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In this paper, we introduce and analyze an extension to the matching problem on a weighted bipartite graph (i.e. the assignment

problem): Assignment with Type Constraints. Here, the two parts of the graph are each partitioned into subsets, called types and

blocks respectively; we seek a matching with the largest sum of weights under the constraint that there is a pre-specified cap on the

number of vertices matched in every type-block pair. Our primary motivation stems from the large-scale public housing program run

by the state of Singapore, accounting for over 70% of its residential real estate. To promote ethnic diversity within its housing projects,

Singapore imposes ethnicity quotas: the population is divided into ethnicity-based groups and each new housing development into

blocks of flats such that each group must not own more than a certain percentage of flats in a block. However, other domains use

similar hard capacity constraints to maintain diversity: these include matching prospective students to schools or medical residents to

hospitals. Limiting agents’ choices for ensuring diversity in this manner naturally entails some welfare loss. One of our goals is to study

the tradeoff between diversity and (utilitarian) social welfare in such settings. We first show that, while the classic assignment program

is polynomial-time computable, adding diversity constraints makes the problem computationally intractable; however, we identify

a
1

2
-approximation algorithm, as well as reasonable assumptions on the structure of utilities (or weights) which permit poly-time

algorithms. Next, we provide two upper bounds on the price of diversity — a measure of the loss in welfare incurred by imposing

diversity constraints — as functions of natural problem parameters. We conclude the paper with simulations based on publicly available

data from two diversity-constrained allocation problems — Singapore Public Housing and Chicago School Choice — which shed light

on how the constrained maximization as well as lottery-based variants perform in practice.

CCS Concepts: • Theory of computation→ Problems, reductions and completeness; • Computing methodologies→ Arti-
ficial intelligence;

Additional Key Words and Phrases: Assignment Problem; Diversity Constraints; Price of Diversity
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1 INTRODUCTION

Consider a mechanism that allocates a set of goods to agents; agents have utilities over items, and we are interested in

finding a socially optimal allocation. This setting (known in the literature as the assignment problem) is often used to

model real-world problems such as allocating public housing, assigning slots in schools, or courses to students. But it is

also often the case in these contexts that one wishes to maintain a diverse allocation: it would be undesirable (from the

mechanism designer’s perspective) to have certain apartment blocks that predominantly consist of a specific ethnic

group, or to have a public school serving students from a specific district. In both cases, agents have different types, and

goods are partitioned into blocks; our goal is to ensure that each block of goods is allocated to a diverse population of

agent types. A diverse allocation of goods is desirable for many reasons (especially in the case of government-funded

public goods). First and foremost, it avoids the inadvertent creation of segregated communities; secondly, by ensuring

equal access to a public resource, one avoids the risk of discriminatory funding: for example, systematically underfunding

schools that serve certain segments of the population, or investing in parks and public facilities in neighborhoods

dominated by certain ethnic groups.

In this work, we study quota-based mechanisms for maintaining diversity; the initial motivation for this work stems

from Singapore’s public housing system.

The state of Singapore operates a unique national public housing program, offering a variety of flats for sale at

subsidized rates to Singapore citizens and permanent residents. The construction of public housing projects as well as

the sale of the flats in these projects on a large-scale public market is centrally managed by a government body called

the Housing and Development Board (HDB),
1
a statutory board of the Ministry of National Development.

2
As per the

latest reports available at the time of writing this paper, an estimated 82% of the resident population of Singapore live

in HDB flats [Housing and Development Board, Singapore 2017] that constitute approximately 73% of all apartments in

the country [Department of Statistics, Singapore 2017]. Since its inception in 1960, HDB has been providing a public

good — affordable apartments in a small country with little real estate — but by 1989, the system began to exhibit

an unforeseen side-effect: the emergence of de facto ethnic enclaves. Mr. S. Dhanabalan, then Minister for National

Development, voiced the following concerns as he introduced the Ethnic Integration Policy (EIP) in parliament on 16

February 1989 [Parliament of Singapore. Parliament Debates: Official Report. 1989]:

[P]roportionately more Chinese applied for flats in Ang Mo Kio/Hougang Zone and proportionately more

Malays applied for flats in the Bedok/Tampines Zone. [. . .] Malays bought more than half (55%) of the

flats in the Bedok/Tampines Zone. In Bedok new town alone, if present trends continue, the proportion of

Malays will reach 30% by 1991, and will exceed 40% in 10 years’ time. [. . .]

There are clear signs that racial congregations are re-emerging. Although the problem has not reached

1
http://www.hdb.gov.sg

2
https://www.mnd.gov.sg/
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The Price of Quota-based Diversity in Assignment Problems 3

crisis proportions, the experience in other multi-racial societies such as the United States shows that while

racial groupings start slowly, once a critical point is passed, racial groupings accelerate suddenly.
3

The EIP was officially implemented on 1 March 1989; it imposes quotas on the number of units occupied by each of

the three ethnic groups: Chinese, Malay and Indian/Others. In 1989, when the percentages of the three ethnic groups

(Chinese, Malay, and Indian/Others) in the population were 76.0%, 15.1%, and 8.9%, the corresponding quotas (a cap on

the percentage of flats in every block that can be occupied by families of each ethnic group) were set at 87%, 25%, and

13% respectively; since 5 March 2010, the quota for Indian/Others has been revised to 15% [Deng et al. 2013; Housing

and Development Board, Singapore 2010].
4

Ethnic quotas add another layer of complexity to what is, at its foundation, a straightforward allocation problem.

HDB uses a lottery mechanism to allocate new developments: all applicants who apply for a particular development pick

their flats in random order (see Section 1.3 for further details). Consider an applicant i of Chinese ethnicity applying for

an estate with 100 flats per block, up to 87 of which may be assigned to ethnically Chinese applicants, and at most 25 of

which can be assigned to ethnically Malay applicants. Assume that i is 90th in line to select an apartment; will she get a

chance to pick a flat in a block she prefers? If at least 87 Chinese applicants were allowed to choose a flat before i and

all of them picked flats in this block, the Chinese ethnic quota for the block will have been filled and applicant i will

no longer be eligible for the block, even if it still has vacant flats. On the other hand, suppose that i is 105th in line to

select an apartment. If 40 of the applicants picked before i are Malay, then 15 of them will be rejected from i’s preferred

block and at least 75 of the flats will be available for non-Malay applicants. Hence, i will have a spot even if all other 64

applicants before her also received flats in the same block.
5
.

As the example above shows, diversity constraints interact with the allocation mechanism in peculiar ways to affect

the overall welfare of the allocation. This issue is not restricted to Singapore public housing; the following are a few

examples where upper bounds similar to those in the above housing allocation problem are applied (see [Fragiadakis

and Troyan 2017] and references therein for more detailed expositions). To circumvent a shortage of doctors in rural

areas due to medical graduates’ preference for urban residency programs, the Japanese government places a “regional

cap” on the total number of residents matched within each of its 47 prefectures [Kamada and Kojima 2015] – here, the

population of residency applicants is not partitioned, but hospitals within a prefecture can be thought of as forming a

block of items. Many school districts in the U.S.A. take active measures for the integration of students from families with

differing soci-economic statuses (SES) [U.S. Department of Education, Office of Elementary and Secondary Education

2017], one of which is to allot a fraction of the vacant spots in schools via lotteries with percentage caps for all SES

groups, as is done in the city of Chicago, Illinois (see Section 1.4 for further details). The United States Military Academy

assigns newly graduated cadets to positions in the army branches, taking cadets’ preferences into account but under

“artificial caps”
6
on the number of assignments per branch [Fragiadakis and Troyan 2017].

3
We note that this aligns with long-known models of segregation: in his seminal paper, Schelling [1971] shows how agents of two types, who are allowed

to distribute themselves over an area based on their preferences for the composition of their immediate neigborhoods, lead to the emergence of segregated

enclaves, even when each individual prefers a minority of neighbors of a different type to having all neighbors of the same type as herself.

4
In addition to these block capacities, the EIP also imposes neighborhood capacities, where each neighborhood comprises several blocks. Thus, an estate

is partitioned into neighborhoods and a neighborhood into blocks with the neighborhood capacity being naturally smaller than the block capacity for

each ethnic group: 84%, 22%, and 12% (increased from 10% in 2010) for Chinese, Malay, and Indian/Others respectively. Moreover, the EIP applies to both

new and resale flats, e.g. a Chinese occupant of an HDB flat is free to resell it to another Chinese buyer but will not be able to resell to a Malay buyer if

the Malay ethnic quota for that block is already filled. In this paper, we do not address these complications for the most part.

5
While this example is stylized, the effects it describes are quite real: one often hears stories of young couples who arrive at the HDB office to select a flat,

only to be notified that their ethnic quota has just been filled.

6
These caps are called artificial since they are calculated by the Academy in such a way that any feasible assignment ex post satisfies the maximum and

minimum quotas for each branch that are based on actual staffing needs.
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The imposition of diversity constraints as above can naturally lead to a reduction in the total achievable util-

ity/economic value by the assignment, but we must bear in mind that diversity is a social desideratum external to any

such economic consideration. For purposes such as policy making and the proper functioning of diversity-inducing

measures included in automated decision-making systems, it is imperative to deepen our understanding of the impact

that these measures have on the underlying assignment mechanism. In this paper, we investigate this impact from both

computational and economic angles.

1.1 Our Contributions

We study the interplay between diversity and utility in assignment problems; we set up a benchmark where a central

planner (e.g. HDB) has access to the correct utilities (or, in general, weights) of all agents (e.g. applicant households) for

all items (e.g. flats); agents are partitioned into types with respect to a single attribute (e.g. ethnic groups) and goods are

also similarly divided into disjoint blocks (e.g. blocks of flats as defined by HDB); a limited number of goods in each

block can be allocated to agents of each type. We call these upper limits type-block capacities.

These restrictions result in several interesting outcomes. While the unconstrained optimal assignment problem

is well-known to be polynomial-time solvable [Kuhn 1955], we show that imposing type-block constraints makes it

computationally intractable (Section 3). However, we also show that, in general, a polynomial-time
1

2
-approximation

algorithm (Section 3.1) exists, and identify utility models for which one can find the optimal assignment with type-block

constraints in polynomial time (Section 3.2). In Section 4, we study the potential welfare loss from imposing type-block

constraints, which we term the price of diversity as in Ahmed et al. [2017], and we show that it can be bounded by

natural problem parameters. Finally, we analyze the empirical price of diversity as well as the welfare loss induced by

the lottery mechanism on simulated instances generated from publicly available, real-world data pertaining to public

housing in Singapore and school choice in Chicago, IL, USA (Section 5).

1.2 Related work

The problem we study is an extension to the bipartite matching problem [Lovász and Plummer 2009] where each edge

joins an agent to an item and is weighted with the utility the agent will receive if she is allocated that item. There

is a rich body of literature on weighted bipartite matching problems (also known as assignment problems [Munkres

1957]), and polynomial-time algorithms for the unconstrained version have long been known (e.g. [Kuhn 1955]). Several

generalizations and/or constrained versions have been studied, e.g. recent work by Lian et al. [2018] who allow each

agent (resp. item) to be matched to multiple items (resp. agents) but within upper and lower capacities. Some previously

studied variants correspond to (polynomial-time) special cases of our problem. For example, the assignment problem

with subset constraints studied by Bauer [2004] can be thought of as a special case of our problem, with a single block

or a single type; if all agents of each type have identical utilities for all apartments in each block, and each type-block

capacity is smaller than both the corresponding type and block sizes, then our problem reduces to a special case of the

polynomial-time solvable capacitated b-matching on a bipartite graph [Ahn and Guha 2014].

In addition to our main motivating problem of HDB housing allocation and the other documented examples

[Fragiadakis and Troyan 2017] noted in the introduction, type-block constraints can naturally arise in many other

settings related to assignment/allocation problems with no monetary transfers [Hylland and Zeckhauser 1979; Zhou

1990]. For example, consider the course allocation problem analyzed by Budish and Cantillon [2012]; one might require

that each course has students from different departments and impose maximal quotas to ensure this. Other examples

include allocating subsidized on-campus housing to students [Abdulkadiroğlu and Sönmez 1998], appointing teachers at

Manuscript submitted to ACM
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public schools in different regions as done by some non-profit organizations [Featherstone 2015], or assigning first year

business school students to overseas programs [Featherstone 2015]. Our results apply to the seminal work on public

school allocation [Abdulkadiroğlu et al. 2009; Abdulkadiroğlu and Sönmez 2003; Pathak and Sönmez 2013] and matching

medical interns or residents to hospitals [Roth 1984] that does not concern itself with diversity/distributional constraints.

This line of work mainly explores the interaction between individual selfish behavior and allocative efficiency (e.g.

Pareto-optimality) of matching mechanisms, under either ordinal preferences or cardinal utilities, one-sided or two-sided

(see, e.g. [Anshelevich et al. 2013; Bade 2016; Bhalgat et al. 2011; Bogomolnaia and Moulin 2001] and references therein);

we, on the other hand, focus on the impact of type-block constraints on welfare loss, when agents’ utilities are known

to a central planner.

Another relevant strand of literature is that on the fair allocation of indivisible goods (see, e.g. [Barman et al. 2017;

Barman andMurthy 2017; Caragiannis et al. 2016; Kurokawa et al. 2016; Procaccia andWang 2014] and references therein):

fairness is usually quantified in terms of the utilities or preferences of agents for allocated items (e.g. proportionality,

envy-freeness and the maximin share guarantee) but our contribution deals with a different notion of fairness: the

proportionate representation of groups in the realized allocation, with no regard to agents’ utilities.

Some recent work has formally addressed diversity issues in computational social choice. Unlike our paper, Ahmed

et al. [2017] treat “diversity as an objective, not a constraint” in a b-matching context (e.g. matching papers to reviewers

with diverse interests): they minimize a supermodular objective function to encourage the matching of each item

to agents of different types. Our diversity concept comes close to that of Bredereck et al. [2018] who also achieve

diversity by imposing hard constraints on the maximization of a (submodular) objective that measures the quality of

the solution; however, they work in a committee (subset) selection setting with variously structured agent labels while

we solve a matching problem with both agents and items split into disjoint subsets. Lang and Skowron [2016] focus on

multi-attribute proportional representation in committee selection where they essentially define diversity in terms of the

divergence between the realized distribution of attribute values in the outcome and some target distribution, but admit

no notion of solution quality in addition to diversity.

In a recent paper, Immorlica et al. [2017] study the efficiency of lottery mechanisms such as the ones used by HDB to

allocate apartments; however, their work does not account for block ethnicity constraints; as we show both theoretically

and empirically, these type-block constraints can have a significant effect on allocative efficiency.

1.3 The Singapore Public Housing Allocation System

A few facts about HDB public housing, a dominant force in Singapore, are in order. New HDB flats are purchased

directly from the government, which offers them at a heavily subsidized rate. New apartments are typically released

at quarterly sales launches; these normally consist of plans for several estates at various locations around Singapore,

an estate consisting of four or five blocks (each apartment block has approximately 100 apartments) sharing some

communal facilities (e.g. a playground, a food court, a few shops etc.). Estates take between 3 to 5 years to complete,

during which HDB publicly advertises calls to ballot for an apartment in the new estate. A household (say, a newly

married couple looking for a new house) would normally ballot for a few estates (balloting is cheap: only S$10 per

application [Housing and Development Board, Singapore 2015]). HDB allocates apartments using a lottery: all applicants

to a certain estate choose their flat in some random order; they are only allowed to select an apartment in a block such

that their ethnic quota is not reached.

Manuscript submitted to ACM
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The lottery mechanism actually employed by HDB has further necessary complications: HDB has elaborate eligibility

criteria
7
as well as privilege and priority schemes

8
that take into account sales launch types, flat types, and relevant

attributes of the applicants, e.g. first-timers and low-income families usually have improved chances of being balloted for

a flat; moreover, the same estate may have several balloting rounds in order to ensure that all apartments are allocated

by the time of completion. However, the focus of this work is on the welfare effects of using ethnic quotas rather than

the intricacies of the HDB lottery mechanism. Hence, we use a simplified version of the HDB lottery mechanism where

applicants are selected one by one uniformly at random from the remaining pool and assigned the available flat which

they value the most, respecting ethnic quotas (see Section 5).

We must mention the existing literature on the documentation of Singapore’s residential desegregation policies [Chua

1991; Deng et al. 2013; Phang and Kim 2013] and the empirical evaluation of their impact on various socioeconomic

factors [Sim et al. 2003; Wong 2014]; to the best of our knowledge, ours is the first formal approach towards this problem.

1.4 Public School Choice in Chicago, U.S.A.

Many school districts across the U.S.A. employ a variety of strategies for promoting student diversity [Kahlenberg 2016;

U.S. Department of Education, Office of Elementary and Secondary Education 2017], e.g. controlled choice systems

wherein parents are allowed to apply for options beyond their neighborhood schools, thereby counteracting underlying

residential segregation. Following restrictions placed on the explicit use of race in defining diversity goals in school

choice by the U.S. Supreme Court in 2007, it has been common to use some indicator of the socio-economic status (SES)

of a family in integration efforts. The system in Chicago, IL, is a notable example.

Chicago Public Schools (CPS) is one of the largest school districts in the U.S.A.
9
, overseeing more than 600 schools of

various types: neighborhood schools, selective schools, magnet schools, and charter schools.
10

The application and

selection processes for these schools [Chicago Public Schools 2017] may involve a number of computerized lotteries

with no diversity component, e.g. sibling lottery, proximity lottery, school staff preference lottery; however, a significant

number of entry-level seats in magnet and selective enrollment schools are filled by lotteries based on a tier system. We

briefly describe its operation as follows. A composite SES score is computed for each of the census tracts that Chicago

is divided into, based on six factors (median family income, adult education level, home-ownership rate, single-parent

family rate, rate of English-speaking, and neighborhood school performance), and each tract is placed in one of four

tiers based on its score. The maximum and minimum scores defining a tier are set in such a way that (roughly) a quarter

of school-aged children end up in each tier, with Tier 1 having the lowest scores. The tier of a child is determined by

the residential address furnished by the parents. Of the seats in each school earmarked for a citywide SES lottery or

general lottery, an equal number is allocated to each tier. There is an upper limit on the number of schools that a child

can apply to, and each applicant is entered into a lottery for each school they apply to, for their own tier (thus, there is

a lottery per school per tier); an applicant, who comes up in the lottery and accepts the offer from the school under

consideration, is removed from all lotteries. If the size of the applicant pool from a tier to a school falls short of the

number of its allocated seats for that tier at any stage, “the unfilled seats will be divided evenly and redistributed across

the remaining tier(s) as the process continues" [Chicago Public Schools 2017].

For an empirical study of the impact of Chicago’s diversity-promoting measures on integration and student outcomes,

the interested reader is referred to [Quick 2016] and citations therein.

7
http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/hdb-flat

8
http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/eligibility/priority-schemes

9
http://www.cps.edu/About_CPS/At-a-glance/Pages/Stats_and_facts.aspx

10
http://cpstiers.opencityapps.org/about.html
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2 PRELIMINARIES

We first describe a formal model for the allocation problem with diversity quotas. Throughout the paper, given s ∈ N,

we denote the set {1, 2, . . . , s} by [s].

Definition 2.1 (AssignTC). An instance of the Assignment with Type Constraints (AssignTC) problem is given by:

(i) a set N of n agents partitioned into k types N1, . . . ,Nk ,

(ii) a setM ofm items/goods partitioned into l blocksM1, . . . ,Ml ,

(iii) a utility u (i, j ) ∈ R+ for each agent i ∈ N and each item j ∈ M ,

(iv) a capacity λpq ∈N for all (p,q) ∈ [k]×[l], indicating the upper bound on the number of agents of type Np allowed

in the blockMq . ♦

Without loss of generality, we assume that the inequality λpq ≤ |Mq | holds for all type-block pairs (p,q) ∈ [k] × [l],

since it is not possible to assign more than |Mq | agents of type Np to blockMq by definition. In general, agents types

could be based on any criterion such as gender, profession, or geographical location. We consider the idealized scenario

where we have a central planner who has access to the utilities of each agent for all items, and determines an assignment

that maximizes social welfare under type-block constraints.

A few words about the type-block capacities are in order. Note that our analysis is agnostic to how these capacities are

determined and just treats the vector {λpq }p∈[k],q∈[l ] as a problem input.
11

Moreover, neither do we assume inequalities

of the form λpq ≤ |Np | nor is there any positive lower bound on the number of assignments for any type-block pair:

this is in keeping with the actual HDB housing problem where λpq ’s are fixed by policy (as percentages of block size)

even before observing the applicant pool so that capacities larger than the size of an ethnic group are possible. Adding

lower bounds a priori may render the problem infeasible if there not enough applicants of a certain type.
12

An assignment of items to agents can be represented by a (0, 1)-matrix X = (xi j )n×m where xi j = 1 if and only

if item j is assigned to agent i; a feasible solution is an assignment in which each item is allocated to at most one

agent, and each agent receives at most one item, respecting the type-block capacities defined in (iv). We define the

objective value (or total utility) as the utilitarian social welfare, i.e. the sum of the utilities of all agents in an assignment

u (X ) ≜
∑
i ∈N

∑
j ∈M xi ju (i, j ). Clearly, this optimization problem can be formulated as the following integer linear

program:

max

∑
i ∈N

∑
j ∈M

xi ju (i, j ) (1)

s.t.
∑
i ∈Np

∑
j ∈Mq

xi j ≤ λpq ∀p ∈ [k],∀q ∈ [l] (2)

∑
j ∈M

xi j ≤ 1 ∀i ∈ N (3)

∑
i ∈N

xi j ≤ 1 ∀j ∈ M (4)

xi j ∈ {0, 1} ∀i ∈ N ,∀j ∈ M (5)

11
The Singapore EIP percentage caps consider various factors such as “[t]he racial composition of the population[,] [. . .] the rate at which new households

are being formed in each one of the racial groups and the present composition of applications” [Parliament of Singapore. Parliament Debates: Official

Report. 1989], but these aspects of the problem are beyond the scope of the present work.

12
Fragiadakis and Troyan [2017] show that, for some assignment problems with actual floor and ceiling constraints for each type-block pair, where the

agent population is known beforehand and there is a guarantee that no agent remains unassigned, it is possible to reformulate the problem constraints in

terms of “artificial caps” (modifying block sizes as well as type-block ceilings) and no floors: our analysis applies to these problems in this modified form.
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where constraints (3-5) jointly ensure thatX is a matching of items to agents, and inequalities (2) embody our type-block

constraints.

Finally, an instance of the decision version of AssignTC consists of parameters (i) to (iv) in Definition 2.1, as well

as a positive value U : it is a ‘yes’-instance iff there exists a feasible assignment, satisfying constraints (2-5), whose

objective value is at leastU .

3 THE COMPLEXITY OF THE ASSIGNMENT PROBLEMWITH TYPE CONSTRAINTS

The hardness and approximation results in this section are based on a deep connection between AssignTC and the

known NP-complete problem, Bounded Color Matching problem [Garey and Johnson 1979], defined as follows:

Definition 3.1 (BCMatching). An instance of the Bounded Color Matching (BCMatching) problem is given by (i) a

bipartite graph G = (A ∪ B,E), where the set of edges E is partitioned into r subsets E1, . . . ,Er representing the r

different edge colors, (ii) a capacitywt ∈ N for each color t ∈ [r ], (iii) a profit πe ∈ Q+ for each edge e ∈ E, and (iv) a

positive integer P called the threshold. It is a ‘yes’-instance iff there exists a matching (i.e. a collection of pairwise

non-adjacent edges) E ′ ⊆ E such that the sum of the profits of all edges in the matching is at least P , and there are at

mostwt edges of color t in it, i.e.

∑
e ∈E′ πe ≥ P and |E ′ ∩ Et | ≤ wt for all t ∈ [r ]. ♦

The following lemma, together with its proof, establishes that AssignTC is, in fact, a special case of BCMatching.

Lemma 3.2. There exists an S-reduction [Crescenzi 1997; Crescenzi et al. 1991] from the AssignTC problem to the

BCMatching problem.

Proof. Given an instance of the AssignTC problem, we construct a graph as follows. We define a node corresponding

to each agent in N and also each item inM ; we draw an edge from agent-node i to item-node j and make the associated

profit equal to the utility u (i, j ) for all i ∈ N , j ∈ M . This gives us a complete bipartite graph with bipartition (N ,M ). We

also give all edges joining agents of one type to items in one block the same color, one unique color for each agent-item

pair. Thus, there are kl colors indexed lexicographically by pairs (p,q) ∈ [k] × [l]. We set the capacity for color (p,q) at

λpq . This produces, in O (mn) time, an instance of BCMatching (Definition 3.1). The size of this instance is obviously

polynomial in that of the original. By construction, there is a one-to-one correspondence between the sets of feasible

solutions of the original and reduced instances with each corresponding pair having the same objective value (sum of

edge-profits/utilities). Hence, the optimal values of the instances are also equal. □

This result will be useful in Section 3.1 for obtaining approximation guarantees. But it does not settle the question

of the hardness of AssignTC since a special case of an NP-complete problem may be tractable. We could consider

AssignTC and BCMatching to be identical if there existed a trivial reduction from BCMatching to AssignTC in the

following sense. For a BCMatching instance, define an agent for each node in one part of the graph and an item for each

node in the other; make the utility of an agent-item pair equal to the profit of the edge joining the corresponding pair

of nodes; define types of agents and blocks of items such that each type-block pair corresponds to a unique edge-color.

Unfortunately, the last part may not be possible depending on how the edges are colored, as illustrated by the following

example.

Example 3.3. Consider the instance of the BCMatching problem defined on the graph in Figure 1. There are three

colors: (a1,b1) and (a1,b2) are blue, (a2,b1) is red, and (a2,b2) is gray. The color-capacities, the edge-profits, and the

threshold are arbitrary, hence omitted.
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a1

a2

b1

b2

Fig. 1. An instance of BCMatching that does not trivially reduce to AssignTC.

Let the sets of agents and items be N = {a1,a2} and M = {b1,b2} respectively. Let us now try to define types and

blocks that are consistent with edge-colors. Recall that, to achieve the desired reduction, no two edges joining a1 to

items in different blocks can have the same color. Since edges (a1,b1) and (a1,b2) have the same color, b1 and b2 must

be in the same block. This also implies that all edges joining b1 and b2 to a2 must be of the same color, regardless of

whether a1 and a2 belong to the same type. However, (a2,b1) and (a2,b2) are of different colors – a contradiction. ■

However, we will now show that there does exist a non-trivial polynomial-time reduction in the desired direction

where edges of the graph map to agents (the colors corresponding to types) and items are defined in a more complicated

way based on the nodes (the two parts of the bipartition corresponding to blocks)!

Theorem 3.4. The AssignTC problem is NP-complete.

We will prove this by describing a polynomial-time reduction from BCMatching to the decision problem we

introduced in Section 2.

Proof. That the problem is in NP is immediate: given an assignment, one can verify in poly-time that it satisfies the

problem constraints and compute total social welfare. Given an instance ⟨G; w⃗ ; π⃗ ; P⟩ of BCMatching, we construct

an instance of the AssignTC problem as follows (see Example 3.5 for an illustration). Each edge e ∈ E is an agent,

whose type is its color. Items in our construction are partitioned into two blocks:M1 andM2. The items in blockM1

correspond to the vertices in B: there is one item jb for each node b ∈ B. For every a ∈ A, we add deg(a) − 1 items

j1a , . . . , j
deg(a)−1
a toM2, for a total of |E | − |A| items. Thus, there is a total ofm = |B | + |E | − |A| items. BlockM1 accepts

at most wp agents of type Np , whereas block M2 has unlimited type-block capacity; in other words, λp1 = wp and

λp2 = min{|Np |, |M2 |} for all p ∈ [k]. Given e = (a,b), we define the utility function of agent e as follows:

u (e, j ) =




πe if j = jb ,

Φ if j = jsa for some s ∈ [deg(a) − 1],

0 otherwise.

Here, Φ is an arbitrarily large constant, e.g. Φ = 1 +
∑
e ∈E πe . Finally, let U = P + Φ( |E | − |A|); that is, our derived

AssignTC instance is a “yes” instance iff there is some assignment of items to agents such that the social welfare

exceedsU .

We begin by showing that if the original BCMatching instance is a ‘yes’ instance, then so is our constructed

AssignTC instance. Let E ′ ⊆ E be a valid matching whose value is at least P ; let us construct an assignment X of

items to agents via E ′ as follows. Observe some node a ∈ A; if (a,b) ∈ E ′ then we assign the item jb ∈ M1 to the

agent (a,b); the remaining deg(a) − 1 agents of the form (a,b ′), with b ′ ∈ B, are arbitrarily assigned to the items

j1a , . . . , j
deg(a)−1
a ∈ M2. If E

′
contains no edges adjacent to a, then we arbitrarily choose deg(a) − 1 edges adjacent to
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a and assign the corresponding agents to the items j1a , . . . , j
deg(a)−1
a . We now show that this indeed results in a valid

assignment satisfying the type-block constraints.

First, by construction, every agent (a,b) is assigned at most one item. Moreover, since E ′ is a matching, every item

jb ∈ M1 is assigned to at most one agent of the form (a,b); hence, every item inM2 is assigned to at most one agent.

Let E ′p = Ep ∩ E ′ be the edges of color p in E ′. Since the matching E ′ satisfies the capacity constraints of the

BCMatching instance, we have |E ′p | ≤ wp for all p ∈ [k]; in particular, the number of items inM1 assigned to agents

of type p is no more than wp = λp1. Thus, the type-block constraints for M1 are satisfied. On the other hand, the

type-block constraints forM2 are trivially satisfied. We conclude that our constructed assignment is indeed valid, and

satisfies the type-block constraints.

Finally, we want to show that total social welfare exceedsU the prescribed bound. Let us fix a node a ∈ A. By our

construction, if the edge e = (a,b) is in the matching E ′, then agent e is assigned the item jb for a utility of πe . Thus

the total welfare of agents in E ′ equals
∑
e ∈E′ πe , which is at least P by choice of E ′. In addition, for every a ∈ A, there

are exactly deg(a) − 1 agents assigned to items inM2 for a total utility of Φ(deg(a) − 1). Summing over all a ∈ A, we

have that the total utility derived by agents in E \ E ′ is∑
a∈A

Φ(deg(a) − 1) = Φ *
,

∑
a∈A

deg(a) −
∑
a∈A

1
+
-
= Φ( |E | − |A|).

Putting it all together, we have that the total utility obtained by our assignment is at least P + Φ( |E | − |A|) = U .

Next, we assume that our constructed AssignTC instance is a ‘yes’ instance, and show that the original BCMatching

instance must also be a ‘yes’ instance. Let X be a constrained assignment whose social welfare is at least U =

P + Φ( |E | − |A|). Let E ′ be the set of edges corresponding to agents (a,b) assigned to items inM1; we show that E ′ is a

valid matching whose value is at least P . First, for any b ∈ B, X must assign the item jb to at most one agent e ∈ E ′.

Next, since Φ is greater than the total utility obtainable from assigning all items inM1, it must be the case that X assigns

all items j1a , . . . , j
deg(a)−1
a to deg(a) − 1 agents of the form (a,b), with b ∈ B, for every node a ∈ A; thus, there can be

one edge in E ′ that is incident on a for every a ∈ A. Next, since X satisfies the type-block constraints, we know that for

every p ∈ [k], there are at most λp1 = wp agents from Ep that are assigned items inM1; thus, E
′
satisfies the capacity

constraints. Finally, the utility extracted from the agents assigned to items inM2 is exactly Φ( |E | − |A|); the total utility

of the matching X is at leastU = P + Φ( |E | − |A|), thus E ′ has a total profit of at least P in the original BCMatching

instance, and we are done. □

Example 3.5. In Figure 2, the graph G = (A ∪ B,E1 ∪ E2), with A = {a1,a2}, B = {b1,b2,b3}, E1 = {(a1,b1), (a2,b2)}

and E2 = {(a1,b2), (a2,b1), (a2,b3)}, is an instance of the BCMatching problem; edge labels are profits. The associated

instance of the AssignTC problem is defined by N = N1 ∪ N2 and M = M1 ∪ M2, where N1 = {(a1,b1), (a2,b2)},

N2 = {(a1,b2), (a2,b1), (a2,b3)},M1 = {jb1 , jb2 , jb3 } andM2 = {j
1

a1 , j
1

a2 , j
2

a2 }; the utility of an agent for an item is equal

to 0 if there is no edge between them, to Φ if the edge is dashed, and to the edge label otherwise. ■

3.1 Polynomial-Time Constant-Factor Approximation

Having established that the AssignTC problem is computationally intractable in general, we next present an effi-

cient constant-factor approximation algorithm, based on a known polynomial-time approximation algorithm for the

BCMatching problem.

Theorem 3.6. There exists a polynomial-time 1

2
-approximation algorithm for the AssignTC problem.
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1
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Fig. 2. A reduction from BCMatching to AssignTC.

Proof. Note that S-reduction is an approximation-preserving reduction [Crescenzi 1997; Orponen and Mannila

1987]. Thus, given an instance of the AssignTC problem, we transform it into the corresponding BCMatching instance

in accordance with Lemma 3.2, and then apply the polynomial-time
1

2
-approximation algorithm introduced by Stamoulis

[2014] for BCMatching on general weighted graphs. □

Theorem 3.6 does not prove that
1

2
is the best approximation-ratio possible for the AssignTC problem. It is left for

future work to investigate whether a better polynomial-time approximation algorithm exists.

3.2 Uniformity Breeds Simplicity: Polynomial-Time Special Cases

Our results thus far make no assumptions on agent-item utilities; as we now show, the AssignTC problem admits a

polynomial-time algorithm under some assumptions on the utility model.

Definition 3.7 (Type-uniformity and Block-uniformity). A utility model u is called type-uniform if all agents of the

same type have the same utility for each item, i.e. for all p ∈ [k] and for all j ∈ M , there exists Upj ∈ R+ such that

u (i, j ) = Upj for all i ∈ Np . A utility model u is called block-uniform if all items in the same block offer the same utility

to every agent; that is, for all q ∈ [l] and for all i ∈ N , there existsUiq ∈ R+ such that u (i, j ) = Uiq for all j ∈ Mq . ♦

In the context of the HDB allocation problem, type uniformity implies that Singaporeans of the same ethnicity

share the same preferences over apartments (perhaps due to cultural or socioeconomic factors). Cases that deal with

uniform goods satisfy the block-uniformity assumption: e.g. students applying for spots in public schools or job

applicants applying for multiple (identical) positions; in the HDB domain, block-uniformity captures purely location-

based preferences, i.e. a tenant does not care which apartment she gets as long as it is in a specific block close to her

workplace, family, or favorite public space.

Theorem 3.8. The AssignTC problem can be solved in poly (n,m) time under either a type-uniform or a block-uniform

utility model.
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We prove the result for a type-uniform utility model; the result for block-uniform utilities can be similarly derived.

We propose a polynomial time algorithm based on the Minimum-Cost Flow problem which is known to be solvable in

polynomial time. Recall that a flow network is a directed graph G = (V ,E) with a source node s ∈ V and a sink node

t ∈ V , where each arc (a,b) ∈ E has a costγ (a,b) ∈ R and a capacityψ (a,b) > 0 representing the maximum amount that

can flow on the arc; for convenience, we set γ (a,b) = 0 andψ (a,b) = 0 for all a,b ∈ V such that (a,b) < E. Let us denote

by Γ and Ψ the matrices of costs and capacities respectively defined by Γ = (γ (a,b)) |V |× |V | and Ψ = (ψ (a,b)) |V |× |V | . A

flow in the network is a function f : V ×V → R+ satisfying:

(i) f (a,b) ≤ ψ (a,b) for all a,b ∈ V (capacity constraints),

(ii) f (a,b) = −f (b,a) for all a,b ∈ V (skew symmetry), and

(iii)

∑
b ∈V f (a,b) = 0 for all a ∈ V \{s, t } (flow conservation).

The value v ( f ) of a flow f is defined by v ( f ) =
∑
a∈V f (s,a) =

∑
a∈V f (a, t ) and its cost is given by γ ( f ) =∑

(a,b )∈E f (a,b)γ (a,b). The optimization problem can be formulated as follows. Given a value F , find a flow f that

minimizes the cost γ ( f ) subject to v ( f ) = F . This optimization problem that takes as input the graphG = (V ,E), the

matrices Γ and Ψ, and the value F , will be denoted by MinCostFlow hereafter; given an instance ⟨G; Γ;Ψ; F ⟩ of the

MinCostFlow problem, we let γ (G, Γ,Ψ, F ) be the cost of the optimal flow for that instance.

Given an instance I of AssignTC, we construct a flow network GI (V ,E) and matrices ΓI and ΨI as follows (see

Figure 3 for an illustration). The node set V is partitioned into layers: V = {s} ∪ A ∪ B ∪C ∪ {t }. A is the agent type

layer: there is one node ap ∈ A for all agent types Np ,p ∈ [k]. B is the type-block layer: it has a node bpq ∈ B for

every type-block pair (p,q) ∈ [k] × [l]. Finally, C is the item layer: there is one node c j ∈ C for all items j ∈ M . The

arcs in E are as follows: for every ap in A, there is an arc from s to ap whose capacityψ (s,ap ) is |Np |. Fixing p ∈ [k],

there is an arc from ap ∈ A to every bpq ∈ B, where the capacity of (ap ,bpq ) is the quota for type Np in blockMq (i.e.

ψ (ap ,bpq ) = λpq ). Finally, given q ∈ [l], there is an arc from bpq to c j iff j ∈ Mq ; in that case, we haveψ (bpq , c j ) = 1.

The costs associated with arcs from B to C (i.e. arcs of the form (bpq , c j ) where j ∈ Mq ) are −Upj ; recall thatUpj is the

utility that every agent of type Np assigns to item j . All other arc costs are set to 0. We begin by proving a few technical

lemmas on the above network.

Given a positive integer F , there exists an optimal flow that is integer-valued since ⟨GI ; ΓI ;ΨI ; F ⟩ is integer-valued

as well. Let f ∗ be an integer-valued optimal flow, taken over all possible values of F ; that is:

f ∗ ∈ argmin

F ∈[n]
γ (GI , ΓI ,ΨI , F ) (6)

Finding the flow f ∗ involves solving n instances of MinCostFlow by definition; thus, one can find f ∗ in polynomial

time. Given f ∗ as defined in (6), let X ∗ = (x∗i j )n×m be defined as follows: for every item j ∈ Mq , if f
∗ (bpq , c j ) = 1 for

some p ∈ [k], then we choose an arbitrary unassigned agent i ∈ Np and set x∗i j = 1.

Lemma 3.9. X ∗ is a feasible solution of the AssignTC instance I.

Proof. First, we assign at most one item to every agent by construction; next, let us show that each item j ∈ Mq is

assigned to at most one agent. Since f ∗ is a flow, we have
∑k
p=1 f

∗ (bpq , c j ) = f ∗ (c j , t ) due to flow conservation; note

that the capacity of the arc (c j , t ) is 1, thus at most one arc (bpq , c j ) has f
∗ (bpq , c j ) = 1. Finally, since item j is assigned

to an agent in Np iff f ∗ (bpq , c j ) = 1, we conclude that item j is assigned to at most one of the agents in N .
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Next, let us prove that assignment X ∗ satisfies the type-block constraints; in other words, we need to show that:∑
i ∈Np

∑
j ∈Mq

x∗i j ≤ λpq , ∀p ∈ [k],∀q ∈ [l] (7)

Since f ∗ is a flow, we have f ∗ (ap ,bpq ) =
∑
j ∈Mq f ∗ (bpq , c j ) for every type-block pair (p,q) ∈ [k] × [l] due to flow

conservation; moreover, we have f ∗ (ap ,bpq ) ≤ ψ (bpq , c j ) = λpq by construction. As a consequence, we necessarily

have

∑
j ∈Mq f ∗ (bpq , c j ) ≤ λpq for all p ∈ [k]. Since an item j ∈ Mq is matched with some agent i ∈ Np if and only if

we have f ∗ (bpq , c j ) = 1, we conclude that (7) indeed holds. □

Now, let us establish a relation between the cost of f ∗ and the utility of the feasible assignment X ∗.

Lemma 3.10. The cost of the flow f ∗ satisfies γ ( f ∗) = −u (X ∗).

Proof. By construction, the cost of f ∗ can only be induced by arcs from nodes in B to nodes in C , where the cost of

all arcs of the form (bpq , c j ), with j ∈ Mq , is equal to −Upj (the negative of the uniform utility derived from item j by

members of Np ). In other words, the cost of f ∗ can be written as follows:

γ ( f ∗) = −
k∑

p=1

l∑
q=1

∑
j ∈Mq

f ∗ (bpq , c j )Upj

As previously argued, we have that f ∗ (bpq , c j ) ∈ {0, 1} for all arcs (bpq , c j ); moreover, f ∗ (bpq , c j ) = 1 iff item j is

assigned to some agent in Np . Therefore, we obtain:

γ ( f ∗) = −
k∑

p=1

∑
i ∈Np

∑
j ∈M

x∗i jUpj = −
∑
i ∈N

∑
j ∈M

x∗i ju (i, j ) = −u (X
∗)

where the second equality holds since all agents in Np have the same utility by assumption. □

Finally, we show that for every feasible solution to the AssignTC instance I, there exists a flow with a matching

cost.

Lemma 3.11. Let X be a feasible assignment for the AssignTC instance I; there exists some feasible flow f such that

γ ( f ) = −u (X ). Moreover, we have v ( f ) = |{i ∈ N :

∑
j ∈M xi j = 1}|.

Proof. Given a feasible assignment X = (xi j )n×m , we define f : V ×V → R+ as follows:




f (s,ap ) =
∑
i ∈Np

∑
j ∈M xi j ∀ap ∈ A

f (ap ,bpq ) =
∑
i ∈Np

∑
j ∈Mq xi j ∀(ap ,bpq ) ∈ E

f (bpq , c j ) =
∑
i ∈Np xi j ∀(bpq , c j ) ∈ E

f (c j , t ) =
∑
i ∈N xi j ∀c j ∈ C

f (a,b) = −f (b,a) ∀(a,b) ∈ E

f (a,b) = 0 ∀(a,b) < E

The function f is indeed a flow: f trivially satisfies the skew symmetry condition by construction; next, we show that f

satisfies flow conservation. For all ap ∈ A, the incoming flow to node ap from node s is f (s,ap ) =
∑
i ∈Np

∑
j ∈M xi j , and

the outgoing flow to every bpq is

∑l
q=1 f (ap ,bpq ) =

∑
i ∈Np

∑
j ∈M xi j since M is partitioned into M1, . . . ,Ml ; hence

flow is conserved. For a node bpq ∈ B, the incoming flow equals f (ap ,bpq ) =
∑
i ∈Np

∑
j ∈Mq xi j and an amount of
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Fig. 3. Network flow constructed for the proof of Theorem 3.8; in this case, we have 2 types and 2 blocks:M1 = {1, 2} andM2 = {3, 4, 5}.

Arc capacities are given in red. All arcs have a cost of 0, except those between bpq ∈ B and c j ∈ C whose cost equals −Upj .

f (bpq , c j ) =
∑
i ∈Np xi j flows to every node c j such that j ∈ Mq , thus flow is conserved. For a node c j ∈ C such that

j ∈ Mq , its incoming flow equals f (bpq , c j ) =
∑
i ∈Np xi j from every bpq , for a total flow of

∑k
p=1

∑
i ∈Np xi j , which

equals its outgoing flow to t . To conclude, f satisfies flow conservation.

Now let us prove that f satisfies the capacity constraints (i.e. f (a,b) ≤ ψ (a,b) for all arcs (a,b) ∈ E). For all

(s,ap ) ∈ E, we have f (s,ap ) =
∑
i ∈Np

∑
j ∈M xi j ≤ |Np | = ψ (s,ap ) since every agent i ∈ Np is matched with at

most one item. For all (ap ,bpq ) ∈ E, we have f (ap ,bpq ) =
∑
i ∈Np

∑
j ∈Ml xi j ≤ λpq = ψ (ap ,bpq ) since X satisfies

the type-block constraints. For all arcs (bpq , c j ) ∈ E, we have f (bpq , c j ) =
∑
i ∈Np xi j ≤ 1 = ψ (bpq , c j ) since item j is

matched with at most one of the agents in Np . For all (c j , t ) ∈ E, we have f (c j , t ) =
∑
i ∈N xi j ≤ 1 = ψ (c j , t ) since item

j is matched with at most one of the agents in N . Hence, f satisfies the capacity constraints and is a valid flow. Note

that we have:

v ( f ) =
∑
a∈V

f (s,a) =
k∑

p=1
f (s,ap ) =

k∑
p=1

∑
i ∈Np

∑
j ∈M

xi j =
∑
i ∈N

∑
j ∈M

xi j

Then, since X is a feasible assignment of the AssignTC instance I, we conclude that we have v ( f ) = |{i ∈ N :∑
j ∈M xi j = 1}|. We just need to prove that we have γ ( f ) = −u (X ), and we are done. By definition of the flow

network, only arcs of the form (bpq , c j ) contribute to the cost γ ( f ) and we have γ (bpq , c j ) = −Upj ; therefore, γ ( f ) =

−
∑

(bpq,c j )∈E f (bpq , c j )Upj . Since f (bpq , c j )=
∑
i ∈Np xi j (by definition of f ) and u (i, j )=Upj for all agents i ∈Np (by

hypothesis), we finally obtain γ ( f )=−
∑
j ∈M

∑k
p=1

∑
i ∈Np xi ju (i, j )=−

∑
j ∈M

∑
i ∈N xi ju (i, j ) = −u (X ). □

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. We begin by observing the flow f ∗ as defined in (6), and the assignment X ∗ derived

from it. First, according to Lemma 3.9, X ∗ is a feasible assignment of the AssignTC instance I. Moreover, we have

u (X ∗) = −γ ( f ∗) according to Lemma 3.10. Finally, for any feasible assignment X of the AssignTC instance I, there

exists a flow f such that γ ( f ) = −u (X ); furthermore, since v ( f ) = |{i ∈ N :

∑
j ∈M xi j = 1}| ∈ [n], flow f is a feasible

Manuscript submitted to ACM



The Price of Quota-based Diversity in Assignment Problems 15

solution of the MinCostFlow instance ⟨GI ; ΓI ;ΨI ; F ⟩ for some F ∈ [n]. Therefore, we have:

u (X ) = −γ ( f ) ≤ −γ (GI , ΓI ,ΨI ,v ( f )) ≤ −γ ( f
∗) = u (X ∗)

Thus, X ∗ is an optimal solution of the AssignTC instance I; since X ∗ can be computed in poly-time (Proposition 6),

we are done. □

4 THE PRICE OF DIVERSITY

We now turn to the allocative efficiency of the constrained assignment. As before, an instance of the AssignTC problem

is given by a set of n agents N partitioned into types N1, . . . ,Nk , a set ofm itemsM partitioned intoM1, . . . ,Ml , a list

of capacity values (λpq )k×l , and agent utilities for items given by u = (u (i, j ))n×m . We denote the set of all assignments

X of items to agents satisfying only the matching constraints (3-5) of Section 2 by X, and that of all assignments

additionally satisfying the type-block constraints (2) by XC ; the corresponding optimal social welfares for any given

utility matrix (u (i, j ))n×m are:

OPT (u) ≜ max

X ∈X
u (X ); OPTC (u) ≜ max

X ∈XC
u (X ).

Clearly, OPTC (u) ≤ OPT (u) since XC ⊆ X; we define the following natural measure of this welfare loss that lies in

[1,∞]:

Definition 4.1. For any instance of the AssignTC problem, we define the Price of Diversity as follows, along the lines

of Ahmed et al. [2017] and Bredereck et al. [2018]: ♦

PoD(u) ≜
OPT (u)
OPTC (u)

.

The main result of this section is to establish an upper bound on PoD(u) that is independent of the utility model.

Denote the ratio of a type-block capacity to the size of the corresponding block by:

αpq ≜
λpq

|Mq |
.

Theorem 4.2. For any instance of AssignTC, we have:

PoD(u) ≤
1

min(p,q )∈[k]×[l ] αpq

and the above upper bound is tight.

In general, the bound in Theorem 4.2 can grow linearly inm; in the following family of problem instances where the

capacities λpq are fixed constants, the PoD can be indefinitely large.

Example 4.3. Consider any instance of the AssignTC problem with l = k and |Np | = |Mp | = µ ∀p ∈ [k] so that

n =m = kµ; the utilities are:

u (i, j ) =



1 if i ∈ Np and j ∈ Mp ∀p ∈ [k],

0 otherwise.

Evidently, any complete matching of items inMp to agents in Np ∀p ∈ [k] is an optimal solution for the unconstrained

version of the problem, hence OPT (u) = kµ. But if the capacities are λpq = 1 ∀(p,q) ∈ [k] × [k] then only one agent

per group can receive an item for which she has non-zero utility, hence OPTC (u) = k . Thus, PoD = kµ/k = µ. ■
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However, type-block capacities are determined by a central planner in our model; a natural way of setting them

is to fix the proportional capacities or quotas αpq in advance, and then compute λpq = αpq × |Mq | when block sizes

become available: by committing to a fixed minimum type-block quota α∗ (i.e. αpq ≥ α
∗
for all (p,q) ∈ [k] × [l]), the

planner can ensure a PoD(u) of at most 1/α∗, regardless of the problem size and utility function. Higher values of α∗

reduce the upper bound on PoD(u) but also increase the capacity of a block for every ethnicity, potentially affecting

the diversity objective adversely: it thus functions as a tunable tradeoff parameter between ethnic integration and

worst-case welfare loss. In fact, in the Singapore allocation problem, the Ethnic Integration Policy fixes a universal

percentage cap for each of the three ethnicities in all blocks; these percentages are set slightly higher than the actual

respective population proportions: the current block quotas αpq are 0.87 for Chinese, 0.25 for Malays and 0.15 for

Indian/Others [Deng et al. 2013]. Hence, for the Singapore housing system, we have min(p,q )∈[k]×[l ] αpq = 0.15 which

is achieved for Indian/Others and any block, so that from Theorem 4.2,

PoD(u) ≤
1

0.15
≈ 6.67.

This bound makes no assumptions on agent utilities; in other words, it holds under any utility model.13

The proof relies on the following lemma. Given an assignment X ∈ X, let up (X ) denote the total utility of agents in

Np under X :

up (X ) ≜
∑
i ∈Np

∑
j ∈M

xi ju (i, j ) =
∑
q∈[l ]

∑
i ∈Np

∑
j ∈Mq

xi ju (i, j ). (8)

Lemma 4.4. For any instance of AssignTC and any optimal unconstrained assignment X ∗ ∈ X, we have:

PoD(u) ≤
u (X ∗)∑

p∈[k] up (X
∗)minq∈[l ] αpq

.

Proof. Based on the optimal assignment X ∗, we can construct an assignment X ∈ XC satisfying the type-block

constraints, by carefully ‘revoking’ the smallest-utility items inMq from agents in Np for every (p,q)-pair that violates

the corresponding type-block constraint. In other words, let npq denote the number of items in Mq assigned to

agents in Np under X ∗. If npq ≤ λpq , we leave that type-block pair untouched, so that

∑
i ∈Np

∑
j ∈Mq xi ju (i, j ) =∑

i ∈Np

∑
j ∈Mq x

∗
i ju (i, j ). If npq > λpq , we order these npq agents according to their utilities for the items they are

assigned and retain only the top λpq agents in that order (breaking ties lexicographically), setting xi j = 0 for the

remaining agents. This change increases the average utility of assignments for this type-block pair:∑
i ∈Np

∑
j ∈Mq xi ju (i, j )

λpq
≥

∑
i ∈Np

∑
j ∈Mq x

∗
i ju (i, j )

npq
.

(To see why this is true, consider a sequence z1 ≥ z2 ≥ . . ., where zi ≥ 0 and zi ≥ zi+1 ∀i = 1, 2, . . ., and two positive

integers ν > µ ≥ 1. Clearly, (ν − µ )
∑µ
i=1 zi ≥ (ν − µ )µzµ ≥ µ

∑ν
i=µ+1 zi since zi ≥ zµ ∀i = 1, 2, . . . , µ and zi ≤ zµ

∀i = µ + 1, µ + 2, . . . ,ν . Rearranging and simplifying, we get
1

µ
∑µ
i=1 zi ≥

1

ν
∑ν
i=1 zi .)

13
In practice, the effective value of each fractional capacity λpq / |Mq | might be smaller than the corresponding pre-specified fraction αpq . Since each

λpq must be an integer, we need to set λpq = ⌊αpq × |Mq | ⌋ ∀(p, q ) ∈ [k] × [l ] to respect all capacity constraints. Hence, for a given instance

of AssignTC, the effective upper bound on PoD(u ) is given by 1/minp,q
⌊αpq×|Mq |⌋
|Mq |

, which depends on the |Mq |-values and may be higher than

1/minp,q αpq . For example, if we have a uniform block size of 10, the actual numerical capacities for Chinese, Malay, and Indian/Others based on EIP

quotas become 8, 2, and 1 respectively, so that the effective PoD-bound is 10. However, the effective bound is still independent of utility values as well as

the population size of agents of any type; moreover, larger block sizes reduce the discrepancy between the effective bound and the theoretical bound

1/minp,q αpq provided by Theorem 4.2. For example, for the values of αpq and |Mq | used in our experiments in Section 5 (see Figure 5), the minimum

effective capacity of any block for any type is 14.42%, hence the effective upper bound on PoD(u ) is 6.93. Similar considerations apply to Theorem 4.6.

Manuscript submitted to ACM



The Price of Quota-based Diversity in Assignment Problems 17

Further, since npq ≤ |Mq |, the above inequality implies that∑
i ∈Np

∑
j ∈Mq xi ju (i, j )

λpq
≥

∑
i ∈Np

∑
j ∈Mq x

∗
i ju (i, j )

|Mq |

=⇒
∑
i ∈Np

∑
j ∈Mq

xi ju (i, j ) ≥
λpq

|Mq |

∑
i ∈Np

∑
j ∈Mq

x∗i ju (i, j )

= αpq
∑
i ∈Np

∑
j ∈Mq

x∗i ju (i, j ), since αpq =
λpq

|Mq |
.

Thus, for every p ∈ [k] and every q ∈ [l], we have∑
i ∈Np

∑
j ∈Mq

xi ju (i, j ) ≥

(
min

q∈[l ]
αpq

) ∑
i ∈Np

∑
j ∈Mq

x∗i ju (i, j ), since min

q∈[l ]
αpq ≤ αpq ≤ 1.

Summing over blocks, we obtain from Equation (8):

up (X ) ≥ up (X
∗) min

q∈[l ]
αpq , ∀p ∈ [k].

By definition, u (X ∗) = OPT (u). Moreover, since X ∈ XC , we have u (X ) ≤ OPTC (u). Hence, by Definition 4.1,

PoD(u) ≤
u (X ∗)

u (X )
≤

u (X ∗)∑
p∈[k] up (X

∗)minq∈[l ] αpq
.

□

We can now complete the proof of the theorem.

Proof of Theorem 4.2. Since we have min(p,q )∈[k]×[l ] αpq ≤ minq∈[l ] αp′q for all p′ ∈ [k], Lemma 4.4 implies that:

PoD(u) ≤
u (X ∗)∑

p∈[k]
up (X ∗) min

(p,q )∈[k]×[l ]
αpq
=

1

min

(p,q )∈[k]×[l ]
αpq
.

Depending on the utility matrix u, this upper bound can be tight whenever |Np0 | ≥ |Mq0 | for some type-block pair

(p0,q0) in the set argmin(p,q )∈[k]×[l ] αpq . We identify an agent utility matrix for which the bound holds with equality:

u (i, j ) =



1 if i ∈ Np0 and j ∈ Mq0 ,

0 otherwise.

The optimal assignment without type-block constraints fully allocates the items in blockMq0 to agents in Np0 for a

total utility of |Mq0 |; furthermore, we know that any optimal constrained assignment allocates exactly λp0q0 items in

Mq0 to agents in Np0 for a total utility of λp0q0 . Since λp0q0 = αp0q0 × |Mq0 |, we have:

PoD(u) =
|Mq0 |

αp0q0 × |Mq0 |
=

1

αp0q0
=

1

min(p,q )∈[k]×[l ] αpq
.

□

4.1 The Impact of Disparity among Types

Theorem 4.2 offers a worst-case tight bound on the price of diversity, making no assumptions on agent utilities. However,

its proof suggests that this upper bound is attained when social welfare is solely extracted from a single agent type and
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a single block. Intuitively, we can obtain a better bound on the price of diversity if a less ‘disparate’ optimal assignment

exists. To formalize this notion, we introduce a new parameter:

Definition 4.5. For an optimal unconstrained assignment X ∗ ∈X, denote by βp (X
∗) the ratio of the average utility of

agents in Np to the average utility of all agents under X ∗. The inter-type disparity parameter β (X ∗) is defined as: ♦

β (X ∗) ≜ min

p∈[k]
βp (X

∗) = min

p∈[k]

up (X
∗)/|Np |

u (X ∗)/n
.

Notice that β (X ∗) ∈ (0, 1] can be computed in polynomial time and is fully independent of the type-block capacities.

The closer β (X ∗) is to 1, the lower the disparity between average agents of different types under X ∗.

Theorem 4.6. For any AssignTC instance and any unconstrained optimal assignment X ∗ ∈ X, we have:

PoD(u) ≤
1/β (X ∗)∑

p∈[k] νp minq∈[l ] αpq
,

where νp =
|Np |

n is the proportion of type p in the agent population, for every p ∈ [k].

Proof. By definition of β (X ∗), for every p ∈ [k], we have:

up (X
∗) ≥ β (X ∗)

|Np |

n
u (X ∗) = β (X ∗)νpu (X

∗).

Substituting this in Lemma 4.4, we obtain the desired bound. □

Let us now apply the result to the Singapore public housing domain; we use the ethnic proportions reported in

the 2010 census report [Department of Statistics, Singapore 2010] to obtain |N1 |/n = 0.741 (Chinese), |N2 |/n = 0.134

(Malay), and |N3 |/n = 0.125 (Indian/Others). Using the same block quotas αpq as before, we have:

PoD(u) ≤
1/β (X ∗)

0.87 × 0.741 + 0.25 × 0.134 + 0.15 × 0.125
≈

1.43

β (X ∗)
.

In other words, if inter-type disparity is low, i.e. β (X ∗) is close to 1, the PoD may be significantly lower than the bound

provided by Theorem 4.2.
14

The two upper bounds provided by Theorems 4.2 and 4.6 are incomparable due to the dependence of the latter on

the parameter β (X ∗). We will elaborate on this point with the help of two examples (4.7 and 4.8) in each of which every

agent has a positive utility for every item (unlike Example 4.3).

In each example, we have only one block of items M = [m] and two types N1 = {a1,a2, . . . ,am } and N2 =

{b1,b2, . . . ,bm } for an arbitrary positive integerm > 1. Hence the proportion of each type in the population is
1

2
. Let

the proportional capacities of the single block for the two types be α1 and α2 respectively, such that α1 + α2 ≥ 1 and

α1m and α2m are both integers. Thus, for each of these examples, Theorem 4.2 puts the upper bound on the price of

diversity at
1

min{α1,α2 }
. In the first example, the bound based on the inter-type disparity parameter turns out to be

useless/uninformative.

14
If there are multiple optimal assignments, they may have different values of the inter-type disparity parameter; if that is the case, we should choose the

largest of these values for computing the upper bound provided by Theorem 4.6 since the inequality holds for any unconstrained optimal assignment.
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Example 4.7. For some ε ≪ 1 − 1

m , let the utilities be

u (ar , j ) =



1 − ε if j = r ,

ε
m−1 otherwise

∀r ∈ [m];

u (br , j ) =
1

m
∀j ∈ M,∀r ∈ [m].

Evidently, the unique unconstrained optimal assignment is to match item j with agent aj for every j ∈ [m]. Hence,

per-agent average utilities of N1 and N2 are 1 − ε and 0 respectively, making the inter-type disparity parameter zero.

Thus, Theorem 4.6 does not place any finite upper bound on PoD(u).

However, a little thought reveals that, in a constrained optimal allocation, α1m items are allocated to N1 such that

each of these items j is assigned to the agent aj , and the remaining (1 − α1)m items are allocated to N2 and arbitrarily

assigned to one agent each. Since (1 − α1)m ≤ α2m, all type-block capacities are satisfied. Thus,

PoD(u) =
m(1 − ε )

α1m(1 − ε ) + (1 − α1)m ·
1

m
=

1

α1 +ψ · (1 − α1)
,

where ψ = 1

m (1−ε ) ∈ (0, 1). Since α1 < 1, the denominator exceeds α1, so that PoD(u) < 1

α1

. If α1 > α2, then

α1 + ψ · (1 − α1) = ψ + (1 − ψ )α1 > ψ + (1 − ψ )α2 = α2 + ψ · (1 − α2) > α2; hence PoD(u) < 1

α2

. In any case,

PoD(u) ≤ max{ 1α1

, 1

α2

} = 1

min{α1,α2 }
, i.e. the realized price of diversity respects the Theorem 4.2 bound. ■

In the next example, the parametrized bound is more informative than the other.

Example 4.8. We will further assume thatm is even. Let u (ar , j ) = u (br , j ) =
1

m for every r ∈ [m], j ∈ [m]. There

is an unconstrained optimal assignment which also achieves β (X ∗) = 1: assign
m
2
items arbitrarily to

m
2
agents of

each type, giving OPT (u) = 1. Thus, the Theorem 4.6 bound
1

(α1+α2 )/2
≤ 1

min{α1,α2 }
, the Theorem 4.2 bound. Since

α1 + α2 ≥ 1, there are at least two assignments, respecting capacity constraints, whose social welfare is OPT (u) = 1:

either α1m to N1 and (1 − α1)m to N2, or (1 − α2)m to N1 and α2m to N2. In either case, the constrained optimum is 1;

hence PoD(u) has its ideal value of 1. ■

Finally, combining Theorems 4.2 and 4.6, we obtain the following upper bound on the price of diversity of any

instance of AssignTC:

PoD(u) ≤ min




1

min(p,q )∈[k]×[l ] αpq
,

1/β (X ∗)∑
p∈[k] νp minq∈[l ] αpq



. (9)

Thus, if we plot the PoD(u) against the disparity parameter β (X ∗), the point corresponding to any AssignTC instance

with block quotas and ethnic proportions as in Singapore must lie in the shaded region of Figure 4.

5 EXPERIMENTAL ANALYSIS

In this section, we simulate instances of the AssignTC problem using recent, publicly available Singaporean demo-

graphic and housing allocation statistics and Chicago public school admission data. We compare the welfare of three

assignment mechanisms: the optimal unconstrained mechanism, the optimal constrained mechanism, and the lottery-

based mechanism (see Section 5.1 below). Both the unconstrained and constrained social welfare maximizations are

solved using the Gurobi Optimizer.
15

We refer the reader to https://git.io/fNhhm for full implementation details.

15
Each iteration of the constrained optimization problem took about 30 minutes while that of the unconstrained optimization and the lottery mechanism

took less than 1 minute of running time on a standard laptop (Intel i7-7600U Processor, 2.8Ghz, 8GB RAM, 256 GB SSD).
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β (X ∗ )

PoD(u )

0 |
1

−6.67

−1

1.43/β (X ∗ )

Fig. 4. PoD vs disparity parameter for the HDB problem for ethnic proportions |N1 |/n = 0.741 (Chinese), |N2 |/n = 0.134 (Malay),
and |N3 |/n = 0.125 (Indian/Others), and corresponding quotas α1q = 0.87, α2q = 0.25 and α3q = 0.15 for every block Mq .

5.1 The Lottery Mechanism

Sections 2 and 3 study an optimal mechanism for assigning goods to agents under diversity constraints. To the best

of our knowledge, this mechanism is not used for allocating goods in practice; rather, lotteries are used to allocate

items in both real-world instances that inspire this work. The mechanisms randomly order agents, and let each agent

pick their favorite item in turn, while respecting predetermined quotas. In this section, we formulate a simple one-shot

lottery-based mechanism that captures the aspect of the problems described in Sections 1.3 and 1.4 that we are most

interested in: the impact of type-block constraints (as defined by inequalities (2)) on assignment by lottery. Algorithm 1

is not the actual mechanism used in Singapore public housing or Chicago school choice (see the discussion in the

respective sections). It is easy to see that the algorithm takes poly(mn) time to run.

Algorithm 1: Lottery Mechanism for Assignment with Type-Block Constraints

Input: Agents N grouped into types N1,N2, . . . ,Nk ; itemsM split into blocksM1,M2, . . . ,Ml ; type-block

capacities λpq ∀(p,q) ∈ [k] × [l]; utility matrix (u (i, j ))n×m .

Initialize: Allocation matrix X = (xi j )n×m ← (0)n×m ; remaining agents Nrem ← N ; unassigned itemsMrem ← M .

for t ∈ {1, 2, . . . ,n} do
Draw agent uniformly at random: it ∼ U(Nrem).
Find type of it : pt ← p ∈ [k] s.t. it ∈ Np .

Find blocks that have not hit capacity for type pt : Qt ← {q ∈ [l] :
∑
i ∈Npt

∑
j ∈Mq xi j < λptq }.

Find available items:Mt ← Mrem ∩
(
∪q∈QtMq

)
.

if Mt , ∅ then
Assign to it available item for which she has highest utility, breaking ties lexicographically:

jt ← argmaxj ∈Mt u (it , j ).
xit jt ← 1.

Mrem ← Mrem\{jt }.
end
Nrem ← Nrem\{it }.

end
return X .

We know that this lottery mechanism with quotas cannot produce better welfare than the optimal constrained

mechanism (AssignTC); one of the objectives of our experiments is to find out how much worse the lottery performs

for various utility models. We define the price of (one instance of) the diverse lottery as follows.
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Definition 5.1. Let a denote an arbitary run of Algorithm 1 and Xa the unique matching of items to agents induced

by the run a. Then, the price of the diverse lottery instance a under utilities u = (u (i, j ))n×m is given by: ♦

PoDL(u,a) ≜
OPT (u)
u (Xa )

.

We will estimate and report the expected value of PoDL(u,a) (the expectation being over all possible permutations of

agents induced by the uniform random sampling without replacement in Algorithm 1) alongside the realized value of

PoD(u) (the corresponding performance measure for the optimal constrained mechanism) for the same set of parameter

values (agent-item utilities and type-block capacities): see Sections 5.2 and 5.3. Note that the realized PoD(u) is a

lower bound on PoDL(u,a) for any run a of Algorithm 1 for the same problem instance; but the upper bounds from

Theorems 4.2 and 4.6 do not apply to PoDL(u,a) at all.

5.2 The Singapore Public Housing Allocation Problem

Data Collection. In order to create realistic instances of the AssignTC problem within the Singaporean context, we

collected data on the location and number of flats of recent HDB housing development projects advertised over the

second and third quarters of 2017.
16

Each of these developments corresponds to a block in our setup, for a total of

m = 1350 flats partitioned into l = 9 blocks (a detailed map is given in Figure 5). Moreover, each flat in any of these

blocks belongs to one of several pre-specified categories, viz. 2-room flexi, 3-room, 4-room, and 5-room; our data set

includes lower and upper bounds, LB(t ,q) and UB(t ,q) respectively, on the monthly cost (loan) for a flat of category t

in blockMq for every t and q. We consider two applicant pools whose ethnic composition follows the 2010 Singapore

census report [Department of Statistics, Singapore 2010]: there are n = m = 1350 applicants in the first pool with

|N1 | = 1000 (≈ 74.1% Chinese), |N2 | = 180 (≈ 13.4% Malay), and |N3 | = 170 (≈ 12.5% Indian/Others); the second pool

has n = 3000 applicants with |N1 | = 2223, |N2 | = 402, and |N3 | = 375. From the 2010 Singapore census report, we also

collected the average salary S (p) of each ethnicity group p ∈ [k], given in Singapore dollars: S (1) = 7, 326, S (2) = 4, 575

and S (3) = 7, 664.17 From publicly available data
18

on Singapore’s Master Plan 2014,
19

we collected the locations of the

geographic centers of the 55 planning areas that Singapore is divided into; we also obtained the population sizes of

the three ethnicity groups under consideration in each planning area from the General Household Survey 2015 data

available from the Department of Statistics, Singapore.
20

Finally, we use a uniform block capacity using the latest HDB

block quotas [Deng et al. 2013]: for every blockMq , we have α1q = 0.87,α2q = 0.25 and α3q = 0.15.

Utility Models. All parameters used to generate AssignTC instances in our simulations are based on real data, except

for agent utilities over apartments. Conducting large-scale surveys that elicit user preferences over apartments is beyond

the scope of this work; thus, we base our agent utility models on simulated utilities. We examine four utility models,

each characterized by a parameter whose value does not come from the data: distance-based (Dist (σ 2)), type-based

(Type(σ 2)), project approval-based (Project (ρ)), and price-based (Price(σ 2)).

16
http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/bto-sbf

17
We found no public data on applicant pools for public housing allocation in Singapore. We wanted to test the performance of the constrained optimization

approach (mainly) for representative values of n in the interesting domain n ≥ m. We chose n = m (for which it is possible to achieve a perfect

matching) and n = ⌈2m × 10−3 ⌉ × 103 ; we observed a surprisingly small difference in the realized PoD(u ) for these two values of n and did not repeat

our expensive experiments for higher values of n. Moreover, in both our motivating real-world problems, it is unlikely that the number of agents is

orders of magnitude higher than the number of items. Similar reasoning applies to our choices of n in Section 5.3.

18
https://data.gov.sg/dataset/master-plan-2014-planning-area-boundary-web

19
https://www.ura.gov.sg/Corporate/Planning/Master-Plan/

20
https://www.singstat.gov.sg/publications/ghs/ghs2015content > Statistical Tables > Basic Demographic Characteristics
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• M1: Sky Vista (128 flats)

• M2: West Scape (162 flats)

• M3: Rivervale Shores (156 flats)

• M4: Marsiling Grove (249 flats)

• M5: Woodlands Spring (108 flats)

• M6: Forest Spring (94 flats)

• M7: Woodleigh Hillside (104 flats)

• M8: Dakota Breeze (190 flats)

• M9: Pine Vista (159 flats)

Fig. 5. Block locations and number of flats.

• In the distance-based utility model, each agent i ∈ N has a preferred geographic location a⃗i ∈ R
2
(chosen

uniformly at random within the physical landmass of Singapore)
21

that she would like to live as close as possible

to (say, the location of her parents’ apartment, workplace, or preferred school). For every blockMq , we generate

the utility that agent i derives from apartment j ∈ Mq by first drawing a sample from the normal distribution

N (1/d (a⃗i , loc(Mq )),σ
2), where loc(Mq ) ∈ R

2
is the geographical location of block Mq and d (·, ·) represents

Euclidean distance, and then renormalizing to make the sum of utilities of each agent for all apartments inM

equal to one.

• In the type-based utility model, we assume that all agents of the same type (i.e. ethnic group) have the same

preferred location (i.e. ∀p ∈ [k],∀i, i ′ ∈ Np , a⃗i = a⃗i′ ). The rest of the model description follows the above

distance-based model.

• In the project approval-based utility model, we construct, for each type, a categorical distribution over the 55

planning areas of Singapore, the probability of each area being proportional to the fraction of the sub-population

of that type living in that area; for each agent i , we sample a preferred planning area from the above distribution

corresponding to i’s type; if a project Mq is within a radius ρ of the geographic center of agent i’s preferred

planning area, then i approves of the project, i.e. u (i, j ) = 1 ∀j ∈ Mq , else i disapproves of the project, i.e.

u (i, j ) = 0 ∀j ∈ Mq .
22

• In the price-based utility model, each agent i ∈ Np has a salary si that is generated according to the normal

distribution N (S (p),σ 2). Each flat j ∈ Mq of category t has a monthly cost pj that is chosen uniformly in

[LB (t ,q),UB (t ,q)]. We assume that agent i is willing to pay one-third of her monthly salary on mortgage

installments.
23

The utility that agent i derives from flat j is then defined by

u (i, j ) =
1/(pj −

si
3
)2

Ûi
,

21
More precisely, we considered the largest rectangle that fits within the main island of Singapore, constructed a two-dimensional Cartesian coordinate

system with one degree of latitude/longitude (each roughly equal to 111 km at the location of Singapore), and then picked x- and y-coordinates

independently and uniformly within this rectangle.

22
This is a specific instance of the approval model (or dichotomous preferences over items) where an agent either wants or does not want an item but

does not distinguish among the items she wants. This also corresponds to an unweighted bipartite matching setting (between agents and items) where

there is an edge between an agent and item if and only if the agent approves/wants the item. In such a situation, the utilities of an agent are usually not

normalized over items (see, e.g. [Bogomolnaia and Moulin 2004]).

23
The choice of the one-third fraction is inspired by the “3-3-5 rule" for deciding whether one can afford a flat given one’s income (https://www.

areyouready.sg/YourInfoHub/Pages/News-How-to-use-the-3-3-5-rule-to-consider-if-you-can-afford-your-new-home.aspx), endorsed by the Central

Provident Fund Board of Singapore (https://www.cpf.gov.sg/members).
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where Ûi ≜
∑
z∈M 1/(pz −

si
3
)2 is the normalization factor. The rationale for the utility formula is that a much

higher cost relative to the budget makes the flat unaffordable while a much lower cost indicates unsatisfactory

quality, making the agent unhappy in both scenarios.

Evaluation. For each of our treatments (Figures 6-8); we report the price of diversity PoD(u) as per Definition 4.1

(hatched bar); the theoretical upper bound on PoD(u) as per Theorem 4.6 (dark gray bar); and the price of the diverse

lottery PoDL(u, ·) as per Definition 5.1, averaged over 100 agent permutations (light gray bar).
24

First, we want to compare the distance-based utility model Dist (σ 2) and the type-based model Type(σ 2) in order

to estimate the welfare loss due to imposing ethnicity constraints. To do so, we vary both σ 2 in {1, 5, 10} and n in

{1350, 3000}; the results reported in Figures 6 are on average performance over 100 randomly generated instances.

Our first observation is that, in all our experiments, the Dist (σ 2) exhibits virtually no reduction in welfare due to the

imposition of type-block constraints (see the hatched bars in the charts on the left). This is because utilities in Dist (σ 2)

are independent of ethnicities, resulting in a very low value for the inter-type disparity parameter (see the dark gray

bars) — in fact, for any utility model where utilities are independent of ethnicities, the value of the disparity parameter

should intuitively be close to 1 with a high probability. For utilities generated based on the Type(σ 2) model, the disparity

parameter is somewhat higher (utilities do strongly depend on ethnicities), resulting in a higher PoD(u). Despite making

no attempt to optimize social welfare under type-block constraints, the HDB lottery mechanism does surprisingly

well when the number of agents equals the number of apartments (Figure 6 (a)), extracting at least 84% of the optimal

unconstrained welfare under the Dist (σ 2) utility model, and at least 79% of the social welfare under the Type(σ 2) model.

However, the welfare loss induced by the lottery mechanism is negatively impacted by the number of agents (Figure 6

(b)); for instance, it only extracts 65% of the optimal unconstrained welfare under Dist (1) with n = 3000 and, in fact, the

lottery-induced welfare loss for this treatment even exceeds the theoretical upper bound on the price of diversity.

Let us now turn to the project approval-based utility model Project (ρ). To compute distances in km, we make use of

the fact that one degree of latitude or longitude at the location of Singapore corresponds to roughly 111 km; we vary

the radius ρ in {5, 7.5, 10} (in km). The results averaged over 100 runs are provided in Figure 7. In all instances, not

only is the price of diversity almost one but the lottery-induced welfare is also nearly as good, achieving at least 87%

of the unconstrained optimum for 1350 agents and practically 100% for 3000 agents; the disparity parameter is also

consistently close to its ideal value of 1, keeping the upper bound at around 1.45 regardless of the radius. Thus, this

can be considered an example of a utility model for which the lottery mechanism virtually implements a constrained

optimal allocation for a wide range of model parameters.

Finally, we study the price-based utility model Price(σ 2), varying σ 2 in {0, 10, 50}; the results obtained by averaging

over 100 runs are given in Figure 8. While the price of diversity is practically equal to one in all instances, the welfare

loss observed with the lottery mechanism drastically increases with σ 2 (recall that agents from the same ethnicity group

have identical preferences when σ 2 = 0): for instance, for 1350 agents, it extracts 98% of the optimal unconstrained

welfare under Price(0) while it only extracts 35% of this value under Price(50). These numerical tests show that utility

models exist for which the lottery mechanism may perform poorly compared to the optimal constrained allocation

mechanism, even in allocation problems with a very low price of diversity.

24
The error bars in Figures 6-8 and 10 represent one (estimated) standard error of the mean on either side; see e.g. Clymo [2019] for recommendations on

how many significant digits of the mean to report based on its standard error, which we have tried to follow.
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Fig. 6. Averaged welfare ratios obtained for (a) Dist (σ 2) and (b) Type(σ 2) with n =m = 1350 (left) and n = 3000 (right),m = 1350 in
our simulated instances of the Singapore public housing allocation problem. Horizontal axis shows values of utility model parameter
σ 2 (variance); vertical axis shows ratio (or upper bound on ratio) of optimal unconstrained welfare to welfare induced by some
constrained mechanism — hatched bar: PoD(u ) as per Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar:
PoDL(u, ·) as per Definition 5.1, averaged over 100 agent permutations.

ρ

_
1

w
e
l
f
a
r
e
r
a
t
i
o

|
5

|
7.5

|
10

1.00
1.08

1.45

1.00
1.15

1.46

1.00
1.07

1.45

ρ

_
1

w
e
l
f
a
r
e
r
a
t
i
o

|
5

|
7.5

|
10

1.00
1.05

1.45

1.00
1.00

1.45

1.00
1.00

1.45

Fig. 7. Averaged welfare ratios obtained for Project (ρ ) with n = m = 1350 (left) and n = 3000,m = 1350 (right) in our simulated
instances of the Singapore public housing allocation problem. Horizontal axis shows values of the utility model parameter ρ (radius);
vertical axis shows ratio (or upper bound on ratio) of optimal unconstrained welfare to welfare induced by some constrained
mechanism — hatched bar: PoD(u ) as per Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar: PoDL(u, ·) as
per Definition 5.1, averaged over 100 agent permutations.

5.3 Chicago Public School Admissions

Data Collection. From the Chicago Public Schools website,
25

we collected data on the locations of magnet schools

in Chicago; we focus on these schools because they use a lottery mechanism to select students. We also collected the

25
http://cps.edu/Pages/home.aspx
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Fig. 8. Averaged welfare ratios obtained for Price(σ 2) with n = m = 1350 (left) and n = 3000,m = 1350 (right) in our simulated
instances of the Singapore public housing allocation problem. Horizontal axis shows values of utility model parameter σ 2 (variance);
vertical axis shows ratio (or upper bound on ratio) of optimal unconstrained welfare to welfare induced by some constrained
mechanism — hatched bar: PoD(u ) as per Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar: PoDL(u, ·) as
per Definition 5.1, averaged over 100 agent permutations.

total number of students enrolled in these schools in 2018, and divided this number by 9 to obtain the approximate

number of students that can be accepted to the first grade (there are nine grades in total). This leads us to instances

with l = 37 blocks (schools) andm = 2261 items in total (available spots). In this school admission problem, students

are partitioned into k = 4 types, viz. Tiers 1, 2, 3 and 4, depending on their residence (see Figure 9). In our experiments,

we consider a pool of n ∈ {2261, 5000} students whose type composition follows the real-world proportion: we have

|N1 | = 613 (≈ 27.1%: Tier 1), |N2 | = 622 (≈ 27.5%: Tier 2), |N3 | = 533 (≈ 23.6%: Tier 3) and |N4 | = 493 (≈ 21.8%: Tier 4)

for n = 2261 and we have |N1 | = 1355, |N2 | = 1375, |N3 | = 1180 and |N4 | = 1090 for n = 5000. We use equal fractional

quotas across schools and tiers, i.e. our type-block capacities are λpq = 0.25|Mq | ∀(p,q) ∈ [k] × [l]. Recall also that we

have one-shot lotteries (Section 5.1) in our simulations.

Utility model. Since we do not have access to students’ utilities for schools, we simulate them as follows. We use the

distance-based utility model Dist (σ 2) introduced in Section 5.2 with the following important modifications:

• We choose the preferred location of a student uniformly at random from the collection of census tracts (polygons)

belonging to her tier (see Figure 9); the position of every polygon is approximated by taking the average of the

coordinates of its extreme points.

• We reset each student’s utility to 0 for any school ranked 21st or lower in the preference ordering induced by

her utilities computed as in the distance-based model of Section 5.2, and then renormalize the utilities; this is

because students are allowed to apply to at most 20 schools.

Evaluation. In our experiments, we vary both σ 2 in {0, 10, 50} and n in {2261, 5000}, and for each setting, we compute

the following quantities: the price of diversity PoD(u) as per Definition 4.1 (hatched bar); the theoretical upper bound

on PoD(u) as per Theorem 4.6 (dark gray bar); and the price of the diverse lottery PoDL(u, ·) as per Definition 5.1,

averaged over 100 agent permutations (light gray bar). Results obtained by averaging over 100 runs are given in Figure

10. First, we observe that both the price of diversity and the loss of the lottery mechanism decrease as σ 2 increases; this
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Fig. 9. Map of Chicago showing the tier statuses of census tracts (http://cpstiers.opencityapps.org/) and locations of magnet schools
(orange dots) based on http://cps.edu/ScriptLibrary/Map-SchoolLocator/index.html.

is unsurprising since utilities are less type-dependent as σ 2 grows. However, we observe that the loss of the lottery

mechanism is quite high in all instances. Moreover, just as in the Singapore public housing allocation problem, the

outcome of the lottery mechanism is negatively impacted by the number of students; therefore, we can conclude that

this mechanism seems to be better suited to problems with an equal number of agents and items.

6 DISCUSSION AND FUTUREWORK

Our work constitutes a first step towards a better understanding of the effect of hard diversity constraints on social

welfare. We can summarize our results as follows. One of our main contributions is to offer computational insights

into the AssignTC problem: a general hardness result, sufficient conditions for tractability, and a
1

2
-approximation

algorithm. We derive two upper bounds on the price of diversity defined as the ratio of the optimal welfare achievable

with and without type-block constraints: the first is in terms of block quotas only, independent of the utility model,

hence under the planner’s control; the second is parametrized in terms of inter-type disparity, which shows that when

the disparity is low, the welfare loss is much closer to its ideal value of 1 than the first bound would suggest. We analyze

our model’s behavior in simulations based on two real-world data sets.

We will conclude with further remarks on the above results, a few straightforward implications, and directions for

further research.

6.1 Further questions on complexity and approximation

Some questions that remain open are:

• Is a better approximation to AssignTC possible?
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Fig. 10. Averaged welfare ratios obtained for Dist (σ 2) with n = m = 2261 (left) and n = 5000,m = 2261 (right) in our simulated
instances of the Chicago public school admission problem. Horizontal axis shows values of utility model parameter σ 2 (variance);
vertical axis shows ratio (or upper bound on ratio) of optimal unconstrained welfare to welfare induced by some constrained
mechanism — hatched bar: PoD(u ) as per Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar: PoDL(u, ·) as
per Definition 5.1, averaged over 100 agent permutations.

• Does there exist a more natural/elegant polynomial-time approximation algorithm for AssignTC that does not

involve reduction to BCMatching?

• Are there any other non-trivial special cases of AssignTC that admit polynomial-time solutions?

However, since we have shown that AssignTC is a special (still NP-complete) case of the BCMatching problem, some

easy generalizations of our results follow from the literature on BCMatching. For example, there is a polynomial-time

approximation scheme (PTAS) for BCMatching if one allows (1 + ε )-violations of the color constraints [Grandoni et al.

2009]; this immediately implies a PTAS for AssignTC where one allows (1 + ε )-violations of the type-block constraints.

Intuitively, this means that we can efficiently achieve near-optimal constrained optimal welfare if we are willing to

soften our hard constraints within well-defined limits.

6.2 Soft diversity concepts

There are alternative approaches towards diversity promotion in various branches of research that do not rely on hard

bounds (fixed quotas):

• maximization of a carefully constructed monotone, submodular function that itself trades diversity off against

“solution quality” (similar in spirit to the welfare concept we have used) in a matching/allocation/subset selection

setting [Ahmed et al. 2017; Dickerson et al. 2019; Schumann et al. 2019];

• soft diversity constraints in a matching setting (e.g. school seat allocation) with ordinal preferences [Ehlers et al.

2014; Kurata et al. 2017, and references therein]: quotas are used as “flexible limits that regulate ... priorities"

when assigning scarce items [Ehlers et al. 2014].
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• sampling datasets to ensure an adequate representation of labeled categories (combinatorial diversity or diversity

indices) and/or a broad coverage of the feature space (geometric diversity via determinantal point processes) for

machine learning applications [Celis et al. 2016, and references therein].

An important future research directionwould be to compare and contrast diversity quotas with these different approaches

towards diverse solutions in terms of their impact on welfare, both theoretically and experimentally.

6.3 Types based on “overlapping” attributes

The types considered in our paper essentially constitute a partition over the agents with respect to one attribute: ethnicity

in Singapore public housing and SES-based tiers in Chicago Public Schools. But in many situations, quotas/bounds

are specified for multiple attributes. Consider for example, a hypothetical public housing allocation problem in a city

that has the same three ethnic groups (and the respective quotas) as in Singapore; but the population is also divided

into high-income and low-income groups and the city additionally requires that no block of flats should have more

than 55% of its occupants from either of these two groups. Flats, in addition to be being grouped into blocks, could

also be partitioned based on categories (see Section 5.2) and any number of capacity constraints could be specified

combinatorially.

It is easy to see that AssignTC is a special case of this class of problems. So, the NP-hardness of AssignTC

(Theorem 3.4) readily implies that of this more general class. However, it is not obvious whether this general version

reduces to BCMatching, hence approximability results of AssignTC may not generalize. It is also unclear how to

extend the PoD analysis of Section 4 – if it can be done at all – to the situation with multiple partitions each with its

own set of arbitrary percentage caps. This is a challenge we wish to tackle in the future. For existing work on diversity

requirements based on multiple overlapping attributes in a subset selection setting (not matching), please refer to

Bredereck et al. [2018]; Lang and Skowron [2016].

6.4 Utility models and experiments

Simulating agent utilities is still a major challenge: ideally, one would elicit applicants’ utilities directly via large-scale

national surveys. The aim of our experiments was to see how much worse the diversity-constrained optimal allocation

performs than our theoretical bounds (and, to some extent, how much better it is compared to its lottery version)

depending on the utility model, and not to compare utility models based on the PoD as a performance measure. Hence,

we formulated clean utility models that focus on individual factors that, we believe, bear on individuals’ preferences in

the problem domains considered. For example, our simulations with the Dist (σ 2) and Type(σ 2) models in Section 5.2

tested two ‘extreme’ cases: one where there is no correlation between ethnicity and utility, and one where utility is

artificially correlated to ethnicity. The truth is likely somewhere in between. Ethnic groups in Singapore most likely do

have some correlation between their utility models; this can be due to socioeconomic factors (there is some correlation

between ethnicity and socioeconomic status), the location of cultural or religious centers, or other unknown factors.

Developing and investigating refined utility models is an interesting direction for future work.

6.5 Lottery mechanisms with diversity quotas

Allocation based on constrained optimization under known utilities can serve as a benchmark for any mechanism

respecting the same set of diversity constraints, including the lottery mechanism in Algorithm 1. Obviously, the relative

loss of the lottery mechanism cannot be smaller than the PoD for the same problem instance; but, in our experiments,
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the diverse lottery performs surprisingly well for several utility models (e.g. Figures 6 and 7), although it appears to be

more sensitive to the utility model and its parameters than the constrained optimization benchmark (e.g. Figures 8

and 10). As yet, we do not have satisfactory explanations for many of our observations. Offering theoretical guarantees

on the performance of the lottery mechanism with diversity constraints (and in some sense, complementing the analysis

by Immorlica et al. [2017]) would provide better insights on our experimental results. In particular, we could look at the

ratio of the expected utilitarian social welfare induced by a lottery without diversity constraints to that under diversity

constraints for the same utilities.
26

Moreover, recall that the lottery mechanism operates on the basis of partial information on the cardinal utilities to

which the benchmark has access: specifically, for each agent in the random sequence, the algorithm only elicits the

agent’s top choice among the items in blocks for which the corresponding capacity constraint has not been satisfied,

which also depends on the predecessors of the agent in the random sequence. This is even more restricted information

than some recent work on matching/assignment [Anshelevich and Sekar 2016] and subset selection [Anshelevich et al.

2018, and references therein] has considered: these approaches assume access to ordinal information (each agent’s

ranking over alternatives) but the performance is measured in terms of the hidden cardinal utilities that generate these

rankings – the concept of distortion [Procaccia and Rosenschein 2006] is often used in this line of work as a measure

of fractional loss in (cardinal) solution quality due to ordinal information. It will be interesting to study (optimal)

algorithms working with ranking data under diversity constraints, and the resulting combination of distortion and price

of diversity – intuitively, the welfare loss with full rankings cannot be worse than that of our lottery (with significantly

less information), which already performs close to the constrained optimum (with the true cardinal inputs) in many of

our experiments.
27

A relevant practical question that also needs attention is why the constrained optimization approach is not used in our

motivating real-world problems instead of allocations based on lotteries. There could be several problem-specific reasons

for this. We offer AssignTC as a benchmark for the utilitarian objective under one particular diversity-promoting policy

(hard capacity bounds); but a central planner/allocator might have several objectives in mind at the same time. In a

mechanism that relies on agents’ subjective valuations of items (that need to be elicited in some form), one might also

care about individual fairness and discouraging strategic behavior. In the absence of diversity constraints, a (uniform)

lottery is identical to random serial dictatorship which satisfies many such desiderata [Abdulkadiroğlu and Sönmez

1998; Bogomolnaia and Moulin 2001]. As such, an extensive investigation of diversity constraints with properties other

than the utilitarian social welfare is also imperative.

6.6 Closing remarks

Our results describe an inevitable tradeoff between diversity and social welfare; however, we emphasize that this does

not constitute a moral judgment on the authors’ part. Economic considerations are certainly important, but they are by

no means an exclusive or even a first-order consideration. That said, understanding the impact of diversity constraints

on social welfare is key if one is to justify their implementation.

26
This ratio can never exceed the expected price of the diverse lottery as defined in Section 5.1 (see Definition 5.1 and the following paragraph), but is

not guaranateed to be larger than the PoD for the same problem instance. A detailed analysis, both theoretical and experimental, of this concept is an

important research topic in its own right, hence we have not reported the ratio of the expected welfare of the lottery mechanism without constraints to

that with type-block constraints for our experiments in Section 5.

27
We thank an anonymous reviewer for pointing out this possible connection to the literature on distortion.
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