10⁻² mol/L (Jougnot et al., 2019). Reservoirs can be saturated 198 with brine having much higher ionic concentrations depending on the 199 for₂₀₀ mation. Therefore, the Debye length is typically less than 10 nm at 25° C 201 (Israelachvili, 1992). It suggests that the minimum pore radius of porous ma₂₀₂ terials that is applicable for thin EDL under the environmental conditions 203 is around 100×10 nm = 1µm. In addition, typical characteristic radius of 204 pore in geological media is tens of micrometer (e.g., Hu et al., 2017). There₂₀₅ fore, a thin EDL assumption (no EDL overlap) is normally satisfied in most 206 natural systems (see Jougnot et al. (2019) for more details). It is noted that 207 the thin EDL assumption does not work for clay rocks and low permeability 208 sediments where the pore size is on the order of 10 nm. Therefore, one needs 209 to take into account the term of $C = 2\lambda I_1(R/\lambda)/(RI_0(R/\lambda))$ in Eq. (17). It 210 is therefore a limitation to the proposed model.

211 3.3. Fractal based up-scaling

²¹² Porous media can be conceptualized as a bundle of tortuous capillary ²¹³ tubes following a fractal pore-size distribution (e.g., Yu & Cheng, 2002; Liang ²¹⁴ et al., 2014) (see Fig. 3). The fractal approach is a simple and elegant way to ²¹⁵ upscale microscopic properties to macroscopic properties by assuming that ²¹⁶ the pore size distribution follows the fractal scaling law

$$N(\geq R) = \left(\frac{R_{max}}{R}\right)^{D_f},\tag{19}$$

²¹⁷ where *N* is the number of capillaries with radius greater than *R*, R_{max} is the ²¹⁸ maximum radius, D_f is the fractal dimension for pore space, $0 < D_f < 2$ ²¹⁹ in two-dimensional space and $0 < D_f < 3$ in three dimensional space (Yu & ²²⁰ Cheng, 2002; Liang et al., 2014).

From Eq. (19), the following is obtained

$$-dN = D_f R_{max}^{D_f} R^{-D_f - 1} dR,$$
(20)

where -dN is the number of capillaries with radius ranging from R to R+dR. 223 The minus (-) in Eq. (20) implies that the number of pores decreases with 224 the increase of pore size. The total number of capillaries with radius ranging 225 from R_{min} (the minimum radius) to R_{max} (the maximum radius) is given by

$$N_{total}(\geq R_{min}) = \left(\frac{R_{max}}{R_{min}}\right)^{D_f}$$
(21)

From Eq. (20) and Eq. (21), the following is obtained

$$-\frac{dN}{N_{total}} = D_f R_{min}^{D_f} R^{-D_f - 1} dR = f(R) dR,$$
(22)

²²⁷ in which $f(R) = D_f R_{min}^{D_f} R^{-D_f-1}$ is the probability density function. Accord-²²⁸ ing to the statistical theory, the probability density function needs to meet ²²⁹ the following condition

$$\int_{R_{min}}^{R_{max}} f(R)dR = 1 - \left(\frac{R_{min}}{R_{max}}\right)^{D_f} = 1$$
(23)

230 Or

$$\left(\frac{R_{min}}{R_{max}}\right)^{D_f} \approx 0 \tag{24}$$

Eq. (24) is approximately valid for $R_{min}/R_{max} \approx 10^{-2}$ or $< 10^{-2}$ (Yu & 232 Cheng, 2002; Liang et al., 2014). That condition generally holds in porous 233 media. The fractal dimension D_f is linked to the porosity of porous media 234 and the ratio of the minimum capillary radius to the maximum capillary

²³⁵ radius ($\alpha = R_{min}/R_{max}$) by following equation (e.g., Yu et al., 2001; Yu & ²³⁶ Cheng, 2002)

$$D_f = 2 - \frac{\ln\phi}{\ln\alpha} \tag{25}$$

237 *3.4. REV scale*

²³⁸ To obtain the volume flow rate at the macroscale, a representative ele₂₃₉ mentary volume (REV) as a cube with a length *L* is considered. As presented ²⁴⁰ in the previous section, the porous medium exhibits a fractal pore size dis₂₄₁ tribution with radii varying from R_{min} to R_{max} . We consider the REV under ²⁴² varying saturation conditions. The effective saturation is defined by

$$S_e = \frac{S_w - S_{irr}}{1 - S_{irr}},\tag{26}$$

- where S_w is the water saturation and S_{irr} is irreducible water saturation.
- ²⁴⁴ We assume that the REV is initially fully saturated and then drained ²⁴⁵ when submitted to a pressure head h (m). For a capillary tube, the pore ²⁴⁶ radius R_h (m) that is drained at a given pressure head h can be calculated ²⁴⁷ by (Jurin, 1719)

$$h = \frac{2T_s \cos\beta}{\rho_w g R_h},\tag{27}$$

²⁴⁸ where T_s (N/m) is the surface tension of the fluid and β is the contact angle. ²⁴⁹ A capillary becomes fully desaturated under the pressure head h if R is ²⁵⁰ greater than the radius R_h given by Eq. (27). Therefore, the capillaries with ²⁵¹ radii R between R_{min} and R_h will be fully saturated under the pressure head

252 h.

 For porous media containing only large and regular pores, the irreducible 254 water saturation can often be neglected.
 For porous media containing small 255 pores, the irreducible water saturation can be pretty significant because water 256 remains trapped in the crevices or in micropores that are not occupied by air. $_{257}$ This amount of water is taken into account in the model by setting irreducible $_{258}$ water radius of capillaries R_{irr} . Consequently, the following assumptions are

²⁵⁹ made in this work: (1) for $R_{min} \le R \le R_{irr}$, the capillaries are occupied by ²⁶⁰ water that is immobile at irreducible saturation due to insufficient driving ²⁶¹ force, so it does not contribute to fluid flow; (2) for $R_{irr} < R \le R_h$, the ²⁶² capillaries are occupied by mobile water, so it contributes to the fluid flow; ²⁶³ (3) for $R_h < R \le R_{max}$, the capillaries are occupied by air, so it does not ²⁶⁴ contribute to the fluid flow. In this work, film bound water adhering to ²⁶⁵ the capillary walls of porous media with radius greater than R_{irr} is ignored. ²⁶⁶ Therefore, the irreducible water saturation is defined as

$$S_{irr} = \frac{\int_{R_{min}}^{R_{irr}} \pi R^2 L_{\tau}(-dN)}{\int_{R_{min}}^{R_{max}} \pi R^2 L_{\tau}(-dN)} = \frac{R_{irr}^{2-D_f} - R_{min}^{2-D_f}}{R_{max}^{2-D_f} - R_{min}^{2-D_f}}.$$
(28)

²⁶⁷ The water saturation is determined as:

$$S_w = \frac{\int_{R_{min}}^{R_h} \pi R^2 L_\tau(-dN)}{\int_{R_{min}}^{R_{max}} \pi R^2 L_\tau(-dN)} = \frac{R_h^{2-D_f} - R_{min}^{2-D_f}}{R_{max}^{2-D_f} - R_{min}^{2-D_f}}$$
(29)

Because only capillaries with radius between R_{min} and R_h are fully saturated ²⁶⁹ under a pressure head h, the volumetric flow rate Q_{REV} through the REV ²⁷⁰ is the sum of the flow rates over all capillaries with radius between R_{irr} and ²⁷¹ R_h and given by

$$Q_{REV} = \int_{R_{irr}}^{R_h} q(R)(-dN)$$
(30)

²⁷² Combining Eq. (18), Eq. (20) and Eq. (30), the following is obtained

$$Q_{REV} = \frac{\pi R_{max}^{D_f}}{8\eta} \frac{D_f (R_h^{4-D_f} - R_{irr}^{4-D_f})}{(4-D_f)} \frac{\Delta P}{L_\tau} + \frac{\pi R_{max}^{D_f} \epsilon_r \epsilon_0 \zeta}{\eta} \frac{D_f (R_h^{2-D_f} - R_{irr}^{2-D_f})}{(2-D_f)} \frac{\Delta V}{L}$$
(31)

Additionally, from Eq. (28) and Eq. (29) one has

$$R_{irr} = R_{max} \left[\alpha^{2-D_f} + S_{irr} (1 - \alpha^{2-D_f}) \right]^{\frac{1}{2-D_f}}$$
(32)

274 and

$$R_h = R_{max} \left[\alpha^{2-D_f} + S_w (1 - \alpha^{2-D_f}) \right]^{\frac{1}{2-D_f}},$$
(33)

where $\alpha = R_{min}/R_{max}$. 275

Combining Eq. (31), Eq. (32) and Eq. (33), the following is obtained 276

$$Q_{REV} = \frac{\pi R_{max}^4 D_f}{8\eta(4 - D_f)} \left\{ \left[\alpha^{2-D_f} + S_w (1 - \alpha^{2-D_f}) \right]^{\frac{4-D_f}{2-D_f}} - \left[\alpha^{2-D_f} + S_{irr} (1 - \alpha^{2-D_f}) \right]^{\frac{4-D_f}{2-D_f}} \right\} \frac{\Delta P}{L_{\tau}} + \frac{\pi R_{max}^2 \epsilon_r \epsilon_0 \zeta D_f}{\eta(2 - D_f)} S_w (1 - \alpha^{2-D_f}) (S_w - S_{irr}) \frac{\Delta V}{L}.$$
(34)

The total flow rate *Q* through the porous medium is given by 277

$$Q = Q_{REV} \frac{A}{A_{REV}},\tag{35}$$

- where A and A_{REV} are the cross sectional areas of the porous medium and 278 ²⁷⁹the REV, both are perpendicular to the flow direction.
- 280
- The porosity is calculated by 281

$$\phi = \frac{V_{pore}}{V_{REV}} = \frac{\int_{R_{min}}^{R_{max}} L_{\tau} \pi R^2(-dN)}{LA_{REV}} = \frac{\pi \tau D_f R_{max}^2 (1 - \alpha^{2-D_f})}{(2 - D_f) A_{REV}},$$
(36)

where τ is the mean tortuosity of the porous medium defined by the 282 relation $_{283}L_{\tau} = \tau.L$.

284

The cross sectional area of the REV is therefore obtained as 285

$$A_{REV} = \frac{\pi \tau D_f R_{max}^2 (1 - \alpha^{2 - D_f})}{(2 - D_f)\phi}.$$
(37)

$$Q = \frac{R_{max}^{2}A}{8\eta\tau} \frac{(2-D_{f})}{(4-D_{f})} \frac{\phi}{(1-\alpha^{2-D_{f}})} \times \left\{ \left[\alpha^{2-D_{f}} + S_{w}(1-\alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} - \left[\alpha^{2-D_{f}} + S_{irr}(1-\alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} \right\} \frac{\Delta P}{L_{\tau}} + \frac{\epsilon_{r}\epsilon_{0}\zeta\phi A}{\eta\tau} (S_{w} - S_{irr}) \frac{\Delta V}{L}$$
(38)

- ²⁸⁷ Eq. (38) indicates that the total volumetric flow rate relates to the zeta ²⁸⁸ potential, fluid properties (relative permittivity, viscosity), water saturation, ²⁸⁹ irreducible water saturation as well as the microstructural parameters of
- ²⁹⁰ porous media (D_f , φ , α , r_{max} , τ). Eq. (38) predicts that when $S_w = S_{irr}$
- ²⁹¹ (S_e =0) then Q = 0 (i.e., no water flow). When the porous medium is fully ²⁹² saturated S_w = 1 and the irreducible water saturation equals zero S_{irr} = 0, ²⁹³ the total volumetric flow Q becomes

$$Q = \frac{R_{max}^2 A}{8\eta\tau} \frac{(2-D_f)}{(4-D_f)} \frac{\phi}{(1-\alpha^{2-D_f})} (1-\alpha^{4-D_f}) \frac{\Delta P}{L_\tau} + \frac{\epsilon_r \epsilon_0 \zeta \phi A}{\eta\tau} \frac{\Delta V}{L}$$
(39)

- ²⁹⁴ Because $1 < D_f < 2$ and $2 < 4 D_f < 3$, $\alpha^{4-D_f} << 1$ ($\alpha = R_{min}/R_{max} \le$
- ²⁹⁵ 10⁻² in porous media as previously reported). Using $1 \alpha^{2-D_f} = 1 \varphi$ as ²⁹⁶ shown by Eq. (25), Eq. (39) is rewritten as

$$Q = \frac{R_{max}^2 A}{8\eta\tau} \frac{(2-D_f)}{(4-D_f)} \frac{\phi}{(1-\phi)} \frac{\Delta P}{L_\tau} + \frac{\epsilon_r \epsilon_0 \zeta \phi A}{\eta\tau} \frac{\Delta V}{L}$$
(40)

 $_{297}$ Eq. (40) is exactly the same as that reported in Liang et al. (2015) under $_{298}$ the thin EDL assumption and full saturation.

²⁹⁹ From Eq. (38), we will obtain the link between fluid pressure difference ³⁰⁰ and flow rate as well as the electroosmotic pressure coefficient.

301 3.5. Relationship between the flow rate and back pressure difference

³⁰² Under the condition of zero flow rate (Q = 0), the maximum ³⁰³ ΔP_m back pressure generated across the porous medium is obtained as

$$\Delta P_m = -\frac{\hat{8}\epsilon_r \epsilon_0 \zeta \Delta V \tau (1-\phi)(4-D_f)}{R_{max}^2 (2-D_f)} \times \frac{S_w - S_{irr}}{\left\{ \left[\alpha^{2-D_f} + S_w (1-\alpha^{2-D_f}) \right]^{\frac{4-D_f}{2-D_f}} - \left[\alpha^{2-D_f} + S_{irr} (1-\alpha^{2-D_f}) \right]^{\frac{4-D_f}{2-D_f}} \right\}}.$$
(41)

³⁰⁴Under the condition of zero back pressure difference ($\Delta P = 0$), the total ³⁰⁵ flow rate is maximum as

$$Q_m = \frac{\epsilon_r \epsilon_0 \zeta A \phi}{\eta \tau} (S_w - S_{irr}) \frac{\Delta V}{L}$$
(42)

 $_{306}$ Combining Eq. (38), Eq. (41) and Eq. (42), the link between the pressure $_{307}$ difference and the flow rate is given by

$$Q = Q_m \left[1 - \frac{\Delta P}{\Delta P_m} \right] \tag{43}$$

³⁰⁸ Eq. (43) is exactly the same as that obtained in Zeng et al. (2001) in which ³⁰⁹ the porous medium was conceptualized as a bundle of parallel capillaries of ³¹⁰ the same radii at full saturation condition. Interestingly, Eq. (43) is obtained ³¹¹ in this work for the fractal pore size distribution and for partially saturated ³¹² porous media but the result is the same for the relationship between flow ³¹³ rate and pressure difference.

314 3.6. Electroosmotic pressure coefficient

³¹⁵ The electroosmotic pressure coefficient K_E is defined by $\Delta P/\Delta V$, that ³¹⁶ means the K_E is a macroscopic variable (i.e., integrating over the entire ³¹⁷ bundle of capillaries) when the total flow rate Q in Eq. (38) equals zero (Li ³¹⁸ et al., 1995; Wang et al., 2016). Consequently, one has

$$K_{E} = \frac{\Delta P}{\Delta V}|_{Q=0} = \frac{\Delta P_{m}}{\Delta V}$$
(44) ³¹⁹ Using Eq. (41), Eq. (44) is rewritten as

$$K_{E} = -\frac{8\epsilon_{r}\epsilon_{0}\zeta\tau(1-\phi)(4-D_{f})}{R_{max}^{2}(2-D_{f})} \times \frac{S_{w} - S_{irr}}{\left[\left[\alpha^{2-D_{f}} + S_{w}(1-\alpha^{2-D_{f}})\right]^{\frac{4-D_{f}}{2-D_{f}}} - \left[\alpha^{2-D_{f}} + S_{irr}(1-\alpha^{2-D_{f}})\right]^{\frac{4-D_{f}}{2-D_{f}}}\right]}.$$
(45)

320

Eq. (45) is a general expression for the electroosmotic pressure coefficient

- for partially saturated porous media. Eq. (45) indicates that the electroos₃₂₂ motic pressure coefficient is explicitly linked to ζ , microstructural parameters ₃₂₃ of porous media (D_f , φ , α , R_{max} , τ), water saturation and irreducible water ₃₂₄ saturation. Therefore, the model can indicate more mechanisms influencing ₃₂₅ the electroosmotic pressure coefficient than other published models (e.g., Eq.
- ³²⁶ (7) deduced by the volume averaging approach).
- In case of full saturation $S_w = 1$, Eq. (45) becomes

$$K_E^{sat} = -\frac{8\epsilon_r\epsilon_0\zeta\tau(1-\phi)(4-D_f)}{R_{max}^2(2-D_f)}\frac{1-S_{irr}}{\left\{1-\left[\alpha^{2-D_f}+S_{irr}(1-\alpha^{2-D_f})\right]^{\frac{4-D_f}{2-D_f}}\right\}}.$$
(46)

328

The relative electroosmotic pressure coefficient K_{E^r} is defined as

$$K_{E}^{r} = \frac{K_{E}}{K_{E}^{sat}} = \frac{S_{w} - S_{irr}}{1 - S_{irr}} \frac{\left\{ 1 - \left[\alpha^{2-D_{f}} + S_{irr}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} \right\}}{\left\{ \left[\alpha^{2-D_{f}} + S_{w}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} - \left[\alpha^{2-D_{f}} + S_{irr}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} \right\}}$$
$$= S_{e} \frac{\left\{ 1 - \left[\alpha^{2-D_{f}} + S_{irr}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} \right\}}{\left\{ \left[\alpha^{2-D_{f}} + S_{w}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} - \left[\alpha^{2-D_{f}} + S_{irr}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} \right\}}{\left\{ \left[\alpha^{2-D_{f}} + S_{w}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} - \left[\alpha^{2-D_{f}} + S_{irr}(1 - \alpha^{2-D_{f}}) \right]^{\frac{4-D_{f}}{2-D_{f}}} \right\}}.$$

$$(47)$$

4. Results and discussion

4.1. Predictions of the model under partially saturated conditions

³³¹ The values of α between 0.001 and 0.01 are used in this section for model₃₃₂ ing because those values are normally used in published works (Yu & Cheng, ³³³ 2002; Liang et al., 2014; Thanh et al., 2019). The fractal dimension D_f is in ³³⁴ the range between 1 and 2. For given porous media, D_f is determined via ³³⁵ Eq. (25) with known values of α and porosity φ . Fig. 5 shows (a) the influ³³⁶ ence of the irreducible saturation on the change of the relative electroosmotic ³³⁷ pressure coefficient K_E^r with the water saturation S_w ($S_{irr} = 0.02$, 0.05 and

³³⁸ 0.1) for $\alpha = 0.01$ and $D_f = 1.8$; (b) influence of α on the variation of K_{E^r}

with S_w ($\alpha = 0.002$, 0.005, 0.01) for $S_{irr} = 0.05$ and $D_f = 1.8$ and (c) Influ₃₄₀ ence of D_f on the variation of K_E^r with S_w ($D_f = 1.3$, 1.5, 1.8) for $\alpha = 0.01$ ₃₄₁ and $S_{irr} =$ 0.05. The results show that as the media desaturate, the relative ₃₄₂ electroosmotic pressure coefficient K_E^r increases. The reason is that at lower ³⁴³ water saturation, only capillaries with smaller radii are occupied by water. ³⁴⁴ Therefore, one needs larger pressure differences over porous media to counter ³⁴⁵ balance with the flow rate generated by the same applied voltage (such that ³⁴⁶ the total volumetric flow rate is zero). As a result, K_E^r is larger for lower ³⁴⁷ water saturation. Additionally, Fig. 5 shows that the relative electroosmotic ³⁴⁸ pressure coefficient is very sensitive to the fractal dimension D_f and the ratio ³⁴⁹ α . It is noted that the D_f decreases with an increase of α at a given porosity ³⁵⁰ as indicated by Eq. (25). Fig. 5 also shows that the K_E^r decreases with the ³⁵¹ increase of the ratio α and decrease of D_f . That can be explained by the ³⁵² decrease of the total number of pores in the REV with the decrease of D_f .

Figure 5: Sensitivity analysis of the model: (a) Influence of the irreducible saturation on the variation of the K_{E^r} with the water saturation S_w ($S_{irr} = 0.02$, 0.05 and 0.1) for $\alpha = 0.01$ and $D_f = 1.8$; (b) Influence of α on the variation of K_{E^r} with S_w ($\alpha = 0.002$, 0.005, 0.01) for $S_{irr} = 0.05$ and $D_f = 1.8$; (c) Influence of D_f on the variation of K_{E^r} with S_w ($D_f = 1.3$, 1.5, 1.8) for $\alpha = 0.01$ and $S_{irr} = 0.05$.

Figure 6: The variation of the zeta potential with pore fluid salinity. The predicted values of the zeta potential for four samples of glass beads at 0.1 mol/L in Li et al. (1995) are shown by red squares. Experimental data from different sources reported by Thanh & Sprik (2015),Jaafar et al. (2009) and Vinogradov et al. (2010) are also presented.

³⁵³ Therefore, R_h becomes larger at the same water water saturation. Similarly, ³⁵⁴ we need to apply a smaller pressure difference over the partially saturated ³⁵⁵ REV to counter balance the flow rate generated by the same applied voltage. ³⁵⁶ Consequently, K_E^r decreases with a decrease of D_f .

4.2. Comparison with experimental data in water saturated porous media ³⁵⁷ 4.2. Comparison with experimental data in water saturated porous media ³⁵⁸ Even if the present model is developed based on the concept of capillary ³⁵⁹ tubes, it possible to provide a relationship between capillary radius to grain ³⁶⁰ size for the sake of medium characterization. Indeed, in non-consolidated ³⁶¹ granular materials, pore size are very difficult to obtain without perturbat-

 $_{362}$ ing the medium, while grain sizes and grain size distribution can be easily $_{363}$ measured. Therefore, with the knowledge of the mean grain diameter d of $_{364}$ a granular material, the maximum pore radius can be determined by (e.g., $_{365}$ Liang et al., 2015)

$$R_{max} = \frac{d}{4} \left[\sqrt{\frac{\phi}{1-\phi}} + \sqrt{\frac{1}{1-\phi}} \right]. \tag{48}$$

³⁶⁶ Mean geometrical tortuosity of porous media is predicted from porosity ³⁶⁷ as (e.g., Cai et al., 2012a; Ghanbarian et al., 2013; Liang et al., 2015)

$$\tau = \frac{1}{2} \left[1 + \frac{1}{2}\sqrt{1-\phi} + \sqrt{1-\phi}\frac{\sqrt{(1/\sqrt{1-\phi}-1)^2 + 1/4}}{1-\sqrt{1-\phi}} \right]$$
(49)

Table 1: Input parameters of four samples of fused glass beads are taken from Li et al. (1995). Symbols of *d*, φ , K_E and α are symbols for the grain diameter, porosity, the electroosmotic pressure coefficient and ratio of minimum and maximum radius, respectively. The values of ζ are predicted from Eq. (45)

Number	<i>d</i> (µm)	φ (no units)	K_E (Pa/V)	α (no units)	ζ (mV)
1	50	0.10	4.94	0.01	-11
2	50	0.17	12.5	0.01	-48
3	100	0.19	1.9	0.01	-33
4	200	0.30	0.25	0.01	-29
mean					-30

³⁶⁸ We want to see if the model is able to predict the zeta potential using Eq. ³⁶⁹ (46). Li et al. (1995) measured K_E for fused glass beads fully saturated by ³⁷⁰ a 0.1 M NaCl electrolyte. Micro-structure parameters of the samples such ³⁷¹ as grain diameter *d*, porosity φ as well as the measured K_E are reported in ³⁷² Li et al. (1995) and re-shown in Table 1. At this electrolyte concentration, ³⁷³ the Debye length λ is around 1 nm (Israelachvili, 1992). Of all samples, ³⁷⁴ the minimum value of R_{max} corresponding to the sample 1 (*d*=50 µm and ³⁷⁵ φ =0.1) is predicted using Eq. (48) to be 17 µm. Hence, R_{min} corresponding

³⁷⁶ to the sample 1 is obtained using $R_{min} = \alpha R_{max} = 0.01 R_{max} = 170$ nm. ³⁷⁷ Consequently, the Debye length is much smaller than R_{min} and Eq. (46) is ³⁷⁸ applicable for experimental data reported by Li et al. (1995).

³⁷⁹ The value of α is taken as 0.01 because that is a normally used value ³⁸⁰ for grain materials (e.g., Thanh et al., 2018, 2019). The value of S_{irr} is ³⁸¹ reasonably taken as 0 for large grain materials (e.g., Jougnot et al., 2012). ³⁸² From the known values of porosity φ and α of samples (see Table 1), D_f is ³⁸³ obtained by Eq. (25). From Eq. (46), the zeta potential is obtained with the ³⁸⁴ knowledge of α , D_f , τ , φ , R_{max} and S_{irr} . The predicted values are presented ³⁸⁵ in Table 1. It is seen that the predicted values (see red squares at 0.1 mol/L ³⁸⁶ in Fig. 6) are in good agreement with published experimental data (Jaafar ³⁸⁷ et al., 2009; Vinogradov et al., 2010; Thanh & Sprik, 2015).

³⁸⁸ The zeta potential is dependent on the electrical conductivity of the fluid. ³⁸⁹ The electroosmotic pressure coefficient K_E^{sat} varies with the electrolyte elec₃₉₀ trical conductivity σ_w . Fig. 7 shows the variation of the electroosmotic pres₃₉₁ sure coefficient with fluid electrical conductivity experimentally obtained by

Figure 7: Variation of the electroosmotic pressure coefficient K_E^{sat} at saturated condition with electrolyte electrical conductivity for two consolidated samples of glass beads: (a) for the sample of 100 µm glass beads and (b) for the sample of 200 µm glass beads shown in Table 1).

³⁹² Pengra et al. (1999) for two samples of glass beads ($d=100 \mu m$ and 200 μm , ³⁹³ respectively) saturated by a NaCl electrolyte (see diamond symbols). There 394 are few proposed expressions for the relationship between the zeta potential 395 and electrolyte concentration available in the literature (e.g., Pride & Mor₃₉₆ gan, 1991; Jaafar et al., 2009; Vinogradov et al., 2010). One is given by $\zeta = {}_{397}a +$ $b\log_{10}(C_f)$ with a = -6.43 mV, b = 20.85 mV as shown by Jaafar et al. 398 (2009), for example. Electrical conductivity of the NaCl electrolyte is linked 399 to the electrolyte concentration by the relation $\sigma_W = 10C_f$ for the ranges $_{400} 10^{-6}$ M < C_f < 1 M and 15°C < T < 25°C (Sen & Goode, 1992). Therefore, 401 the relation ζ = $-6.43 + 20.85\log_{10}(0.1\sigma_w)$ (mV) is obtained. Similarly, we 402 obtain $R_{min} = 400$ nm for two samples and maximum value of λ =1.36 nm 403 for the considered range of electrolyte concentration by Pengra et al. (1999) 404 (from 0.05 mol/L to 0.65 mol/L). Therefore, the thin EDL assumption is 405 satisfied. Applying the same approach as we did previously, the variation 406 of the electroosmotic pressure coefficient K_E^{sat} with electrical conductivity $_{407}\sigma_w$ is predicted as shown in Fig. 7 by square symbols. One can see that 408 the model prediction is also in good match with data measured by Pengra ⁴⁰⁹ et al. (1999) (diamond symbols) even there is a large difference between the ⁴¹⁰ model prediction and measured data for smaller glass beads at high electrical ⁴¹¹ conductivity. The reason may be that Jaafar et al. (2009) obtained:

$$\zeta = a + b \log 10(C_f) \tag{50}$$

⁴¹² by fitting experimental data for quartz, silica, glass and St. Bees in NaCl ⁴¹³ brine with big data scattering. As shown in Fig. 3 of Jaafar et al. (2009),

- the difference in ζ can reach 65% at $C_f = 10^{-2}$ mol/L. Therefore, the ζC_f
- relation may not work well for a single silica-based sample in a large range $_{416}$ of electrolyte concentration. As a matter of fact, Cherubini et al. (2018) $_{417}$ show that, for data on carbonate materials, the best fit they obtain is rather $_{418}a = -6.97$ mV and b = 9.13 mV, indicating that this relationship is largely $_{419}$ mineral dependent.

⁴²⁰ Figure 8 shows the variation of ΔP_m with an applied voltage for the 10 ⁴²¹ μ m sand pack saturated with 10⁻³ M NaCl. The symbols are deduced from ⁴²²Luong & Sprik (2013) (their Fig. 10) using the relation $\Delta P_m = \rho g \Delta h_m (\Delta h_m)$

is the maximum height difference obtained from Luong & Sprik (2013), ρ

⁴²⁴ 1000 kg/m³ is the water density and $g = 10 \text{ m/s}^2$ is the acceleration due to

Table 2: Parameters taken from Wang et al. (2015) for 10 sandstone samples in which φ , k, ζ stand for porosity, permeability, the zeta potential. The electroosmotic pressure coefficient K_E^{exp} is deduced by comparison between the similarity of porosity, permeability, depth of samples between Wang et al. (2015) and Wang et al. (2016). K_E^{theo} is predicted from the model.

Sample	φ (no units)	<i>k</i> (10-15 m2)	ζ(V)	KEexp (Pa/V)	KEtheo (Pa/V)
D1	30.6	1028	-0.0486	0.42	0.44
D2	30.2	1435	-0.0571	0.47	0.35
D3	30.9	1307	-0.0410	0.40	0.31
D4	32.1	1152	-0.0609	0.40	0.61
D5	29.8	456	-0.0727	0.52	1.30
D6	31.0	978	-0.0462	0.51	0.46
D7	29.4	594	-0.0627	0.49	0.82
D8	31.0	2785	-0.1448	0.52	0.51
D9	29.3	1491	-0.0765	0.43	0.40

$$\Delta P_{m} = -\frac{8\epsilon_{r}\epsilon_{0}\zeta\Delta V\tau(1-\phi)(4-D_{f})}{R_{max}^{2}(2-D_{f})} \times \frac{1-S_{irr}}{\left\{1-\left[\alpha^{2-D_{f}}+S_{irr}(1-\alpha^{2-D_{f}})\right]^{\frac{4-D_{f}}{2-D_{f}}}\right\}}$$
(51)

0.21

⁴²⁶ The solid line is predicted from Eq. (51) in the same manner as mentioned ⁴²⁷ above with φ = 0.38, D_f = 0.01, d = 10 µm, α = 0.01 and the mean value

⁴²⁸ of ζ = -13 mV over six granular samples made of spherical grains (Luong & ⁴²⁹ Sprik, 2013) (best fit is obtained with S_{irr} = 0). Note that the thin EDL is not ⁴³⁰ really met in this case because of $R_{min} \approx 60$ nm and λ = 9.6nm. Therefore, ⁴³¹the model may not work really well to reproduce the experimental data as

432 shown in Fig. 8.

4

⁴³³ Eq. (46) is applied to determine the electroosmotic pressure ⁴³⁴ K_E coefficient for ten sandstone samples (20 mm in length and 25 mm in diameter) sat₄₃₅ urated by a 0.05 M NaCl electrolyte reported in Wang et al. (2015). Parame₄₃₆ ters of the sandstone samples and the measured zeta potential are presented

Figure 8: Maximum pressure difference as a function of applied voltage. The symbols are experimental data from Luong & Sprik (2013) with \pm 15 % of uncertainty and the solid line is obtained from Eq. (51)

Figure 9: The variation of the K_E predicted in this work and the experimental data taken from Wang et al. (2015)

 $_{437}$ by Wang et al. (2015) and re-shown in Table 2. The measured values of K_{E438} are obtained by the same research group Wang et al. (2016) for the same

⁴³⁹ conditions and re-presented in Table 2 (see K_E). To estimate the mean ⁴⁴⁰ grain diameter of porous media from the permeability, we use the relation

given by (e.g., Bernabe & Revil, 1995; Revil et al., 1999; Glover et al., 2006)

$$d = \sqrt{\frac{4am^2k}{\phi^{3m}}} \tag{52}$$

exp

where the cementation exponent *m* is taken as 1.9 for consolidated sandstone 443 (Friedman, 2005) and *a* is a constant between 2-12 that depends on the pore 444 space (Glover et al., 2006; Glover & Walker, 2009). In this part, *a* is taken 445 as 4 for a set of samples of Wang et al. (2015). With estimated values of 446 *d*, measured φ and α = 0.001 (that value is also relevant to that used in 447 Liang et al. (2014) for a Fontainebleau sandstone), the *K^E* is predicted for 448 reported in Table 2 (*K^E*^{theo}). Fig. 9 shows the predicted *K^E* calculated in 449 this work and measured values taken from Wang et al. (2015). It is seen that 450 Eq. (46) predicts the published experimental data well. Note that for this 451 set of experimental data, we obtain the minimum value of *R^{min}* ≈ 2.10³ nm 452 and λ = 1.36 nm. Therefore, the thin EDL assumption is satisfied and Eq. 453 (46) is valid.

4.3. Prediction of the product of the permeability and formation factor 455 Comparing Eq. (7) and Eq. (46), the product of the permeability and 456 formation factor of porous media is given by

$$kF = \frac{R_{max}^2(2-D_f)}{8\tau(1-\phi)(4-D_f)} \frac{\left\{1 - \left[\alpha^{2-D_f} + S_{irr}(1-\alpha^{2-D_f})\right]^{\frac{4-D_f}{2-D_f}}\right\}}{1-S_{irr}}$$
(53)

⁴⁵⁷ Eq. (53) indicates that based on the fractal model for electroosmostic flow ⁴⁵⁸ in porous media, one can get the product of the permeability and formation ⁴⁵⁹ factor from the parameters D_{f} , R_{max} , τ , α and S_{irr} of porous media. Eq. (53) ⁴⁶⁰ is now used to estimate the product of kF and compare with experimental ⁴⁶¹ data reported in Glover et al. (2006), Glover & D'ery (2010) and Bol'eve et al. ⁴⁶² (2007) for 27 samples of bead packs. Parameters for the samples (grain ⁴⁶³ diameter, porosity, permeability) are taken from Glover et al. (2006), Glover ⁴⁶⁴ & D'ery (2010) and Bol'eve et al. (2007) and re-shown in Table 3. The values

Table 3: Input parameters for bead packs taken from Glover et al. (2006), Glover & D'ery (2010) and Bol'eve et al. (2007). Symbols of d (µm), φ (no units), k (m²), F (no units) and α (no units) stand for grain diameter, porosity, permeability, formation factor and ratio of minimum and maximum radius, respectively.

No.	<i>d</i> (µm)	φ(-)	<i>k</i> (10-12 m2)	F (-)	α(-)	reference
1	20	0.40	0.2411	3.90	0.01	Glover et al. (2006)
2	45	0.39	1.599	4.01	0.01	Glover et al. (2006)
3	106	0.39	8.118	4.04	0.01	Glover et al. (2006)
4	250	0.40	50.46	3.97	0.01	Glover et al. (2006)
5	500	0.38	186.79	4.08	0.01	Glover et al. (2006)
6	1000	0.40	709.85	3.91	0.01	Glover et al. (2006)
7	2000	0.39	2277.26	4.13	0.01	Glover et al. (2006)
8	3350	0.40	7706.97	3.93	0.01	Glover et al. (2006)
9	1.05	0.411	0.00057	3.80	0.01	Glover & D'ery (2010)
10	2.11	0.398	0.00345	3.98	0.01	Glover & D'ery (2010)
11	5.01	0.380	0.0181	4.27	0.01	Glover & D'ery (2010)
12	11.2	0.401	0.0361	3.94	0.01	Glover & D'ery (2010)
13	21.5	0.383	0.228	4.22	0.01	Glover & D'ery (2010)
14	31	0.392	0.895	4.07	0.01	Glover & D'ery (2010)
15	47.5	0.403	1.258	3.91	0.01	Glover & D'ery (2010)
16	104	0.394	6.028	4.04	0.01	Glover & D'ery (2010)
17	181	0.396	21.53	4.01	0.01	Glover & D'ery (2010)
18	252	0.414	40.19	3.75	0.01	Glover & D'ery (2010)
19	494	0.379	224	4.29	0.01	Glover & D'ery (2010)
20	990	0.385	866.7	4.19	0.01	Glover & D'ery (2010)

21	56	0.4	2.0	3.3	0.01	Bol`eve et al. (2007)
22	72	0.4	3.1	3.2	0.01	Bol`eve et al. (2007)
23	93	0.4	4.4	3.4	0.01	Bol`eve et al. (2007)
24	181	0.4	27	3.3	0.01	Bol`eve et al. (2007)
25	256	0.4	56	3.4	0.01	Bol`eve et al. (2007)
26	512	0.4	120	3.4	0.01	Bol`eve et al. (2007)
27	3000	0.4	14000	3.6	0.01	Bol`eve et al. (2007)

Figure 10: A comparison between kF predicted from Eq. (53) and from measured data in Glover et al. (2006), Glover & D'ery (2010) and Bol'eve et al. (2007) (the solid line is a 1:1 line).

⁴⁶⁵ of α and S_{irr} are taken as 0.01 and 0, respectively. Value of τ is obtained by ⁴⁶⁶ the relation $\tau = \varphi F$. From those parameters in combination with Eq. (53), ⁴⁶⁷ the product of the permeability and formation factor is predicted in the same ⁴⁶⁸ procedure as previously mentioned. Fig. 10 shows the comparison between ⁴⁶⁹ the product of kF predicted in this work and the experimental data. The ⁴⁷⁰ solid line represents a 1:1 line. It is seen that the predicted values are in very ⁴⁷¹ good match with the experimental data. It suggests that one can predict k ⁴⁷² of porous materials from Eq. (53) with the knowledge of *F* and vice versa.

473 4.4. Electrokinetic coupling under partially saturated condition

⁴⁷⁴Based on Eq. (3) and Eq. (5), the relationship between the electroosmosis ⁴⁷⁵ coefficient and the streaming potential coefficient is obtained as

$$K_S(S_w) = \frac{K_E(S_w)k(S_w)}{\sigma(S_w)\eta}$$
(54)

⁴⁷⁶ Therefore, the relative streaming potential coefficient is given as

$$K_{S}^{r} = \frac{K_{S}(S_{w})}{K_{S}^{sat}(S_{w}=1)} = \frac{K_{E}(S_{w})}{K_{E}^{sat}(S_{w}=1)} \frac{k(S_{w})}{k(S_{w}=1)} \frac{\sigma(S_{w}=1)}{\sigma(S_{w})},$$
 (55)

where $K_E^r = \frac{K_E(S_w)}{K_E^{sat}(S_w=1)}$ is given in Eq. (47), $\frac{k(S_w)}{k(S_w=1)}$ and $\frac{\sigma(S_w)}{\sigma(S_w=1)}$ are called

the relative permeability and the relative conductivity of porous media and 479 denoted by k^r and σ^r , respectively. In this work, we do not have expressions 480 for k^r and σ^r based on the fractal theory yet. Therefore, we use expressions 481 given by (e.g., Revil et al., 2007; Linde et al., 2006) for k^r and σ^r :

$$k^r = S_e^{(2+3\lambda)/\lambda} \tag{56}$$

482 and

$$\sigma^r = S^n_{w,} \tag{57}$$

⁴⁸³ where is
$$\lambda$$
 is the curve-shape parameter and *n* is the
saturation exponent. ⁴⁸⁴ Eq. (57) is valid for the negligible
surface conductivity.

- ⁴⁸⁵ Combining Eq. (47), Eq. (55), Eq. (56) and Eq. (57), the relative
- streaming potential coefficient is given by

$$K_{S}^{r} = S_{e} \frac{\left\{1 - \left[\alpha^{2-D_{f}} + S_{irr}(1 - \alpha^{2-D_{f}})\right]^{\frac{4-D_{f}}{2-D_{f}}}\right\}}{\left\{\left[\alpha^{2-D_{f}} + S_{w}(1 - \alpha^{2-D_{f}})\right]^{\frac{4-D_{f}}{2-D_{f}}} - \left[\alpha^{2-D_{f}} + S_{irr}(1 - \alpha^{2-D_{f}})\right]^{\frac{4-D_{f}}{2-D_{f}}}\right\}} \times S_{e}^{(2+3\lambda)/\lambda} \frac{1}{S_{w}^{n}}.$$
(58)

⁴⁸⁷ Additionally, Revil et al. (2007) used the volume averaging approach to get ⁴⁸⁸ the relative streaming potential coefficient as

$$K_{S}^{r} = S_{e}^{(2+3\lambda)/\lambda} \frac{1}{S_{w}^{n+1}}$$
(59)

- ⁴⁸⁹ Figure 11 shows the change of the relative streaming potential coefficient
- ⁴⁹⁰ K_{S^r} with the water saturation predicted from Eq. (58) and Eq. (59). Input ⁴⁹¹ parameters for modeling in Fig. 11 are *n*=2.7, λ =0.87, S_{irr} =0.36 which ⁴⁹² are

reported by Revil et al. (2007), D_f =1.5 and α =0.01 which are used ⁴⁹³ due to the best fit. Additionally, a comparison between those models and ⁴⁹⁴ experimental data reported in Revil et al. (2007) for the dolomite sample E3 ⁴⁹⁵ (square symbols) is also shown in Fig. 11. A good agreement is observed ⁴⁹⁶ between the proposed model, the model presented by Revil et al. (2007) ⁴⁹⁷ and experimental data. Clearly, both theoretical models are able to describe ⁴⁹⁸ the decrease of the relative streaming potential coefficient with decreasing ⁴⁹⁹ water saturation, from full saturation to nearly irreducible water saturation ⁵⁰⁰ as indicated by experimental data. When *S*_W decreases then the number of

Figure 11: Variation of the coefficient K_S^r with the water saturation (*n*=2.7, λ =0.87, S_{irr} =0.36, D_f =1.5 and α =0.01). The solid and dashed lines correspond to the proposed model (see Eq. (58)) and the model of Revil et al. (2007), respectively.

⁵⁰¹ capillaries occupied by water in the REV decreases. Hence, the streaming ⁵⁰² current through the REV generated by a fluid flow becomes smaller at a given ⁵⁰³ fluid pressure difference. Consequently, the K_{S} decreases with decreasing S_{W} ⁵⁰⁴ as predicted.

⁵⁰⁵ 4.5. Effective excess charge density

$$\widehat{Q}_{v} = \frac{4 \operatorname{ensity} \widehat{Q}_{v} (\mathsf{C/m^{3}}) \text{ under fully saturated conditions is deduced as}}{\widehat{Q}_{v} = \frac{8 \epsilon_{r} \epsilon_{0} \zeta \tau (1-\phi) (4-D_{f})}{R_{max}^{2} (2-D_{f})} \frac{1-S_{irr}}{\left\{1 - \left[\alpha^{2-D_{f}} + S_{irr} (1-\alpha^{2-D_{f}})\right]^{\frac{4-D_{f}}{2-D_{f}}}\right\}}.$$
(60)

⁵⁰⁸ When one neglects the irreducible water saturation, Eq. (60) reduces to

$$\widehat{Q}_{v} = \frac{8\epsilon_{r}\epsilon_{0}\zeta\tau(1-\phi)(4-D_{f})}{R_{max}^{2}(2-D_{f})}.$$
(61)

509

⁵¹⁰ Based on Eq. (61), we can calculate \hat{Q}_v for the glass beads reported ⁵¹¹ in Glover & D'ery (2010) and Bol'eve et al. (2007) using the same approach ⁵¹² mentioned above. The values of the zeta potential are reported to be $\zeta = _{513}$ -24.72 mV and -73.34 mV in Glover & D'ery (2010) and $\zeta = -17.5$ mV, -44.7

Figure 12: Variation of the effective excess charge density Q_{bv} with the permeability k. Symbols represent experimental data from Glover & D'ery (2010) and Bol'eve et al. (2007) (Table 3). The solid line is the fit line with $\log_{10}(\hat{Q}_v) = -14.2 - 0.85 \log_{10}(k)$.

₅₁₄ mV, -54.6 mV, -59.7 mV, -87.9 mV and -99.3 mV in Bol`eve et al. (2007)

(see their Fig. 8). From calculated \widehat{Q}_v , we can plot the $\widehat{Q}_v - k$ graph (in 516 which k is taken from Table 3) as shown in Fig. 12 from which we obtain

⁵¹⁷the fit line: $\log_{10}(Q_{b\nu}) = A_1 + A_2 \log_{10}(k)$ with $A_1 = -14.2$ and $A_2 = -0.85$. ⁵¹⁸The obtained $Q_{b\nu} - k$ relationship is in good agreement with that reported

- ⁵¹⁹ by Jardani et al. (2007) by fitting to a large set of experimental data that
- includes various lithologies and ionic concentrations: $\log_{10}(\widehat{Q}_v) = -9.23 0.82$
- ⁵²¹ log₁₀(*k*). The constant $A_2 = -0.85$ obtained in this work is related to rock ⁵²² properties (R_{max} , α , τ , φ and D_f) and is very close to -0.82 reported by ⁵²³ Jardani et al. (2007). The obtained constant $A_1 = -14.2$ deviates largely ⁵²⁴ from value of -9.23 proposed by Jardani et al. (2007). The reason is that ⁵²⁵ A_1 is mainly dependent of chemical and interface parameters (Guarracino ⁵²⁶

& Jougnot, 2018). Therefore, it varies with mineral composition of rocks, ⁵²⁷ electrolyte concentration, types of electrolyte etc.

528 5. Conclusions

We derive a physically based model for electroosmostic flow in porous 530 529 media in which the minimum pore radius is 100 times the Debye length, 531 that is around 1 µm under environmental conditions. The porous medium 532 is conceptualized as a bundle of tortuous capillary tubes with a pore-size 533 distribution following a fractal law. The obtained model is linked to the 534 applied voltage, back pressure, water saturation, irreducible water satura tion and microstructural parameters of porous materials ($D_{f_1} \varphi, \alpha, r_{max}, \tau$). 536 From the model, the expressions for the electroosmosis pressure coefficient, 537 the relative electroosmosis pressure coefficient, the maximum back pressure, 538 the maximum flow rate, the flow rate-applied back pressure relation and the 539 product of the permeability and formation factor of porous media are also 540 obtained. To validate the model, the sensitivity of the relative electroosmosis 541 pressure coefficient $K_{E'}$ to S_{irr} , α and D_f is analyzed and explained. The 542 model predictions are then compared with published data in both cases of 543 full saturation and partial saturation. The comparisons show that our model 544 is able to explain well experimental data. From K_{E}^{r} , the expression for the $_{545}$ relative streaming potential coefficient K_S^r is also deduced. From that, the 546 variation of K_S^r with the water saturation is predicted and compared with 547 another model as well as experimental data from the dolomile rock sample. 548 Addtionally, we also obtain an expression for the effective excess charge den₅₄₉ sity \widehat{Q}_v . We find a good agreement between those obtained expressions and 550 published data. We believe that the model proposed in this study can open 551 up to new studies and modelling regarding electroosmotic phenomena and 552 paving the way to to the development of new applications and technical devel₅₅₃ opment in various disciplines from contaminated porous media remediation 554 to masonery structures dewatering.

555 Acknowledgments

 This research is funded by Vietnam National Foundation for Science 557 and Technology Development (NAFOSTED) under grant number 103.99558
 2019.316. Additionally, D. Jougnot and A. Mendieta strongly thank the 559 financial support of ANR EXCITING (grant ANR-17-CE06-0012) for the 560 PhD thesis funding of A. Mendieta.

561 **References**

- Bandopadhyay, A., DasGupta, D., Mitra, S. K., & Chakraborty, S. (2013). 563
 Electro-osmotic flows through topographically complicated porous media: 564
 Role of electropermeability tensor. *Phys. Rev. E*, *87*, 033006.
- ⁵⁶⁵ Bernabe, Y., & Revil, A. (1995). Pore-scale heterogeneity, energy dissipation
- and the transport properties of rocks. *Geophysical Research Letters, 22*, ⁵⁶⁷ 1529–1532.

⁵⁶⁸ Bertolini, L., Coppola, L., Gastaldi, M., & Redaelli, E. (2009). Electroos⁵⁶⁹ motic transport in porous construction materials and dehumidification of ⁵⁷⁰ masonry. *Construction and Building Materials*, *23*, 254 – 263.

⁵⁷¹ Bol'eve, A., Crespy, A., Revil, A., Janod, F., & Mattiuzzo, J. L. (2007). ⁵⁷² Streaming potentials of granular media: Influence of the dukhin and ⁵⁷³ reynolds numbers. *Journal of Geophysical Research, B08204*.

⁵⁷⁴Bruell, C. J., Segall, B. A., & Walsh, M. T. (1992). Electroosomotic removal ⁵⁷⁵ of gasoline hydrocarbons and tce from clay. *Journal of Environmental* ⁵⁷⁶ *Engineering*, *118*, 68–83.

⁵⁷⁷ Bruus, H. (2008). *Theoretical Microfluidics*. Oxford University Press; 1 ₅₇₈ edition.

⁵⁷⁹ Cai, J. C., Hu, X. Y., Standnes, D. C., & You, L. J. (2012a). An analytical ⁵⁸⁰ model for spontaneous imbibition in fractal porous media including gravity. ⁵⁸¹ *Colloids and Surfaces, A: Physicocemical and Engineering Aspects, 414,* ⁵⁸² 228– 233.

⁵⁸³ Cai, J. C., You, L. J., Hu, X. Y., Wang, J., & Peng, R. H. (2012b). Pre⁵⁸⁴ diction of effective permeability in porous media based on spontaneous ⁵⁸⁵ imbibition effect. *International Journal of Modern Physics C, 23*, DOI: ⁵⁸⁶ 10.1142/S0129183112500544.

⁵⁸⁷ Casagrande, L. (1983). Stabilization of soils by means of electroosmotic ⁵⁸⁸ state-of-art. *Journal of Boston Society of Civil Engineering, ASCE, 69,* ⁵⁸⁹ 255–302.

⁵⁹⁰ Cherubini, A., Garcia, B., Cerepi, A., & Revil, A. (2018). Streaming poten⁵⁹¹ tial coupling coefficient and transport properties of unsaturated carbonate ⁵⁹² rocks. *Vadose Zone Journal*, *17*, 180030.

⁵⁹³ Davis, J., James, R., & Leckie, J. (1978). Surface ionization and complexa⁵⁹⁴tion at the oxide/water interface. i. computation of electrical double layer ⁵⁹⁵ properties in simple electrolytes. *Journal of Colloid and Interface Science*, ⁵⁹⁶ 63.

⁵⁹⁷ Feder, J., & Aharony, A. (1989). *Fractals in Physics*. North Holland, Ams₅₉₈ terdam.

⁵⁹⁹ Friedman, S. P. (2005). Soil properties influencing apparent electrical con⁶⁰⁰ ductivity: a review. *Computers and Electronics in Agriculture*, *46*, 45 – ⁶⁰¹ 70.

⁶⁰² Ghanbarian, B., Hunt, A., P. Ewing, R., & Sahimi, M. (2013). Tortuosity in ⁶⁰³ porous media: A critical review. *Soil Science Society of America Journal*, ⁶⁰⁴ *77*, 1461–1477.

⁶⁰⁵ Gierst, L. (1966). Double layer and electrode kinetics. *Journal of the Amer*⁶⁰⁶ *ican Chemical Society*, *88*, 4768–4768.

⁶⁰⁷ Glover, P., I. Zadjali, I., & A Frew, K. (2006). Permeability prediction from ⁶⁰⁸ micp and nmr data using an electrokinetic approach. *Geophysics*, *71*, ⁶⁰⁹ F49–F60.

⁶¹⁰ Glover, P. W. J., & D'ery, N. (2010). Streaming potential coupling coefficient ⁶¹¹ of quartz glass bead packs: Dependence on grain diameter, pore size, and ⁶¹² pore throat radius. *Geophysics*, *75*, F225–F241.

⁶¹³ Glover, P. W. J., & Walker, E. (2009). Grain-size to effective pore-size ⁶¹⁴ transformation derived from electrokinetic theory. *Geophysics*, *74(1)*, E17– ⁶¹⁵ E29.

Good, B. T., Bowman, C. N., & Davis, R. H. (2006). An effervescent reaction micropump for portable microfluidic systems. *Lab Chip*, *6*, 659–666.

618Guarracino, L., & Jougnot, D. (2018). A physically based analytical model to619describe effective excess charge for streaming potential generation inwater 620saturated porous media. Journal of Geophysical Research: SolidEarth, 621123, 52–65.

⁶²² Han, S.-J., Kim, S.-S., & Kim, B.-I. (2004). Electroosmosis and pore pressure ⁶²³ development characteristics in lead contaminated soil during electrokinetic ⁶²⁴ remediation. *Geosciences Journal*, *8*, 85.

⁶²⁵ Hu, G., & Li, D. (2007). Multiscale phenomena in microfluidics and nanoflu⁶²⁶ idics. *Chemical Engineering Science*, *62*, 3443 – 3454.

- Hu, X., Hu, S., Jin, F., & Huang, S. (2017). *Physics of Petroleum Reservoirs*.
- ⁶²⁸ Springer-Verlag Berlin Heidelberg.
- Hunter, R. J. (1981). *Zeta Potential in Colloid Science*. Academic, New 630 York.
- ⁶³¹ Israelachvili, J. (1992). *Intermolecular and Surface Forces*. Academic Press.
- Jaafar, M. Z., Vinogradov, J., & Jackson, M. D. (2009). Measure⁶³³ ment of streaming potential coupling coefficient in sandstones satu⁶³⁴ rated with high salinity nacl brine. *Geophysical Research Letters*, *36*, ⁶³⁵ doi:10.1029/2009GL040549.

⁶³⁶ Jacob, H. M., & Subirm, B. (2006). *Electrokinetic and Colloid Transport* ⁶³⁷ *Phenomena*. Wiley-Interscience.

⁶³⁸ Jardani, A., Revil, A., Boleve, A., Crespy, A., Dupont, J.-P., Barrash, W., & ⁶³⁹ Malama, B. (2007). Tomography of the darcy velocity from self-potential ⁶⁴⁰ measurements. *Geophysical Research Letters*, *34*.

⁶⁴¹Jougnot, D., Linde, N., Revil, A., & Doussan, C. (2012). Derivation of ⁶⁴²soilspecific streaming potential electrical parameters from hydrodynamic ⁶⁴³ characteristics of partially saturated soils. *Vadose Zone Journal*, *11*, 272– ⁶⁴⁴286.

⁶⁴⁵ Jougnot, D., Mendieta, A., Leroy, P., & Maineult, A. (2019). Exploring the ⁶⁴⁶ effect of the pore size distribution on the streaming potential generation in ⁶⁴⁷ saturated porous media, insight from pore network simulations. *Journal* ⁶⁴⁸ *of Geophysical Research: Solid Earth, 124*, 5315–5335.

⁶⁴⁹ Jurin, J. (1719). Ii. an account of some experiments shown before the royal ⁶⁵⁰ society; with an enquiry into the cause of the ascent and suspension of ⁶⁵¹ water in capillary tubes. *Philosophical Transactions of the Royal Society* ⁶⁵² *of London*, *30*, 739–747.

⁶⁵³ Katz, A. J., & Thompson, A. H. (1985). Fractal sandstone pores: Implica⁶⁵⁴tions for conductivity and pore formation. *Phys. Rev. Lett.*, *54*, 1325–1328.

⁶⁵⁵ Kirby, B. (2010). *Micro and Nanoscale Fluid Mechanics: Transport in Mi*⁶⁵⁶ *crofluidic Devices*. Cambridge University Press.

⁶⁵⁷ Larue, O., Wakeman, R., Tarleton, E., & Vorobiev, E. (2006). Pressure elec₆₅₈ troosmotic dewatering with continuous removal of electrolysis products.

- ⁶⁵⁹ *Chemical Engineering Science*, 61, 4732 4740.
- Leroy, P., & Maineult, A. (2018). Exploring the electrical potential inside ⁶⁶¹ cylinders beyond the DebyeHckel approximation: a computer code to solve ⁶⁶² the PoissonBoltzmann equation for multivalent electrolytes. *Geophysical* ⁶⁶³ *Journal International*, *214*, 58–69.

⁶⁶⁴ Leroy, P., & Revil, A. (2004). A triple-layer model of the surface electrochem⁶⁶⁵ ical properties of clay minerals. *Journal of Colloid and Interface Science*, ⁶⁶⁶ 270, 371 – 380.

⁶⁶⁷ Levine, S., Marriott, J., Neale, G., & Epstein, N. (1975). Theory of electroki⁶⁶⁸ netic flow in fine cylindrical capillaries at high zeta-potentials. *Journal of* ⁶⁶⁹ *Colloid and Interface Science*, *52*, 136 – 149.

⁶⁷⁰ Li, S. X., Pengra, D. B., & P.Z.Wong (1995). Onsager's reciprocal relation ⁶⁷¹ and the hydraulic permeability of porous media. *Physical Review E*, *51*, ⁶⁷² 5748–5751.

⁶⁷³Liang, M., Yang, S., Miao, T., & Yu, B. (2015). Analysis of electroosmotic ⁶⁷⁴ characters in fractal porous media. *Chemical Engineering Science*, *127*.

⁶⁷⁵ Liang, M., Yang, S., & Yu, B. (2014). A fractal streaming current model for ⁶⁷⁶ charged microscale porous media. *Journal of Electrostatics*, *72*.

⁶⁷⁷ Linan Jiang, Mikkelsen, J., Jae-Mo Koo, Huber, D., Shuhuai Yao, Lian ⁶⁷⁸ Zhang, Peng Zhou, Maveety, J. G., Prasher, R., Santiago, J. G., Kenny, ⁶⁷⁹ T. W., & Goodson, K. E. (2002). Closed-loop electroosmotic microchannel ⁶⁸⁰ cooling system for vlsi circuits. *IEEE Transactions on Components and* ⁶⁸¹ *Packaging Technologies*, *25*, 347–355.

⁶⁸²Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B., & Revil, A. (2006). ⁶⁸³ Improved hydrogeophysical characterization using joint inversion of cross⁶⁸⁴ hole electrical resistance and ground-penetrating radar traveltime data. 685 *Water Resources Research*, 42.

⁶⁸⁶ Lockhart, N., & Hart, G. (1988). Electro-osmotic dewatering of fine suspen⁶⁸⁷ sions: the efficacy of current interruptions. *Drying Technology*, *6*, 415–423.

⁶⁸⁸ Luong, D. T., & Sprik, R. (2013). Streaming potential and electroosmosis ⁶⁸⁹ measurements to characterize porous materials. *ISRN Geophysics, Article* ⁶⁹⁰ *ID 496352*, 8 pages.

⁶⁹¹Lyklema, J. (1995). *Fundamentals of Interface and Colloid Science*. Aca₆₉₂ demic Press.

⁶⁹³ Mandelbrot, B. B. (1982). *The Fractal Geometry of Nature*. W.H. Freeman, ⁶⁹⁴ New York.

⁶⁹⁵ Mohiuddin Mala, G., Li, D.-D., Werner, C., Jacobasch, H.-J., & Ning, Y. ⁶⁹⁶ (1997). Flow characteristics of water through a microchannel between two ⁶⁹⁷ parallel plates with electrokinetic effects. *International Journal of Heat* ⁶⁹⁸ *and Fluid Flow*, *18*, 489496.

⁶⁹⁹ Nourbehecht, B. (1963). *Irreversible thermodynamic effects in inhomoge*⁷⁰⁰ *neous media and their applications in certain geoelectric problems*. PhD ⁷⁰¹ thesis, MIT Press, Cambridge, Mass, USA.

⁷⁰²Ohshima, H., & Kondo, T. (1990). Electrokinetic flow between two parallel ⁷⁰³ plates with surface charge layers: Electro-osmosis and streaming potential. ⁷⁰⁴ *Journal of Colloid and Interface Science*, *135*, 443–448.

Olivares, W., Croxton, T. L., & McQuarrie, D. A. (1980). Electrokinetic flow
 in a narrow cylindrical capillary. *The Journal of Physical Chemistry*, *84*, ⁷⁰⁷
 867–869.

⁷⁰⁸ Ottosen, L., & Ro[°]rig-Dalgaard, I. (2006). Drying brick masonry by electro⁷⁰⁹ osmosis. In *Proceedings of the Seventh International Masonry Conference*. ⁷¹⁰ British Masonry Society.

⁷¹¹ Paillat, T., Moreau, E., P.O.Grimaud, & Touchard, G. (2000). Electroki⁷¹² netic phenomena in porous media applied to soil decontamination. *IEEE* ⁷¹³ *Transactions on Dielectrics and Electrical Insulation*, *7*, 693–704.

⁷¹⁴ Pascal, J., Oyanader, M., & Arce, P. (2012). Effect of capillary geometry on ⁷¹⁵ predicting electroosmotic volumetric flowrates in porous or fibrous media. ⁷¹⁶ *Journal of Colloid and Interface Science*, *378*, 241 – 250.

Pengra, D., Li, S. X., & Wong, P. (1999). Determination of rock properties 718 by low frequency ac electrokinetics. *Journal of Geophysical Research*, *104*, 719 29485–29508.

⁷²⁰ Pride, S. (1994). Governing equations for the coupled electromagnetics and ⁷²¹ acoustics of porous media. *Physical Review B*, *50*, 15678–15696.

Pride, S. R., & Morgan, F. D. (1991). Electrokinetic dissipation induced by
seismic waves. *Geophysics*, 56, 914–925.

seismic waves. *Geophysics*, 56, 914–925.

⁷²⁴ Quincke, G. (1861). Ueber die fortfhrung materieller theilchen durch str₇₂₅ mende elektricitt. *Annalen der Physik*, *189*, 513–598.

⁷²⁶ Reddy, K. R., Parupudi, U. S., Devulapalli, S. N., & Xu, C. Y. (1997). Effects ⁷²⁷ of soil composition on the removal of chromium by electrokinetics. *Journal* ⁷²⁸ of *Hazardous Materials*, *55*, 135 – 158.

⁷²⁹ Reuss, F. (1809). Sur un nouvel effet de l'lectricit galvanique. *Mmoires de* ⁷³⁰ *la Societ Imperiale de Naturalistes de Moscou, 2,* 327–336.

⁷³¹ Revil, A., Cathles III, L. M., & Manhardt, P. D. (1999). Permeability of ⁷³² shaly sands. *Water Resources Research*, *3*, 651–662.

⁷³³ Revil, A., & Leroy, P. (2004). Constitutive equations for ionic transport in ⁷³⁴ porous shales. *Journal of Geophysical Research: Solid Earth*, *109*. B03208.

⁷³⁵ Revil, A., & Linde, N. (2006). Chemico-electromechanical coupling in mi₇₃₆ croporous media. *Journal of Colloid and Interface Science*, *302*, 682 – ₇₃₇ 694.

⁷³⁸ Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthi, S., & Finsterle, S. ⁷³⁹ (2007). Electrokinetic coupling in unsaturated porous media. *Journal of* ⁷⁴⁰ *Colloid and Interface Science*, *313*, 315 – 327.

⁷⁴¹Rice, C., & Whitehead, R. (1965). Electrokinetic flow in a narrow cylindrical ⁷⁴² capillary. *J. Phys. Chem.*, *69*, 4017–4024.

⁷⁴³Sen, P. N., & Goode, P. A. (1992). Influence of temperature on electrical ⁷⁴⁴ conductivity on shaly sands. *Geophysics*, *57*, 89–96.

⁷⁴⁵ Singhal, V., Garimella, S. V., & Raman, A. (2004). Microscale pumping tech₇₄₆ nologies for microchannel cooling systems. *Birck and NCN Publications*, ⁷⁴⁷ *57*.

⁷⁴⁸ Smoluchowski, M. (1902). Contribution `a la th'eorie de l'endosmose 'electrique ⁷⁴⁹ et de quelques ph'enom`enes corr'elatifs. *Bulletin de l'Acad'emie des Sciences* ⁷⁵⁰ *de Cracovie*, *8*, 182–200.

⁷⁵¹Soldi, M., Guarracino, L., & Jougnot, D. (2019). An analytical effective ⁷⁵²excess charge density model to predict the streaming potential generated ⁷⁵³ by unsaturated flow. *Geophysical Journal International*, *216*, 380–394.

⁷⁵⁴Thanh, L., & Sprik, R. (2015). Zeta potential measurement using stream⁷⁵⁵ing potential in porous media. *VNU Journal of Science: Mathematics* ⁷⁵⁶*Physics, 31*, 56–65.

⁷⁵⁷ Thanh, L. D., Jougnot, D., Van Do, P., & Van Nghia A, N. (2019). A ⁷⁵⁸ physically based model for the electrical conductivity of water-saturated ⁷⁵⁹ porous media. *Geophysical Journal International*, *219*, 866–876.

⁷⁶⁰ Thanh, L. D., Van Do, P., Van Nghia, N., & Ca, N. X. (2018). A fractal ⁷⁶¹ model for streaming potential coefficient in porous media. *Geophysical* ⁷⁶² *Prospecting*, *66*, 753–766.

Tsai, N.-C., & Sue, C.-Y. (2007). Review of mems-based drug delivery and
 dosing systems. *Sensors and Actuators A: Physical*, *134*, 555 – 564.

⁷⁶⁵ Vennela, N., Bhattacharjee, S., & De, S. (2011). Sherwood number in porous ⁷⁶⁶ microtube due to combined pressure and electroosmotically driven flow. ⁷⁶⁷ *Chemical Engineering Science*, *66*, 6515 – 6524.

⁷⁶⁸ Vinogradov, J., Jaafar, M. Z., & Jackson, M. D. (2010). Measurement of ⁷⁶⁹ streaming potential coupling coefficient in sandstones saturated with nat₇₇₀ ural and artificial brines at high salinity. *Journal of Geophysical Research*, ⁷⁷¹115, doi:10.1029/2010JB007593.

⁷⁷²Wang, J., Hu, H., & Guan, W. (2016). The evaluation of rock permeability ⁷⁷³ with streaming current measurements. *Geophysical Journal International*, ⁷⁷⁴206, 1563–1573.

⁷⁷⁵Wang, J., Hu, H., Guan, W., & Li, H. (2015). Electrokinetic experimental ⁷⁷⁶study on saturated rock samples: zeta potential and surface conductance. ⁷⁷⁷ *Geophysical Journal International, 201,* 869–877.

- ⁷⁷⁸ Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and
- their applications in microfluidic systems. *Microfluidics and Nanofluidics*, 780 *6*, 145–162.

⁷⁸¹Wise, D. L., & Trantolo, D. J. (1994). *Remediation of Hazardous Waste* ⁷⁸² *Contaminated Soils*. CRC Press.

⁷⁸³Wu, R. C., & Papadopoulos, K. D. (2000). Electroosmotic flow through ⁷⁸⁴ porous media: cylindrical and annular models. *Colloids and Surfaces A:* ⁷⁸⁵ *Physicochemical and Engineering Aspects*, *161*, 469 – 476.

⁷⁸⁶Wyllie, M. R. J., & Rose, W. (1950). Some theoretical considerations related ⁷⁸⁷ to the quantitative evaluation of the physical characteristics of reservoir ⁷⁸⁸ rock from electrical log data. *Society of Petroleum Engineers*, .

⁷⁸⁹Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. ⁷⁹⁰ *J. Colloid Interface Sci, 268*, 133–142.

Yu, B., & Cheng, P. (2002). A fractal permeability model for bi-dispersed ⁷⁹² porous media. *International Journal of Heat and Mass Transfer*, *45*, 2983– ⁷⁹³ 2993.

⁷⁹⁴Yu, B., Lee, L. J., & Cao, H. (2001). Fractal characters of pore microstruc⁷⁹⁵tures of textile fabrics. *Fractals*, *09*, 155–163.

⁷⁹⁶ Zeng, S., Chen, C. H., Mikkelsen, J. C., & Santiago, J. G. (2001). Fabrication ⁷⁹⁷ and characterization of electroosmotic micropumps. *Sens. Actuators B*, *79*, ⁷⁹⁸107– 114.