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Hydrogen-bond exchanges drive many dynamical processes in water and aqueous solutions. The extended 
jump model (EJM) provides a quantitative description of OH reorientation in water based on contributions 
from hydrogen-bond exchanges, or jumps, and the “frame” reorientation of intact hydrogen-bond pairs. Here, 
we show that the activation energies of OH reorientation in bulk water can be calculated accurately from the 
EJM, and that the model provides a consistent picture of hydrogen-bond exchanges based on molecular 
interactions. Specifically, we use the recently developed fluctuation theory for dynamics to calculate activation 
energies, from simulations at a single temperature, of the hydrogen-bond jumps and the frame reorientation, 
including their decompositions into contributions from different interactions. These are shown to be in accord, 
when interpreted using the EJM, with the corresponding activation energies obtained directly for OH 
reorientation. Thus, the present results demonstrate that the EJM can be used to describe the temperature 
dependence of reorientational dynamics and the underlying mechanistic details. 
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I. INTRODUCTION 

In liquid water at ambient conditions, a broad range of 
dynamical processes have been found to exhibit similar 
temperature dependences. These include, for example, 
molecular reorientation measured by NMR1,2 and 
femtosecond infrared spectroscopies,3–5 vibrational 
frequency dephasing,4–6 dielectric relaxation,7 viscosity,8–

11 and structural dynamics probed by quasi-elastic 
neutron scattering.12,13 The comparable activation 
energies measured for these processes imply that the 
associated energy barriers have similar heights and 
could thus suggest that they share a common rate-
determining elementary step. Hydrogen-bond (H-bond) 
exchanges are likely this common underlying 
mechanism, as they have already been shown to be the 
major reorientation pathway.14 

However, an important limitation in establishing 
activation energies in water arises from the markedly 
nonArrhenius behavior at ambient conditions.8,15–17 The 
traditional determination from a series of measurements 
at different temperatures is thus ambiguous and 
sensitively depends on the chosen temperature interval. 
This issue was recently addressed by a fluctuation theory 
approach for dynamics,18–24 which permits the 
calculation of activation energies from molecular 
dynamics simulations at a single temperature. This 
method further provides important insight in the 
activation energy components, and has been successfully 
applied to a broad range of dynamical processes in 
water. 

Here, we use the fluctuation theory method to identify 
the molecular origin of the reorientation activation 
energy and its connection to hydrogen-bond exchange 
dynamics. In contrast to the long-held Debye diffusion 
picture, water reorientation was shown14 to be mostly 
caused by sudden, large-amplitude angular jumps during 
hydrogen-bond exchanges, along with the slower 
tumbling of intact hydrogen-bonds, and the extended 
jump model (EJM) was proposed to connect this 
mechanism to the water reorientation time. However, 
while hydrogenbond jumps have been characterized 
over a broad temperature range,25 the EJM has so far 
mostly been used at ambient temperature. Our present 
goal is therefore twofold: 1) we will first assess the EJM’s 
ability to describe the reorientation time temperature 
dependence and activation energy, and 2) we will use 
this model to gain a molecular insight in the activation 
energy’s origin as well as its connection with H-bond 
exchanges. 

The remainder of the paper is organized as follows. 
The details of OH reorientation and its description within 
the extended jump model are presented in Sec. II with 
particular attention on the associated activation 
energies. The details of the molecular dynamics 
simulations that are used to determine the timescales 
and activation energies are given in Sec. III. The OH 
reorientation timescales and their activation energies are 
presented in Sec. IVA. These are compared quantitatively 
with the corresponding results for the H-bond jump time, 
the distribution of jump angles, and the frame 
reorientation time in the remainder of Sec. IV and the 
fidelity of the EJM is discussed quantitatively. Finally, 
conclusions are offered in Sec. V. 
II. THEORY 

A. Water OH Group Reorientation 

Water reorientational dynamics are frequently 
described in terms of the time correlation function (TCF), 

 Cn(t) = hPn [~eOH(0) ·~eOH(t)]i, (1) 

where Pn is the nth-order Legendre polynomial and 
~eOH(t) is the unit vector along the OH bond undergoing 
reorientation (Figure 1). The second-order TCF C2(t) is 
accessible experimentally via polarizationresolved 
infrared pump-probe measurements, which under most 
conditions probe the anisotropy decay r(t) = 0.4 C2(t).26,27 

As we have shown previously, this reorientation has a 
different temperature dependence than that of the 

integrated reorientation time, , which 
is typically measured in nuclear magnetic resonance 
experiments.21 

It is useful, in examining the mechanism(s) underlying 
the reorientational dynamics, to compare the behavior 
for different orders, n, of the TCFs and to determine the 
associated reorientation times. For example, a 
characteristic feature of systems obeying Debye 
rotational diffusion is that reorientation times are 
governed by the rotational diffusion coefficient DR, 

 , (2) 

which leads to direct relationships between the 
reorientational timescales obtained for different orders. 
That is, 

= 3 and  
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FIG. 1: Water OH group reorientational TCFs, Eq. (1), at 
298.15 K for n = 1 (black), 2 (blue), and 3 (orange); tri-
exponential fits using Eq. (3) are shown as dashed lines 
of the same color. Inset shows the results on a semi-log 

plot. 

The OH reorientational dynamics in water captured in 

Cn(t) exhibit three timescales. The fastest of these (tens 
of fs) is associated with inertial, or ballistic, motion and is 
followed by slower dynamics (hundreds of fs) due to 
librational motion of the OH group within the intact 
Hbond. The longest timescale is 2.5-2.6 ps,28–30 and is 
determined by H-bond dynamics. Because of this 
behavior, Cn(t) can be fit using a sum of three 
exponentials, 

 , (3) 

where α = inertial, librational, and Hbond. The last is 
associated with H-bond breaking and making; it is this 
reorientational dynamics that the EJM describes and 
which will thus be the focus of the remainder of this 
paper. For simplicity, we will henceforth omit the 
“Hbond” and refer to this rate constant as kn = 1/τn, 
where τn is the corresponding timescale. The Aα,n are the 
amplitudes associated with the three timescales, which 
for the longest timescale will be referred to as An. 

B. Extended Jump Model for Water Reorientation 

It is now well-established that water reorientation is 
not a rotationally diffusive process, but modifications to 
the overall picture of the mechanism came in steps. 
Starting from the Debye diffusion picture, which assumes 
that reorientation proceeds through a succession of 
infinitesimally small amplitude angular jumps, Ivanov 
extended this model to describe reorientation through 
(uncorrelated) finite amplitude angular jumps,31 but did 
not apply the resulting theory to any molecular system. 

The Ivanov model further assumed that the reorientation 
axis remained fixed and underwent no reorientation 
between the angular jumps. More recently, Laage and 
Hynes demonstrated, by analysis of molecular dynamics 
trajectories, that OH bonds in liquid water do reorient 
through finite amplitude jumps associated with the 
exchange of H-bond acceptors. The average angle 
spanned in such jumps is around 70◦  and this represents 
the dominant contribution to OH reorientation, but it is 
not the sole one. They proposed the extended jump 
model14,32,33 (EJM) that included both the H-bond jumps 
and an additional contribution associated with the 
reorientation of the intact H-bond in between H-bond 
exchanges, which is referred to as “frame” reorientation. 

The EJM has been used to describe how OH 
reorientation in water is affected by ions33–36 as well as 
hydrophobic37 and amphiphilic38 solutes. In addition, the 
EJM has been used to gain insight into water 
reorientational dynamics at interfaces that range from 
extended aqueous surfaces39,40 to biomolecular hydration 
shells41 and confining frameworks including zeolites,42 

reverse micelles,43 and mesoporous silica.44,45 The EJM 
has also been extended to describe OH reorientation in 
alcohols.46,47 

The EJM describes the longest OH reorientation 
timescale as a combination of large-amplitude angular 
jumps associated with exchange of H-bond acceptor and 

 

FIG. 2: Schematic illustration of the two components of 
the extended jump model for OH reorientation: Large-
amplitude angular jumps associated with the exchange 

of H-bond acceptors (left) and the frame 
reorientation of the intact H-bond pair between jumps 

(right). 

the frame reorientation of the individual intact H-bond 
pair, as illustrated in Fig. 2. Mathematically, this gives the 
nth-order reorientational time, τn, as 

 , (4) 
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where τn
jump and τn

frame are the jump and frame 
contributions, defined in greater detail below. 
Equivalently, this can be written in terms of effective rate 
constants associated with each timescale, 

 , (5) 

where  for each timescale in Eq. (4). 

C. Activation Energies and the Fluctuation Theory for 
Dynamics 

The water OH reorientation activation energy is 

 , (6) 

where β = 1/kBT. Within the EJM, Ea,n is related to the 
jump and frame reorientation activation energies via Eq. 
(5) as 

  (7) 

This contrasts with the activation energies expected 
within the Debye model Eq. (2), 

 , (8) 

which are explicitly independent of the order of the TCF. 
While the ratios of the reorientation timescales have 
frequently been used to examine the mechanism of re- 
orientation in liquids,14,28,32,46,48–50 the behavior of Ea,n on 
the order n of the TCF has not previously been explored, 
nor have the relative contributions of the jump and 
frame reorientations. The following sections lay out a 
simple technique for calculating each term in Eq. (7) 
using fluctuation theory for dynamics and address these 
issues. 

Fluctuation theory for dynamics yields the analytical 
derivative of a rate constant or timescale with respect to 
β rather than the numerical derivative obtained from an 
Arrhenius analysis. It is thus particularly advantageous 
when applied to systems that deviate from the Arrhenius 
relation, as do many dynamical properties of liquid 
water. Within this framework, we have previously shown 
that the derivative of Eq. (1) with respect to β can be 
expressed as a new TCF, 

 

where δH(0) = H(0) − hHi is the fluctuation in energy. 
This TCF, like Cn(t) itself, can be evaluated from 

simulations at a single temperature, avoiding the 
necessity for an Arrhenius analysis. In other words, Eq. 
(9) gives the analytical derivative of the TCF with respect 
to temperature in contrast to the numerical derivative 
obtained from an Arrhenius plot. 

The derivative TCF given in Eq. (9) can be fit by taking 
the derivative of Eq. (3) with respect to β, 

 

where Aα,n and kα,n are now constants calculated from the 
fit of Eq. (3) and ∂Aα,n/∂β and ∂kα,n/∂β are fitting 
parameters. The latter can be used to determine the 
activation energy associated with each timescale as Ea,n = 

), which is equivalent to Eq. (6).51 
A key advantage of the fluctuation theory approach is 

the additional mechanistic insight it provides. 
Specifically, the total system energy fluctuation can be 
decomposed into physically meaningful components, 
which can be used to determine the contributions to the 
activation energy for each.19,21–24,52 For example, in the 
case of the fixed-charge classical MD simulations used in 
the present work, it is natural to divide the energy 
fluctuation as δH(0) = δKE(0) + δVLJ(0) + δVCoul(0), (11) 
where KE is the total kinetic energy and VLJ and VCoul are 
the total Lennard-Jones and Coulombic potential 
energies. Using this in Eq. (9) gives a rigorous 
decomposition of ∂Cn(t)/∂β into contributions from these 
components of the energy. By fitting each of these 
derivative contributions with a function of the form of 
Eq. (10), we can obtain the activation energy 
components 

 . (12) 

Here, for example, Ea,n
Coul comes from fitting the TCF in 

Eq. (9) with δH(0) replaced by δVCoul(0). 

The interpretation of this result is best understood in 
the context of Tolman’s analysis of the activation 
energy.22,53–55 Tolman showed that the activation energy 
for a chemical reaction is the average energy of reacting 
species minus the average energy of reactants, 

Ea = hEireacting − hEireactant. In this context, one can view, 
for example, the kinetic energy component of the 
activation energy as the average kinetic energy of 
reacting species minus the average kinetic energy of 
reactants. In other words, the activation energy 
components are measures of how energy in different 
motions or interactions helps (or hinders) passage over 
the barrier for the process. This is how Eq. (12) can be 
understood to provide mechanistic information, 
information which is not available by other methods. 
This activation energy decomposition gives an even more 
detailed test of the EJM as will be discussed below. 
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D. Jump Reorientation 

The contribution to OH reorientation due to H-bond 
exchanges involves two factors. The first is the jump 
time, τ0 = 1/k0, which is the inverse rate constant for the 
“reaction” in which an OH switches from one H-bond 
acceptor to another. This timescale, unlike the others 
discussed in this study, is independent of the order n. 
The second is the effect of the “jump angle,” ∆θ, which is 
defined as the effective angle traversed (in a lab-fixed 
frame) by the OH vector in the process of the exchange of 
H-bond acceptors.14,32 This angle is large, ∼ 70◦  on 
average. The overall effect of the jumps on the 
reorientational TCF depends on n and is given by 

 knjump = k0 wn. (13) 

Here, wn is the average value of the weighting function 
for the jump angle, which was derived by Ivanov,31 

 . (14) 

The average value is obtained by averaging over the 
distribution of jump angles, P(∆θ), 

  (15) 

Mathematically, the jump angle can be taken as the Oa 

···Od ···Ob angle at the jump transition state where a and b 
indicate the original and new H-bond acceptors, 
respectively, and d the H-bond donor. In practice it is 
sufficient to calculate this angle at the first timestep at 
which a new (Od −Hd ···Ob) H-bond is formed. Though 
wn(∆θ) does not depend on temperature, its average 
value, wn, does because it involves the jump angle 
distribution, P(∆θ). 

The jump time τ0, and associated rate constant k0, can 
be calculated using the stable-states picture56 for the 
Hbond exchange process. Specifically, the “side-side” 
time correlation function, 

 Cab(t) = hna(0)nb(t)i, (16) 

is calculated, where na (nb) is equal to 1 if the OH of 
interest is H-bonded to molecule a (b), and zero 
otherwise. Absorbing boundary conditions are used such 
that once an exchange occurs, no further exchanges are 
considered. The function, 1 − Cab(t) then decays at longer 
times with the timescale τ0; in practice, it is fit to a 
double exponential to account for transient dynamics at 
early times.57 In this work, we have defined H-bonds by 
strict geometric criteria: ROd−Oa ≤ 3.1 ˚A, rHd−Oa ≤ 2.0 ˚A, and 
αHd−Od−Oa ≤ 20◦ . 

We have previously shown that the derivative of 1 − 
Cab(t) with respect to β is given by18 

 

In that work, we demonstrated that the derivative 
correlation function peaks at a time of τ0 and at a height 
of Ea,0/e (where Ea,0 is the jump time activation energy 
and e is Euler’s number) if the decay is assumed to be 
single exponential. Here, we adopt the more accurate 
approach of a double exponential fit for the decay and 
hence for the derivative TCF in Eq. (17), analogous to Eq. 
(10), which is then used to determine ∂k0/∂β. 

Because both k0 and wn depend on temperature, the 
derivative of kn

jump with respect to β is 

 . (18) 

The jump contribution activation energy can then be 
calculated by dividing both sides by kn

jump = k0wn and 
changing the sign, yielding 

  (19) 

Thus, it is the sum of the jump time activation energy, 
Ea,0, (which is not to be confused with the jump 
reorientation contribution activation energy, Ea,n

jump, 
which includes the jump angle temperature dependence) 
and the activation energy associated with the jump angle 

weighting, . Note that only the latter depends on the 
order n of the TCF. 

The derivative of the average jump angle weighting, 
Eq. (15), can be taken with respect to β to get 

  (20) 

where 

∂P(∆θ)/∂β = −hδH(τ∗)δ[∆θ − ∆θ˜(Q]i = −PH(∆θ), 

(21) 

is the derivative of the jump angle distribution. Here the 
energy fluctuation is evaluated at the time of each 
individual jump (τ∗). For a given NV E trajectory, δH(τ∗) = 
δH(0), but the same is not true for the energetic 
components, e.g., δKE(τ∗) 6= δKE(0). 

E. Frame Reorientation 

The frame reorientation time is determined by 
calculating the reorientational TCF for the Od ···Oa vector, 
which provides the local frame reorientation between 
successive jumps, 
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 Cnframe(t) = hPn [~eOO(0) ·~eOO(t)]iHbond, (22) 

where the Hbond subscript on the average indicates that 
only molecules that have not switched H-bond partners 
between times 0 and t are included in the average. This 
leads to a time-dependent normalization for the TCF that 
is equal to the H-bond survival probability; this limits the 
times over which the TCF can be accurately calculated. 
The decay of Cn

frame(t) is well described by a bi-
exponential function with the longer timescale equal to 
the frame time, τn

frame. 

The derivative of Cn
frame(t) is completely analogous to 

that for OH reorientation given in Eq. (9) and can be fit 
through an expression of the form given in Eq. (10) with 
a sum over only two exponentials. In this approach, the 
frame activation energy, 

  (23) 

can then be extracted directly from the fitting of Cn
frame(t) 

and its derivative TCF. 

III. METHODS 

The MD simulations were carried out using the 
Largescale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS).58 A fully-periodic simulation cell of 
side length 21.725311 ˚A was filled with 343 SPC/E 
water molecules,59 corresponding to the 298.15 K 
experimental density of 0.997 g/cm3. All simulations 
used a timestep of 1 fs, and the electrostatics from all 
simulations used the Particle-Particle-Particle Mesh 
Ewald summation method60,61 with a tolerance 
parameter of 1 × 10−4. The SHAKE algorithm was used to 
hold the water bonds and angle rigid, the tolerance 
parameter was 1 × 10−4. One 50 ns NVT trajectory was 
propagated with positions and momenta saved every 1 
ps, yielding 50,000 configurations. The temperature of 
the simulation was 298.15 K, with initial velocities 
selected from the Maxwell-Boltzmann distribution and 
the initial configuration generated by PACKMOL.62 The 
Nos´e-Hoover thermostat damping parameter was 100 
fs.63,64 

 τ0

 wnτnjump τnframe τn τnEJM 

 

TABLE I: Timescales (in ps) calculated from the jump 
dynamics, jump contribution, frame contribution, total 
reorientation, and EJM prediction are included along 

with the jump angle contribution, wn; see the text for 
definitions. Subscripts represent the uncertainty in the 

final digit(s). 

From each saved configuration, a 50 ps NVE simulation 
was run, from which the dynamical properties were 
evaluated. Configurations were saved every 10 fs, leading 
to 5000 total configurations per NVE trajectory; this is 
more than sufficient to resolve both the initial decay 
dynamics and the jump angle distribution. As has been 
noted in our prior works, each NVE trajectory has a 
different fluctuation in energy, δH(0), from the average 
energy of the long trajectory. From each of these 
trajectories the OH reorientation, jump, and frame TCFs 
are calculated along with the jump angle distribution and 
each is also weighted by the energy fluctuations to obtain 
the contribution to their derivative with respect to β as 
described in Sec. II. These individual correlation 
functions are then averaged across all the NVE 
trajectories. All reported uncertainties correspond to a 
95% confidence interval according to the Student’s t-
distribution65 over an average of 10 blocks (each block 
representing 5,000 NVE trajectories). 

IV. RESULTS AND DISCUSSION 

The timescales and activation energies for the OH 
reorientational dynamics were computed using the 
simulation approach described above along with those 
for the jump time, jump angle, and frame time 
components of the extended jump model. In the 
remainder of this paper, we present and discuss these 
results with the aim of both testing the ability of the EJM 
to accurately describe reorientation activation energies, 
and identifying the molecular origin of these activation 
energies. 

A. OH Reorientation 

We have calculated the OH reorientation TCF using Eq. 
(1) for n = 1 − 3. The three time correlation functions are 
shown in Fig. 1 along with tri-exponential fits, Eq. (3). 
The τn timescales are provided in Table I. We note that 
the n = 2 timescales (and activation energies) are in 
agreement with, but better converged than, our 
previous results.14,19,32,46 

The activation energies of the reorientational 
timescales are obtained from the corresponding TCFs 

Component Ea,0 Ea,n∆θ Ea,njump Ea,nframe 
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TABLE II: Activation energies and their kinetic energy 
(KE), Lennard-Jones (LJ), and Coulombic (Coul) 

contributions (all in kcal/mol) for the components of the 
extended jump model for different order n 

reorientational TCFs. Subscripts indicate the 
uncertainties in the final digit(s). 

 

FIG. 3: Derivatives of the OH reorientational TCFs with 
respect to β, Eq. (9), for H2O at 298.15 K for 

n = 1 (black), 2 (blue), and 3 (orange); fits to Eq. (10) are 
shown as dashed lines of the same color. 

weighted by the energy fluctuations, δH(0), as given by 
Eq. (9). These derivative TCFs are shown in Fig. 3 for n = 
1 − 3 along with their fits to the form in Eq. (10) based on 
a tri-exponential decay of Cn(t). The fits provide an 
excellent description of the derivative TCFs and are used 
to obtain the OH reorientational activation energy for 
each order, Ea,n, from Eq. (6). The resulting values are 
provided in the two leftmost columns of 
Table III. 

We first use these results to examine the validity of the 
Debye model. In agreement with prior 
calculations,14,32,48,49 the τn reorientation time ratios 
deviate from the values predicted by the Debye 

rotational diffusion model: τ1/τ2 = 2.02 and τ1/τ3 = 2.99 
are significantly smaller than the ratios of 3 and 6, 
respectively, given by the diffusive model. The activation 
energies exhibit more modest differences and are not 
distinguishable outside the errors. This shows that the 
reorientation time ratios are expected to be 
approximately independent of temperature and thus that 
there is no temperature where these ratios would reach 
the ideal Debye diffusion values. While activation 
energies are not as instructive as a test of the Debye 
model compared to the reorientation timescales, they 
show that the deviation with respect to the Debye model 
is present over a broad temperature range in liquid 
water. In addition, a recent comparison of the activation 
energies of water reorientation, diffusion, and viscosity 
found deviations from the Debye-Stokes-Einstein 
description, which argues against this picture for water 
reorientation.23 Finally, the kinetic, Lennard-Jones, and 
Coulombic energy contributions to the reorientation 
activation energy, also reported in Table III, show that 
these different components are approximately 
independent of the order n. Their interpretation will be 
provided below. 

We now proceed to test the ability of the extended 
jump model to describe the reorientation activation 
energy, and analyze its jump and frame components to 
provide a molecular understanding of reorientational 
activation energies. 

B. Jump Contribution to Reorientation 

As noted in Sec. IID, the jump contribution to the 
reorientational timescale has two components: the jump 
time and the distribution of jump angles. We consider 
each in turn. 

1. H-bond Jump Times 

The stable states TCF introduced in Sec. IID was used 
to calculate the H-bond jump time and its activation 
energy for water from the same simulations used to 
obtain the OH reorientational dynamics. The calculated 
Cab(t), Eq. (16), and its bi-exponential fit are shown in 
Fig. 4a. The longer timescale is the jump time, τ0, and is 
found to be 3.142 ± 0.002 ps, which is in excellent 
agreement with previously reported results.18,32,46 Note 
that τ0 is the inverse of the rate constant k0 for an OH to 
exchange one H-bond acceptor for another and hence is 
independent of the order n for the reorientational TCF. 

The activation energy of the jump time is calculated 
from the Cab,H(t) correlation function given in Eq. (17), 
which is also plotted in Fig. 4a. By fitting this derivative 
TCF to a bi-exponential form analogous to Eq. (10), we 
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obtain ∂k0/∂β from which we find an activation energy of 
Ea,0 = 3.31 ± 0.05 kcal/mol. This is in good agreement 
with our previously reported values of 2.9 kcal/mol18,32 

from an Arrhenius analysis and 3.2 kcal/mol from a 
direct 

 

FIG. 4: a) Jump TCF, 1-Cab(t), (black) and its derivative, 
Cab,H(t), (red). b) The total energy (black), kinetic energy 

(red), Lennard-Jones (purple), and 
Coulombic (green) contributions to the derivative TCF. 

Calculated TCFs are shown as solid lines and fits as 
dashed lines of the same color. 

fluctuation theory calculation.18 We note that the 
nonArrhenius temperature dependence of water 
dynamics around ambient conditions makes the results 
of Arrhenius analyses sensitive to the chosen 
temperature range.21 This jump time activation energy is 
lower than that for the OH reorientation timescale 
(independent of the order). This indicates that the latter, 
which is more easily measured, cannot be used alone to 
determine the former. 

As discussed in Sec. IIA, the fluctuation theory 
approach provides a rigorous decomposition of the 
activation energy. We applied this approach to the jump 
time TCF using the energy components given in Eq. (11) 
and the results are shown in Fig. 4b. These are also fit to 
a bi-exponential form of Eq. (10) to extract activation 

energies associated with each contribution to Ea,0 as in 
Eq. (12). The activation energies extracted in this way 
are reported in Table II. 

The results in Fig. 4b and Table II are consistent with 
our previous analyses of water diffusion 
coefficients,19,22,24 reorientational dynamics,19,21,22,24 and 
viscosity.23 Namely, the electrostatic contribution 
dominates with Ea,

Coul
0 = 3.27 ± 0.05 kcal/mol, nearly 

equal to the total activation energy. The kinetic energy 
contribution is also positive, but smaller (0.96±0.03 
kcal/mol) and the Lennard-Jones potential energy 
contributes a negative activation energy on the same 
order as the kinetic contribution (−0.91 ± 0.004 

kcal/mol). However, this near cancellation of  and 

 is actually fortuitous and it can be seen that it is 
actually the Coulombic and Lennard-Jones contributions 
that are in competition.24 

 

FIG. 5: Schematic illustration of the potential energy 
contributions to the jump activation energy. The 

“reactant” and transition state structures are shown 
(middle panel) in the context of the radial distribution 

function and free energy profile. The corresponding 
changes in the Lennard-Jones (top panel) and 

Coulombic (bottom panel) interactions are depicted. 

The physical explanation for this competition between 
the Coulombic and Lennard-Jones interactions can be 
understood by considering the chemical “reaction” 
involved in the H-bond jump. This is illustrated 
schematically in Fig. 5. In a typical H-bond the two water 
molecules sit high up on the repulsive wall of their 
mutual Lennard-Jones potential, held there by the 
attractive Coulombic interactions. To exchange H-bond 
partners, the water molecules must increase their 
intermolecular distance, moving to the hydrogen bond 
exchange transition state (a bifurcated hydrogen-bond 
arrangement; as discussed in ref. 32, it is unstable in 
ambient liquid water, in contrast to suggestions of stable 
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overcoordinated water molecules in structures quenched 
from supercooled trajectories).66 This necessarily 
involves moving lower on the repulsive wall of the 
Lennard-Jones potential while simultaneous rising 
higher on the intermolecular electrostatic potential. This 
rise in the Coulombic energy and fall in the Lennard-
Jones potential associated with the process of an H-bond 
exchange leads to the positive and negative activation 
energy components, respectively. However, the 
electrostatic interactions are dominant and are thus 
quantitatively larger. The predominance of Coulombic 
interactions in the water jump and reorientation 
activation energies is consistent with the marked 
activation energy increase for water reorientation 
hydrogen-bonded to anions with increasing charge 
density,67 which has been explained by a transition-state 
H-bond strength effect in the jump mechanism.34 

2. H-bond Jump Angle Distribution 

To fully calculate the activation energy for the jump 
reorientation component, it is also necessary to calculate 
the temperature-induced changes in the distribution of 
jump angles as described in Sec. IID. 

We start by calculating the jump angle distribution. 
From each short NV E trajectory, P(∆θ) was calculated 
using the first H-bond exchange of every initially 
Hbonded OH group and then results were averaged 
across all of the trajectories. The distribution is shown in 
Fig. 6a and gives the average angular jump amplitude to 
be h∆θi = 70.31◦  ± 0.02◦ . This is in excellent agreement 
with the previously reported results by Laage and 
Hynes,32 which gave the average amplitude as 68◦ . With 
this jump angle distribution wn can be calculated using 
Eq. (15) for each order of the Legendre polynomial n = 1, 
2, or 3; the resulting values are given in Table I. 

The calculated jump angle distribution has two 
prominent features. The central feature peaks around 
52.5◦  and corresponds to H-bond exchanges in which the 
new H-bond acceptor is itself H-bonded (either as a 
donor or acceptor) to the original H-bond acceptor for 
the OH of interest.68 The peak at larger jump angles is 
associated with new acceptors that have no H-bond 
connection with the current acceptor. 

A qualitative connection between the jump angle 
distribution and the water OO radial distribution 
function can be suggested. At the jump transition state, a 
∆θ angle between Oa, Od and Ob implies that the OaOb 

distance is 2OO‡ sin(∆θ/2) where OO‡ is the OdOa,b 

transition state distance. If one adopts the strong 
approximations that i) the OaOb transition-state 
distribution is similar to the equilibrium OO radial 
distribution function and ii) that the jump angle 
probability is only determined by the probability of the 

presence of the new acceptor Ob, thus ignoring the 
increase in jump barrier energy with ∆θ, the jump angle 
probability is approximately proportional to

 
This simplified geometric picture can explain the general 
shape of the jump angle distribution and suggests that 
the first peak in the jump angle distribution corresponds 
to the first peak in the OO radial distribution function. 

We have further calculated the derivative of the jump 
angle distribution with respect to β, −PH(∆θ). This 
derivative distribution is obtained by the same process 
as that used to calculate P(∆θ), but the contribution of 
each jump angle is weighted by the energy fluctuation at 
the time of the jump, δH(τ∗). The derivative of the 
probability distribution is presented in Fig. 6b. To cal- 
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FIG. 6: a) The jump angle distribution, b) the derivative 
of the jump angle distribution, and c) the total (black), 

kinetic energy (red), Lennard-Jones 
(purple) and Coulombic (green) contributions to the 

jump angle distribution derivative are presented. 

culate the activation energy associated with changes in 

the jump angle distribution with temperature,  in Eq. 
(19), we use Eqs. (15) and (20). These activation 
energies, given in Table II, are found to be 0.302 ± 0.010, 
0.129 ± 0.006, and 0.003 ± 0.002 kcal/mol for n = 1, 2, 
and 3, respectively. Thus, they are at least an order of 
magnitude smaller than the jump time activation energy, 
Ea,0, and represent only a small part of the overall jump 
contribution to the OH reorientational activation energy 
Ea,njump. 

We have also calculated the decomposition of the jump 
angle distribution derivative with β, denoted as −PX(∆θ) 
where X = KE, LJ, or Coul. These derivative distributions 
are plotted in Fig. 6c and the contributions to the jump 
angle distribution activation energy are given in Table II. 
While the scale of the activation energy contributions 
decrease with increasing orders of the Legendre 
polynomial, the trends for the components are similar to 
that of the jump time. Namely, electrostatics represent 
the largest contribution, partially canceled by the 
smaller, negative Lennard-Jones component. Coulombic 
interactions disfavor large amplitude jumps when the 
temperature decreases, probably because in the 
transition state configurations for large-angle jumps the 
OH group that reorients loses its favorable electrostatic 
interactions with both the initial and final acceptors. The 
LJ potential disfavors small-angle jumps, presumably 
because they require small OaOb distances that involve 
significant repulsive LJ interactions. 

Interestingly, in contrast to the case of the radial 
distribution function and other static quantities that 
depend only on coordinates (not momenta),52 the kinetic 
energy contribution to jump angle distribution derivative 
is non-zero. This is a clear indication that the jump angle 
distribution is a dynamical quantity. Namely, P(∆θ) 
effectively depends on the coordinates before and after 
an H-bond exchange, which leads to a correlation 
between the system kinetic energy and the jump angle. 
The KE contribution is effectively zero for large-angle 
jumps but positive for small-angle ones, suggesting that 
these dynamical effects depend on the nature of the new 
acceptor. 

Using the calculated activation energies of the jump 

angle distribution, , and the characteristic jump 
timescale, Ea,0, the total jump contribution to the OH 
reorientation activation energy, Ea,n

jump, can be calculated 
from Eq. (19). These are found to be 3.62 ± 0.05, 3.44 ± 

0.05, and 3.31 ± 0.05 kcal/mol, respectively, for n = 1, 2, 
and 3. The full decomposition of these activation 
energies are provided in Table II. Note that the change in 
Ea,n

jump with the order of the reorientational TCF is 
associated only with the jump angle distribution (which 
itself does not depend on n) reflecting different 
weighting of the large-amplitude angular jumps. 

C. Frame Contribution to Reorientation 

The final component of the EJM is the frame 
reorientation. We have calculated the frame 
reorientation TCF as described in Sec. IIE and the results 
are shown in 
Fig. 7a. Because Cn,frame(t) can only be obtained from OH 
groups that have not exchanged their H-bond acceptor, 
the TCF can only be calculated for limited times (up to 
delays on the order of the H-bond jump time). In 
practice, we find that the time range over which data can 
 τ  2τ  3τ  

 

 τ  2τ  3τ  

 

FIG. 7: a) Frame reorientational TCF, Cn,frame(t) for n = 1 
(black), 2 (blue), and 3 (orange), and b) 

Corresponding derivative TCFs, Cn,frame,H(t). Fits are 
shown as dashed lines in the same color. 
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be reliably obtained is approximately four times the 
characteristic jump time τ0, or 12.5 ps. At this time, fewer 
than 2% of the originally H-bonded OH moieties have not 
switched partners and are thus still contributing to 

Cn,frame(t). 

The calculated Cn,frame(t) are well described by a 
biexponential fit, also shown in Fig. 7a, in which the 
longer time is the frame reorientation time. We find 
τn

frame = 16.91±0.13, 5.97±0.03, and 3.19±0.02 ps for n = 
1, 2, and 3, respectively.69 The n = 1 and 2 values are in 

good agreement with the τ1
frame = 15.5 ps and  

6 ps previously obtained by Laage and Hynes.32 

The derivatives of the frame reorientation TCFs, 

 

were also calculated and are presented in Fig. 7b. We 
find that the frame activation energies are 3.62 ± 0.24, 
3.66±0.11, and 3.68±0.08 kcal/mol for n = 1, 2, and 3, 
respectively. 

It has been suggested that, while the mechanism for 
OH reorientation is not diffusive, the frame reorientation 
is much closer to the ideal diffusive behavior.32 This 
rotation likely involves, as elementary steps, Hbond 
exchanges between the central H-bonded partners and 
the surrounding waters in their first solvation shell 
(while maintaining the central H-bond). We can examine 
whether collectively these jumps lead to Debye 
rotational diffusion for the frame reorientation using the 
two essential predictions of the timescales and activation 
energies made by the Debye model in Eq. (2). Namely, in 
terms of the frame reorientation timescales calculated 
here, we find

 30, 
and 

87, which are in reasonable accord 
with the Debye predictions of 3, 6, and 2, respectively. 
These timescale ratios thus suggest that the 
contributions from multiple H-bond exchanges with the 
solvating water molecules leads to primarily diffusive 
rotational dynamics for the frame. 

The activation energies obtained for frame 
reorientation, Table II, are the same within statistical 
error, which is also consistent with the Debye model. 
However, the example of OH reorientation discussed in 
Sec. IVA, suggests the activation energies may not be 
instructive for testing the rotational diffusion model. 

The derivative TCF for frame reorientation, Cn,frame,H(t) 
can also be decomposed in terms of contributions from 
the kinetic, Lennard-Jones, and Coulombic energies. 
These results are shown in Fig. 8 and the derived 
activation energies are given in Table II. The magnitudes 
and signs of the different components of the frame 

activation energy follow the same trends observed for 
the jump time. In addition, as is true for the total Ea,n

frame, 
each contribution is nearly independent of the order n of 
the reorientational TCF. 

D. Tests of the Extended Jump Model 

In this Section, we address two important features of 
the extended jump model: 1) its ability to quantitatively 
predict OH reorientation activation energies, and their 
components associated with different interactions and 
motions, and 2) the relative contributions of the jump 
and frame contributions to temperature dependence of 
the OH reorientation time. The latter will provide a novel 
insight in the molecular origins of the reorientation 
activation energy. 

1. Prediction of OH Reorientation Times 

The extended-jump model has been demonstrated to 
describe the timescales and mechanisms of water 
reorientation in neat water14,32 and the jumps have been 
characterized via two-dimensional infrared spectroscopy 
experiments in aqueous salt solutions.70,71 In particular, 
Laage and Hynes showed that the overall reorientation 
 τ  2τ  3τ  

 

 τ  2τ  3τ  

 

 τ  2τ  3τ  
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FIG. 8: Decomposition of the derivative frame 
reorientation TCF, Cn,frame,H(t), for a) n = 1, b) 

n = 2, and c) n = 3. Contributions from kinetic (red), 
Lennard-Jones (purple), and Coulombic (green) energies 

are compared to the total (black). Fits are shown as 
dashed lines of the same color. 

rate constant is the sum of the jump and frame 
reorientation rate constants, Eq. (4). In Table I we have 
included these contributions, τn

jump and τn
frame, as well as 

the predicted OH reorientation timescale, . It can be 
seen that the EJM reasonably predicts the OH 
reorientational timescales for all three orders of the TCF 
and the results are in good agreement with those 

previously reported.14,32 We note, however, that the EJM 
prediction is not exact, and the simple consideration of 
the reorientation times cannot decide whether the small 
residual discrepancy is caused by some of the EJM 
approximations (e.g., the assumptions of an isotropic 

jump axis distribution and of a decoupling between the 
jumps of the two OH groups in the same water molecule) 
or by some more fundamental issue with the jump 
mechanism. 

 

FIG. 9: Contributions to the OH reorientation activation 
energy for n = 1, 2, and 3 (gray spheres) are compared to 

the EJM predictions (bars) divided into the jump (red 
bars) and frame (blue bars) weighted components in Eq. 

(7). 

2. Prediction of OH Reorientation Activation Energies 

Here, we have presented a different approach for 
examining the extended jump model by examining its 
predictions for the temperature dependence of the OH 
reorientational timescales. Specifically, we have used our 
calculated results for the activation energies of the jump 

Component Ea,n = Weighted Jump + Weighted Frame = Ea,nEJM 

 Calculated Contribution Contribution Predicted 

 

 

TABLE III: The additivity of the activation energies (all in kcal/mol) within the EJM is presented. The directly 

calculated OH reorientation activation energy (Ea,n) and its different energetic contributions are 

compared for each n to the EJM prediction () and its weighted jump and frame reorientation components 

in Eq. (7). 



13 

angle distribution, the jump time, and the frame 
reorientation time to calculate the OH reorientation 
activation energy predicted by the EJM in Eq. (7). We 
now compare these predictions to the directly computed 
OH reorientation activation energies. The fluctuation 
theory approach avoids potential numerical inaccuracies 
associated with choosing a range of temperatures for an 
Arrhenius analysis as well as any effects of intrinsic non-
Arrhenius behavior. This issue is particularly critical in 
liquid water, where these non-Arrhenius effects are 
especially pronounced for dynamical properties.8,15–17 

In Table III and Fig. 9, we compare the calculated 
activation energy for each reorientational timescale τn to 
the EJM prediction, which is further broken down into 
the contributions from H-bond jumps and frame 
reorientation. Note that the jump and frame 
contributions to the activation energies include the 
reweighting by the ratio of the timescales as seen in Eq. 
(7). The results clearly show that the EJM accurately 
predicts the activation energies of water OH 
reorientation for all three orders of the TCF. As 
activation energies are a commonly used measure of the 
temperature dependence of timescales, this indicates 
that the EJM not only accurately predicts the OH 
reorientation time itself, but also the temperature 
dependence of the reorientation time. This is true for all 
orders of the reorientational TCF, but most importantly, 
it is accurate for the n = 2 order which is experimentally 
accessible via both NMR and pump-probe infrared 
anisotropy experiments. 
3. Jump and Frame Contributions to Ea,n 

It is interesting to examine the relative contributions 
of the jump and frame mechanisms to the OH 
reorientation activation energy. The jump and frame 
contributions to the nth-order reorientational time 
activation energies are given in Table II. As noted above, 
the frame reorientation activation energy is Ea,n

frame ' 3.65 
kcal/mol independent of the order. This is similar in 
magnitude to the jump contribution, which includes the 
temperature dependence of both the jump time and the 
jump angle distribution. For n = 1, the overall jump 
activation energy, Eq. (19), is effectively the same as that 
for frame reorientation (Ea,n

jump = 3.62±0.05 kcal/mol). 
How these two combine to predict the OH reorientation 
activation energy depends on the relative jump and 
frame timescales as given in Eq. (7). Because the jump 
contribution to the reorientation time is faster than the 
frame time, τn

jump < τn
frame (see Table I), the OH 

reorientation time has a larger contribution from the 

jumps. This is illustrated in Table III and Fig. 9 where the 
weighted jump and frame contributions to τn given in Eq. 
(7) are shown. For the n = 1 reorientational TCF, the 
weighted jump contribution is ∼ 2.5 times larger than 
the weighted frame contribution. 

As the order increases, the jump and frame 
contributions to τn both decrease but also get closer, as 
shown in Table I. At the same time, the frame activation 
energy is independent of n while the jump contribution 
activation energy decreases modestly with n; see Table 
II. The effect of these two trends is that the weighted 
frame contribution to the OH reorientation activation 
energy grows as the weighted jump contribution shrinks. 
As given in Table III and shown in Fig. 9, for n = 2, the 
weighted jump contribution is only 1.5 times the 
weighted frame contribution and, for n = 3, the two are 
equal. Thus, the relative importance of frame 
reorientation and H-bond jumps to the OH 
reorientational activation energy Ea,n depends on the 
order n. And it does so primarily because of the 
difference in how τn

frame decreases more quickly with n 
than does τn

jump. 

The close quantitative similarity of the activation 
energies for the jump and frame contributions to OH 
reorientation, Ea,n

jump and Ea,n
frame, indicates that their 

relative importance in determining Ea,n will not be 
strongly temperature dependent. In other words, the 
effect of H-bond jumps should be the dominant 
contribution to both τn and Ea,n for n = 1 or 2 over a 
significant range of temperatures (at least outside the 
deeply supercooled regime where non-Arrhenius effects 
are important.) 

While it is important that the EJM description of water 
reorientation accurately predicts the activation energy, it 
is even more critical that it does so for the right reasons. 
We have tested this using the decomposition of the 
calculated Ea,n into kinetic, Lennard-Jones, and Coulombic 
energy contributions in direct comparison to the EJM 
predictions. These results are also included in Table III 
and Fig. 9. As with the total activation energy, each 
component also correctly predicts the reorientation 
activation energy contribution from that component. 
Thus, the EJM not only accurately describes the 
activation energy but also the physical interpretation of 
its origins. 

V. CONCLUSION 

This work demonstrates an application of the 
fluctuation theory for dynamics to the extended jump 
model of water reorientation. We have calculated the 
activation energies of the jump reorientation time, the 
distribution of jump angles, and the frame reorientation 
time and used them to predict the OH reorientation time 
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in liquid water for multiple orders of the reorientation 
correlation function. Importantly, the activation energies 
extracted from both the actual and predicted OH 
reorientation agree, but they are also in good agreement 
with experimental results from pump-probe infrared 
anisotropy experiments,3–5 supporting the EJM as the 
physical model underlying water reorientation. 
Furthermore, the activation energy decomposition 
indicates that the EJM correctly determines the 
activation energies for the right reasons as the predicted 
and the actual decomposition of the OH reorientation 
activation energy are also in excellent agreement. 

The frame reorientation times and activation energies 
were examined probe the nature of this reorientation. 
The ratio of timescales of different orders of the 
reorientational TCF strongly indicate that the frame 
reorientation is reasonably described by Debye 
rotational diffusion. This rotational diffusion is likely 
caused by Brownian orientational motions induced in the 
frame of the unbroken hydrogen bonds by exchanges 
within the first solvation shells of the H-bond partners. It 
was found that not only the total activation energy, but 
also the decomposition of the activation energy, was 
unchanging with the order of the Legendre polynomial; 
while this result is predicted by the Debye model of 
rotational diffusion, this behavior of the activation 
energies does not appear to be significantly different 
from the predictions of the EJM. 

In all, the work presented here provides strong 
evidence for the EJM description of OH reorientation. 
Furthermore, for the first time, the contributions to 
water reorientation from each component of the 
activation energy has been explained in terms of jump 
and frame component activation energies. The methods 
presented here are general and could be easily extended 
to reorientation of water molecules around a solute or in 
the first hydration layer of a biomolecule. 
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