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Abstract
This paper investigates nematic liquid crystals in three-dimensional curved space, and determines
which director deformation modes are compatible with each possible type of non-Euclidean
geometry. Previous work by Sethna et al showed that double twist is frustrated in flat space R3, but
can fit perfectly in the hypersphere S3. Here, we extend that work to all four deformation modes
(splay, twist, bend, and biaxial splay) and all eight Thurston geometries. Each pure mode of
director deformation can fill space perfectly, for at least one type of geometry. This analysis shows
the ideal structure of each deformation mode in curved space, which is frustrated by the
requirements of flat space.

1. Introduction

In a liquid crystal, the ground state does not necessarily have a uniform director field. Rather, the ground
state of the local free energy may have some optimal gradient of the director field. For example, if the liquid
crystal is chiral, the free energy favors a twist deformation of the director. If the liquid crystal is composed
of bent-core molecules, the free energy may favor a bend deformation [1, 2].

Whenever the optimal director field is not uniform, one must ask: Is it possible to have the optimal
director deformation everywhere in space? In many cases, the answer is no. In blue phases, the optimal
double twist cannot occur everywhere in space, and hence the liquid crystal forms a lattice of double-twist
tubes separated by disclination lines. Likewise, in bent-core liquid crystals, the optimal bend cannot occur
by itself everywhere in space, and hence the liquid crystal forms a heliconical twist-bend nematic (NTB)
phase. Both of these cases can be regarded as examples of geometric frustration, in which a system develops
a complex global structure because the optimal local structure cannot fill up space [3–5].

Many years ago, Sethna et al [6] suggested an interesting theoretical approach to analyze geometric
frustration in blue phases. They pointed out that the ideal double twist can fit perfectly in the
three-dimensional (3D) curved non-Euclidean geometry of a hypersphere, represented mathematically as
S

3, with the appropriate curvature radius. The structure experiences frustration when it is forced to exist in
flat Euclidean space, denoted as R3. Hence, the network of disclination lines in a blue phase can be
understood as a result of projecting the structure from S

3 into R
3. In that way, the structure of blue phases

is analogous to the packing of spherical particles [3, 5], which has an ideal icosahedral order that can fit
perfectly in S

3 but is frustrated in R
3.

More recently, Niv and Efrati [7] developed a systematic method to analyze geometric compatibility in
2D liquid crystals. Their method shows that an optimal splay S and optimal bend B can fit perfectly in a 2D
surface if S2 + B2 = −KG, where KG is the Gaussian curvature of the surface. Hence, a nonzero splay or
bend can exist everywhere in a 2D non-Euclidean geometry with the appropriate negative curvature, but
must be frustrated in a flat Euclidean plane and on a sphere. This analysis has not yet been extended from
2D to 3D.
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The purpose of this article is to generalize the theory of Sethna et al to the other director deformation
modes, and determine whether each mode can fit perfectly in some 3D curved space. To classify the director
deformation modes, we use the mathematical analysis of Machon and Alexander [8], further discussed by
Selinger [9]. This work shows that there are four distinct modes: splay, twist, bend, and a fourth mode that
might be called ‘biaxial splay’. (In this approach, pure twist means double twist, while cholesteric single
twist is a combination of twist and biaxial splay [9].) This analysis has already been used to characterize the
director deformations that can fill up flat Euclidean space [10]. To classify the possible types of curved
space, we use the analysis of Thurston [11], which shows that there are eight possible homogeneous
geometries in 3D. For each of these geometries, we construct simple director fields, calculate the
deformation modes, and identify cases where a single pure mode can have a constant nonzero value.

The main result of this study is that each of the pure modes can exist in some non-Euclidean geometry.
Pure twist can exist in the hypersphere S3, as shown by Sethna et al, and also in the spaces S̃L(2, R) and Nil.
Similarly, pure splay can exist in the hyperbolic geometry H

3, and pure bend in H
3, H2 × R, and Sol. Pure

biaxial splay can exist in the spaces S̃L(2, R), Nil, and Sol. These results have implications for geometric
frustration of liquid-crystal phases. For example, if a liquid crystal is composed of bent-core molecules, it
can have an optimal director field with pure constant bend. Likewise, if a liquid crystal is composed of
pear-shaped molecules, it can have an optimal director field with pure constant splay. Either of these
structures fits perfectly in H

3, but is frustrated when forced to exist in flat space R3. This frustration leads to
the formation of modulated structures with defect lines, or to mixtures of the optimal mode with other
deformation modes. Understanding the ideal non-Euclidean structure, even as a mathematical abstraction,
provides insight into these more complex structures that can form experimentally.

The plan of this paper is as follows. In section 2, we set up the formalism for director deformation
modes and the Oseen–Frank free energy in non-Euclidean geometry. In section 3, we discuss examples in
2D curved surfaces. In section 4, we go on to 3D curved space, consider each of the eight Thurston
geometries, and determine what pure director deformations are permitted.

2. Formalism for nematic order in curved space

The theory of liquid-crystal order in 2D non-Euclidean geometry has been developed by many investigators
over thirty years, and some of the history can be briefly summarized as follows. Nelson and Peliti [12]
introduced the concept of hexatic order in fluctuating membranes, and derived a necessary coupling of
membrane shape with orientational order and defects. Park et al [13] extended the concept to general n-atic
order on closed vesicles, which must have 2n defects of topological charge 1/n, which distort the vesicle
shape away from a sphere. Nelson [14] pointed out that nematic order on a sphere could be exploited to
create a tetravalent colloidal chemistry, which might be useful for photonic applications. Fernandez-Nieves
et al [15] developed experimental realizations of spherical liquid crystals by fabricating nematic shells, with
water both inside and outside. They found defect structures more complex than expected, because the inner
droplet was consistently off-center. Shin et al [16] explored the effects of unequal Frank elastic constants for
splay and bend, and found that a difference of elastic constants can shift the positions of the defects.
Nguyen et al [17] investigated the extrinsic coupling of orientational order and curvature, which arises
because a curved 2D membrane is embedded in 3D space, and found that this extrinsic coupling greatly
changes the predictions for vesicle shapes. Keber et al [18] extended the theory from equilibrium to active
nematic vesicles, and showed that active defects move in complex trajectories around a sphere.

In this section, we generalize the theoretical formalism from a 2D curved surface to a 3D curved space.
The approach is mostly the same as in the previous work on 2D curved surfaces, except that we use a
different basis for the director field, as discussed below.

2.1. Differential geometry
A 3D curved space is described by three coordinates, which are conventionally written as σ1, σ2, and σ3.
Any position in the space can be written as R(σ1,σ2,σ3), and tangent vectors along the field lines are
ti = ∂iR. These vectors form a basis for the space, and they are called the covariant basis vectors. Distances
between nearby points are given by (ds)2 = g ijdσidσj, where g ij = ti · tj is the covariant metric tensor. Its
inverse is the contravariant metric tensor gij, with gijgjk = δi

k. Using gij, we can define the contravariant basis
vectors ti = g ijtj.

We must consider how the covariant and contravariant basis vectors vary as functions of position. Here,
we assume that the curved space is not embedded in any higher-dimensional space, so there is no extrinsic
variation outside of the space. The intrinsic variation within the space is ∂it j = Γk

ijtk and ∂itk = −Γk
ijt j,

with the Christoffel symbols Γk
ij given by
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Γk
ij = tk · ∂it j =

1

2
gkl

(
∂igjl + ∂ jgil − ∂lgij

)
. (1)

We apply this formalism to homogeneous 3D spaces. Homogeneous means that all points are equivalent
under a global isometry. However, homogeneity does not mean isotropy. Although all points are equivalent,
the curvature properties may differ when considering different directions emerging from the points. If the
curvature is the same for all directions, the space is said to be isotropic; otherwise it is anisotropic and
homogeneous.

The intrinsic curvature of a manifold M is characterized by the Riemann curvature tensor

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ceΓ
e

bd − Γa
deΓ

e
bc. (2)

A simpler description is given by the Ricci tensor Rij, which is a contracted form of the Riemann tensor,
with Rij = Rk

ikj. In 3D, the Ricci tensor still encompasses full information about the curvature; this is not
true in higher dimensions. A further contraction leads to the coarser ‘scalar’ curvature R = g ijRij.

Another important quantity is the ‘sectional curvature’ KS(σ), where σ denotes a 2D plane in the 3D
tangent space of the manifold. Briefly, KS(σ) measures the Gaussian curvature of a 2D submanifold of M
whose tangent space coincides with σ. (More precisely, this 2D submanifold is the ruled surface in M, union
of geodesics tangent to this plane.) Now the scalar R corresponds to an average of KG over all possible
planes in the tangent space. Isotropic spaces of constant scalar curvature show equal sectional curvature for
any plane σ.

A way to characterize the anisotropy is to consider the eigenvalues of the mixed tensor Ri
j = gikRkj,

whose trace Ri
i gives the scalar curvature. Each eigenvalue relates to the average sectional curvature, in the

corresponding direction, for all planes sharing that direction. Inequality of the eigenvalues is a signature of
anisotropy. The list of eigenvalues will be denoted here as diag(Ri

j), and the corresponding eigenvectors as

{â, b̂, ĉ}.

2.2. Director field
In a nematic phase, the molecules have orientational order along an axis, called the director, given by the
unit vector n̂. Both +n̂ and −n̂ represent the same physical state, with order along the same axis. In general,
the axis of orientational order varies smoothly as a function of position, and hence it is written as the
director field n̂(σ1,σ2,σ3). The Oseen–Frank free energy gives the elastic free energy cost associated with
spatial variations of the director field. To calculate the free energy, we must take derivatives of n̂. To find
these derivatives, we must express n̂ in terms of components along some local basis. Of course, the results
for the free energy must be independent of the choice of basis.

In the literature on liquid crystals on 2D curved surfaces, researchers generally construct a local
orthonormal basis at every point on the surface, and express n̂ in terms of the two basis vectors v̂1 and v̂2.
This choice of basis is particularly convenient in 2D, because one can write n̂ = v̂1 cos θ + v̂2 sin θ, where
θ is a local angle representing the direction of orientational order. Gradients of n̂ can then be expressed in
terms of gradients of θ and gradients of the basis vectors, given by the connection
Ai = v̂1 · ∂iv̂2 = −v̂2 · ∂iv̂1. Nelson and Peliti [12] showed that the connection Ai couples with gradients of
the angle field θ, just as the magnetic vector potential couples with gradients of the phase field in a
superconductor.

When extending the theory from 2D to 3D, we use two other choices of basis. First and most generally,
we use the conventional covariant or contravariant basis of tangent vectors. With the covariant basis vectors
ti = ∂iR, we can write n̂ = niti, where ni are the contravariant components of the director. Equivalently,
with the contravariant basis vectors ti = g iktk, we can also write n̂ = niti, and ni = gijnj are the covariant
components of the director. In this notation, it is essential to remember that the basis vectors are generally
not orthonormal, and hence the director components are not sines and cosines. Rather, the director
components are normalized as nini = gijninj = gijninj = 1. Gradients of n̂ can then be written as

∂in̂ = ∂i

(
njt j

)
= tk

(
∂in

k + Γk
ijn

j
)
= tkDin

k

= ∂i

(
nktk

)
= t j

(
∂in j − Γk

ijnk

)
= t jDinj. (3)

These equations define the covariant derivatives Dinj and Dink.
Second, if the curvature of the space is anisotropic, it is useful to distinguish among the special

directions associated with the curvature. For that purpose, we calculate the orthonormal eigenvectors of the
mixed Ricci tensor, and use that set of vectors {â, b̂, ĉ} as our basis. The director field can then be
characterized by an azimuthal angle α and polar angle β in the {â, b̂, ĉ} frame,

n̂(α,β) = sin β cos α â + sin β sin α b̂ + cos β ĉ. (4)

3
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Whenever the mixed Ricci tensor is uniaxial, with two degenerate eigenvalues that are distinct from the
third, we let ĉ be the eigenvector corresponding to the non-degenerate eigenvalue. In the following sections,
we will often construct a director field using this basis, and then find the director components and calculate
the director gradient tensor Dinj in the conventional basis.

As derived by Machon and Alexander [8], and discussed by Selinger [9], the director gradient tensor can
be decomposed into four parts, which represent physically distinct types of spatial variations. In covariant
notation, this decomposition becomes

Dinj = −niBj +
1

2
Tεijknk +

1

2
S(gij − ninj) +Δij. (5)

The first term is bend of the director field, given by the vector

Bj = −niDinj. (6)

Because n̂ is a unit vector, the bend vector is perpendicular to n̂, with njBj = 0. If n̂ is tangent to geodesic
lines, then its covariant derivative vanishes and hence its bend vanishes. The second term is twist
(i.e. double twist), represented by the pseudoscalar

T = εlijnlDinj. (7)

In the twist term, the covariant Levi-Civita tensor εijk includes a factor of
√
|g|, and the contravariant

Levi-Civita tensor εlij includes a factor of 1/
√
|g|, with g = det gij. The third term is splay (i.e. double

splay), defined by the scalar
S = gijDinj = Djn

j. (8)

The fourth term has been called biaxial splay [9], and can be expressed as the tensor

Δij =
1

2

[
Dinj + Djni + niBj + njBi − S(gij − ninj)

]
. (9)

It is a symmetric, traceless tensor in the plane perpendicular to n̂, so that Δij = Δji, g ijΔij = 0, and
niΔij = 0. The eigenvalues of the tensor Δi

j = gikΔkj are 0, positive, and negative. The eigenvalue 0
corresponds to the eigenvector n̂, and the other two eigenvalues correspond to two vectors perpendicular to
n̂, which show the directions in which the director field splays outward and inward. This combination of
outward and inward gradients is characteristic of biaxial splay.

2.3. Free energy
In covariant notation, the simplest possible version of the Oseen–Frank elastic free energy density of a
nematic liquid crystal is

F =
1

2
Kgik∂in̂ · ∂kn̂ =

1

2
Kgikgjl(Dinj)(Dknl)

=
1

4
KS2 +

1

4
KT2 +

1

2
KB jBj +

1

2
KΔijΔij. (10)

In this expression, the four modes of splay, twist, bend, and biaxial splay contribute equally to the elastic
free energy (except for factors of 1

2 and 1
4 ). For that reason, this expression is called the

single-elastic-constant approximation. More generally, the four modes may have four distinct elastic
coefficients, as discussed in the review article [9]. In the following sections, we will describe some
interesting director fields, and characterize their bend, splay, twist and biaxial splay content by the scalars
S2, T2, |B|2 = BjBj, and Tr(Δ2) = ΔijΔij, which enter the elastic free energy.

If a liquid crystal is made of chiral molecules, then it does not have any reflection symmetry. In that
case, the free energy must have an additional term that is linear in the twist, with the form −KqT. By
completing the square and subtracting an unimportant constant, we can rewrite the free energy density as

Fchiral =
1

4
KS2 +

1

4
K(T − 2q)2 +

1

2
KBjBj +

1

2
KΔijΔij. (11)

Clearly the local free energy density is minimized when T = 2q, S = 0, Bj = 0, and Δij = 0. The question
then becomes: Is it possible to find any global director field with those values of T, S, Bj, and Δij? For a
liquid crystal in 3D Euclidean space, the answer is no; there is no global director field with constant nonzero
double twist, and all other modes equal to zero. Because of this geometric frustration, a chiral liquid crystal
must form a more complex structure. In most cases, a chiral liquid crystal forms a cholesteric phase, which
has constant nonzero T and Δij, but zero S and Bj. Alternatively, it may form a blue phase, with a lattice of

4
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double twist tubes separated by disclination lines, and the ideal structure at the center of each tube. The
insight of Sethna et al [6] was that the ideal local double twist structure can be achieved everywhere in a
specific 3D non-Euclidean geometry, which is a hypersphere of radius 1/q. We will discuss this structure in
section 4.2 below.

Apart from chirality, liquid crystals can also be made of molecules with other types of asymmetry. For
example, bent-core liquid crystals are composed of banana-shaped molecules, which have a long molecular
axis and a transverse orientation. If the transverse orientation is ordered, then the long molecular axis has a
tendency to bend, known as the converse bend flexoelectric effect [2, 19]. This tendency can be described by
the free energy density

Fbanana =
1

4
KS2 +

1

4
KT2 +

1

2
K(Bj − B̄ j)(Bj − B̄ j) +

1

2
KΔijΔij, (12)

where B̄ j is the spontaneous bend, which is a vector of constant magnitude, perpendicular to n̂. This local
free energy density is minimized when Bj = B̄ j, S = 0, T = 0, and Δij = 0. This structure experiences
geometric frustration in 3D Euclidean space, because no global director field has those derivatives. One
possible resolution is to form a heliconical twist-bend nematic (NTB) phase, with constant nonzero B, T,
and Δij, but zero S. Following the example of Sethna et al, we will look for a non-Euclidean geometry in
which the ideal structure of pure bend can form without frustration.

Two further possibilities can also be considered. A liquid crystal can be composed of pear-shaped
molecules, with a long molecular axis and a polar orientation from the narrow end to the wide end. If the
polar orientation is ordered, then the long molecular axis has a tendency to splay, known as the converse
splay flexoelectric effect [2, 19]. That tendency can be represented by the free energy density

Fpear =
1

4
K(S − S̄)2 +

1

4
KT2 +

1

2
KBjBj +

1

2
KΔijΔij, (13)

where S̄ is the spontaneous splay. Likewise, a liquid crystal can be composed of more complex biaxial
molecules, perhaps with an elongated tetrahedral shape. That shape could give a tendency toward the
biaxial splay mode, expressed by the free energy density

Fbiax =
1

4
KS2 +

1

4
KT2 +

1

2
KBjBj +

1

2
K(Δij − Δ̄ij)(Δij − Δ̄ij). (14)

It has a spontaneous deformation Δ̄ij, which is a symmetric, traceless tensor with constant eigenvalues, in
the plane perpendicular to n̂. Both of these forms for the free energy density also have geometric frustration
in 3D Euclidean space. We will look for non-Euclidean geometries in which their ideal local structures can
fill space without frustration.

3. Director fields in 2D surfaces of constant curvature

The only possible deformations in 2D are splay and bend. Niv and Efrati derived the ‘compatibility’
constraint S2 + B2 = −KG, which shows that a regular field configuration with non-vanishing constant
splay or bend can exist in a negatively curved surface, but not in a surface of zero or positive curvature [7].
We illustrate this phenomenon with specific examples, mainly as an introduction to further analysis of the
3D case.

In 2D, curvature is captured by one intrinsic quantity, the Gaussian curvature, and there are three
homogeneous surfaces of constant curvature: the Euclidean plane R2, the sphere S2 and the hyperbolic
plane H2. These 2D surfaces are all isotropic. Notice that S2 has a simple visualization, because it can be
isometrically embedded in R

3, while the representation of H2 is more complex.
There are many ways to define a vector field on a manifold. We consider a simple class of vector fields,

which are defined as follows: suppose that a surface is represented as R(u, v), where u and v are two
independent coordinates. One vector field is defined as tu = ∂uR, normalized to unit magnitude. It is
tangent to field lines R(u, v) with variable u and constant v. Another vector field is defined as tv = ∂vR, also
normalized to unit magnitude. It is tangent to field lines R(u, v) with constant u and variable v. These two
cases will be interesting enough to demonstrate pure splay or bend.

As mentioned in the previous section, vector fields tangent to geodesic lines have zero bend. Hence, we
can only find nonzero bend if the vector field is tangent to field lines that are not geodesics.

We briefly discuss the cases of R2 and S
2, and then concentrate on the most interesting case of H2.

5
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3.1. Euclidean plane R2

The simplest choice of coordinate system is Cartesian, with metric d	2 = dx2 + dy2. In that case, we
consider a director field aligned along either the x or y direction. This director field is constant, with zero
splay and zero bend.

Another possible choice is polar coordinates (ρ, θ), with metric d	2 = dρ2 + ρ2dθ2. With this
coordinate system, we can consider two types of director field. First, varying ρ with constant θ leads to
radial field lines. The corresponding director field ni = (1, 0) has nonuniform splay S = 1/ρ and zero bend.
Alternatively, varying θ with constant ρ leads to circular field lines. The corresponding director field
ni = (0, 1/ρ) has nonuniform bend Bi = (1/ρ, 0) with magnitude |B|2 = 1/ρ2 and zero splay. Note that this
coordinate system (and hence the derived director fields) is singular at the origin.

3.2. Unit sphere S2

We consider spherical coordinates (θ, φ), with metric d	2 = dθ2 + sin2 θ dφ2, from which the standard
embedding of S2 in R

3 is derived. With this coordinate system, we can construct two types of director field.
First, varying θ with constant φ leads to meridian lines. The corresponding director field ni = (1, 0) has
nonuniform splay S = cot θ and zero bend (as expected because the meridians are geodesics). Alternatively,
varying φ with constant θ leads to parallel circles on the sphere. The corresponding director field
ni = (0, csc θ) has nonuniform bend Bi = (cot θ, 0) with magnitude |B|2 = cot2 θ and zero splay.

Like the polar coordinate system for R2, the spherical coordinate system for S2 has singularities, which
occur at the two poles. For S2, the occurrence of singularities is not an artifact of this coordinate system,
because of the well-known ‘hairy ball theorem’, which shows that any vector field tangent to S

2 must have
at least one singularity.

3.3. Hyperbolic plane H2

The most interesting 2D case is provided by the hyperbolic plane H2. As a first step, we must construct a
coordinate system for H2, and visualize the field lines corresponding to these coordinates. This task is
challenging because there is no isometric embedding of the hyperbolic plane H2 into Euclidean space R3.
However, it is possible to represent H2 as an hyperbolic surface of equation x2

1 + x2
2 − x2

3 = −1, provided
that the 3D embedding space is given a Minkowski metric d	2 = dx2

1 + dx2
2 − dx2

3. Among the different
ways to parameterize that embedded surface, we choose the exponential coordinate system (σ,μ) defined by
[20]

x1 = μe−σ , x2 =
1

2
μ2e−σ + sinh(σ), x3 =

1

2
μ2e−σ + cosh(σ). (15)

In this coordinate system, the metric on the surface becomes d	2 = dσ2 + e−2σdμ2, which is positively
defined.

Besides the above Minkowski hyperboloid model, there are two other well-known conformal
representations of H2, embedded on a usual plane. We mention these representations here, so that we can
use them to visualize H

2 now, and generalize them to 3D later.
First, the Poincaré disk is defined by figure 1. For this representation, we make a stereographic

projection from the hyperbolic surface x2
1 + x2

2 − x2
3 = −1 onto the horizontal (x, y) plane, by constructing

a line from any point on the surface to the pole (0, 0,−1). This line intersects the horizontal plane at the
point x = x1/(1 + x3), y = x2/(1 + x3), which lies inside the unit disk. Hence, any point inside this disk
represents a point on H

2, and any point on the boundary of the disk represents infinity on H
2. Because of

this projection, all distances appear to contract near the boundary. The Poincaré disk representation is
conformal but not isometric, the metric reading here d	2 = 4(1 − x2 − y2)−2(dx2 + dy2). Geodesic lines are
circles (or diameters), orthogonal to the unit circle.

For a second representation, we can transform the Poincaré disk into the upper half-plane by a
conformal mapping, which is an inversion with a pole located on the boundary of the disk. The boundary is
then mapped onto the x axis, and the disk interior is mapped onto the half plane with positive y. Geodesics
are then represented by circles (or straight lines) orthogonal to the x axis, and the metric becomes
d	2 = y−2(dx2 + dy2).

We can now define various types of director field in the exponential coordinate system, and visualize
them on the Poincaré disk. First, varying σ with constant μ leads to the field lines shown in figure 2(a).
These lines are a bundle of parallel geodesics in H

2, which are represented by circular arcs on the Poincaré
disk. The corresponding director field ni = (1, 0) has constant splay S = −1 and zero bend (as expected
because the field lines are geodesics). Alternatively, varying μ with constant σ leads to the fields lines in
figure 2(b). Those lines are called horocircles, and are orthogonal to the previous bundle. The
corresponding director field ni = (0, eσ) has constant bend Bi = (−1, 0) with magnitude |B|2 = 1 and zero
splay.

6



New J. Phys. 22 (2020) 093036 J-F Sadoc et al

Figure 1. Poincaŕe disk representation of the hyperbolic plane H2.

Figure 2. Fields in H
2 derived from the exponential coordinates, represented in the Poincaŕe disk. (a) Pure splay field lines

tangent to geodesic lines, obtained by varying σ with constant μ on each line, leading to S = −1, |B|2 = 0. (b) Pure bend field
lines obtained by varying μ with constant σ. The field lines are along H

2 horocircles, leading to S = 0, |B|2 = 1. (c) Field with
mixed splay and bend.

For an intermediate case, we consider the director field ni = (cos θ, eσ sin θ), as shown in figure 2(c). It
has a mixture of splay S2 = cos2 θ and bend |B|2 = sin2 θ, so that S2 + |B|2 = 1. This result is consistent
with the compatibility constraint derived by Niv and Efrati [7].

In both figures 2(a) and (b), the field lines converge toward a single point at infinity. The choice of this
point is just an artifact of the coordinate system; any point at infinity could have been chosen. Hence, there
is a continuous set of constant splay fields and a continuous set of constant bend fields, coded by the
angular coordinate of the special point at infinity.

The field lines associated with both constant splay and bend cases have a very simple visualization in the
upper half-plane representation. If the inversion pole, from the disk to the upper half-plane, is chosen
opposite to the point at infinity where geodesics and horocircles meet, then the field lines are mapped to
constant x lines (splay case) and constant y lines (bend case).

7
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As an aside, this dual set of geodesic and orthogonal horocircles also plays an interesting role in a
different physical problem, which is the Laplace equation in H

2. Here, the wave-like solutions progress
along geodesic bundles (of the pure splay type), with equiphase loci along orthogonal horocircles (of the
pure bend type).

From these results, we can see that H2 is quite different from R
2 and S

2 in an important way: in H
2, we

can construct director fields with pure splay or pure bend of constant magnitude. In R
2 and S

2, we can
construct director fields with pure splay or pure bend, but the magnitude of splay or bend is not uniform,
and the fields contain a singularity. If the Oseen–Frank elastic free energy favors a certain nonzero
magnitude of splay or bend, it can achieve the favored state everywhere in H

2. By contrast, it is frustrated in
R

2 and S
2, and cannot achieve the favored state everywhere.

4. Director fields in 3D spaces of constant curvature

We now address the case of 3D director fields, and look for geometries in which a single one of the four
deformation modes can be realized by itself, without any of the other deformation modes. For that purpose,
we analyze the eight homogeneous 3D spaces of constant scalar curvature [11, 21]. These eight 3D
geometries include three simple generalizations of the 2D geometries studied above: R3, S3 and H

3. Those
geometries are isotropic and have constant sectional curvature—zero, positive, and negative, respectively. In
addition, we must consider two cases of simple cross products, S2 × R and H

2 × R, which are anisotropic.
Finally, we have three more complex cases, called S̃L(2, R), Nil, and Sol, which are also anisotropic.

In each of the spaces, we construct director fields, calculate the four deformation modes S2, |B|2, T2, and
Tr(Δ2), and search for configurations in which only one deformation mode is non-vanishing. We also look
empirically for 3D generalizations of the 2D compatibility relation S2 + |B|2 = −KG.

4.1. Euclidean space R3

Although this is the space of main interest for analyzing real liquid crystals, it does not allow for director
fields with a single constant deformation mode—either bend, twist, splay, or biaxial splay—except the
trivial constant field for which these deformations all vanish. Each individual mode can occur locally in R

3,
as discussed in the review article [9], but those configurations show nonuniform deformations or even
singularities in the director field. The allowed combinations of constant deformations have been
characterized by Virga [10].

Let us just discuss here the case of twist deformations, expected for liquid crystals with chiral molecules.
Cholesteric phases are often observed in that case. For example, consider the director field
n̂(x, y, z) = (cos qz, sin qz, 0). Applying the framework given in section 2 leads to B = 0, T = −q, S = 0,
and

Δ =
q

2

⎛
⎝ 0 0 − sin qz

0 0 cos qz
− sin qz cos qz 0

⎞
⎠ . (16)

Therefore, a cholesteric ‘single twist’ configuration can be seen as a mixture of (double) twist T and biaxial
splay Δ.

A pure double twist configuration in R
3 can only be realized along a line, as a ‘double-twist tube’. As an

example, for a tube along the z axis, the director field is

n̂(x, y, z) =
(−qy, qx, 1)√

1 + q2
(
x2 + y2

) , (17)

Along the z axis, all deformation modes vanish except for (double) twist T = 2q. Away from the z axis, this
field has a nonuniform mixture of twist and bend. It can be shown that a pure double twist configuration
cannot be defined in R

3, necessarily leading to field singularities. Indeed, a well-established model for
liquid-crystal ‘blue phases’ is a 3D array of double-twist tubes pierced by a dual array of disclination lines
[22].

4.2. Three-dimensional sphere S3

The defect-rich structure of the blue phase in R
3 motivated Sethna et al [6] to construct an ideal, defect-free

blue phase in the positively curved space S3. This structure has pure double twist, of constant magnitude,
with none of the other liquid-crystal deformation modes. Here, we review previous results on the ideal blue
phase [6, 23], emphasizing the role of Hopf fibrations.

The three-sphere S
3 is a curved 3D space, which can be embedded in 4D Euclidean space by the simple

equation x2
1 + x2

2 + x2
3 + x2

4 = 1. It can also be put in one-to-one correspondence with the special unitary

8
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Figure 3. Stereographic projection onto R
3 of a part of the S3 great circles Hopf fibration. These circles are on a torus bundle,

some of which being drawn here, organized around two interlaced great circles of S3.

group SU(2), widely used in physics. Among the different parameterizations of S3, we shall use here a
toroidal coordinate system (φ, θ,ω), which is defined by

x1 = cos θ sin φ, x2 = sin θ sin φ, x3 = cos ω cos φ, x4 = sin ω cos φ. (18)

with 0 � φ � π
2 , 0 � θ � 2π, and 0 � ω � 2π. In this coordinate system, the metric is

d	2 = dφ2 + sin2 φ dθ2 + cos2 φ dω2. The S
3 scalar curvature reads R = 6, and its isotropic nature is seen

in diag(Ri
j) = (2, 2, 2).

Surfaces of constant φ are tori, and these tori form a foliation of S3; i.e. they break the space into a series
of sheets. Figure 3 shows a stereographic projection of these tori onto R

3. The tori are organised around two
interlaced great circles x2

1 + x2
2 = 1 and x2

3 + x2
4 = 1, corresponding to φ = π

2 and φ = 0, which act as two
orthogonal C∞ symmetry axes of S3. In the stereographic projection, one of those great circles maps onto
the horizontal circle at the core of the torus, and the other maps onto the vertical axis.

Consider a specific torus in the foliation, with the coordinate φ = φ0. Within that torus, we impose a
simple linear relation between the coordinates θ and ω, of the form θ = ω + ω0, with ω0 constant. This
relation defines a curve on the torus, which is a great circle. Varying the parameter ω0 leads to a fibration of
the torus; i.e. it breaks the torus into a series of fibers, which are all great circles. These fibers are indicated
by black lines on each torus in figure 3. If we vary both the parameters φ0 and ω0, we obtain a great circle
fibration of the entire space S3; i.e. it breaks the space into fibers, with each circular fiber associated with the
pair (φ0,ω0). This construction is called the Hopf fibration. Note that the two symmetry axis circles, with
φ = 0 and π

2 , are part of this fibration.
Following the previous work, we define a director field n̂(φ, θ,ω) in S

3 to be everywhere tangent to the
Hopf fibration. This director field has contravariant components ni = (0, 1, 1), covariant components
ni = (0, sin2 φ, cos2 φ), and hence is normalized. By putting this director field into equations (6)–(9), we
can calculate all four of the deformation modes. Explicit calculations give double twist T = 2, splay S = 0,
bend B = 0, and biaxial splay Δij = 0. (The zero bend is expected, because the director field is tangent to
great circles, which are geodesics in S

3.) Hence, this structure has pure double twist, independent of
position, with none of the other deformation modes.

If we repeat the calculation in a three-sphere of radius ρ, we obtain a double twist of T = 2/ρ, again
with zero splay, bend, and biaxial splay. Hence, if a chiral liquid crystal has the free energy of equation (11),
which favors T = 2q and all other modes zero, it can reach an ideal, unfrustrated state in a three-sphere of
radius ρ = 1/q. By contrast, in a three-sphere of any other curvature radius (or in the limiting case of R3

with infinite radius), the structure is frustrated, meaning that it is unable to fill up space with the ideal local
deformation. In that case, it must form a blue phase with director singularities, or a cholesteric phase with a
combination of double twist and biaxial splay.

9
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Figure 4. Deformation modes for the H3 manifold. The director field has a fixed orientation, given by the angles α and β in the
{â, b̂, ĉ} basis. The intensity of each deformation mode is represented by the distance of the corresponding surface from the
origin, at that orientation of n̂. The twist and biaxial splay both vanish.

As a further point, we note that, due to the isotropy of S3, there is a continuum of Hopf fibrations,
obtained from the given fibration by applying symmetry elements of S3. It is also possible to generate Hopf
fibrations with the opposite chirality by applying a reflection.

Another interesting director configuration in S
3 is tangent to field lines with varying φ and constant θ

and ω. This director field ni = (1, 0, 0) is normal to the tori. The field lines are geodesic, so there is still no
bend B = 0. Furthermore, there is no twist T = 0, and we are left with splay S = 2 cot 2φ and biaxial splay
Tr(Δ2) = 2 csc2 2φ.

4.3. Hyperbolic space H3

To fulfill our program of finding ideal director fields for each liquid-crystal deformation mode, we now
consider the six other 3D homogeneous spaces, starting with the hyperbolic space H3.

To analyze the 3D hyperbolic space H3, we follow a procedure analogous to the 2D hyperbolic plane H2

in section 3.3. The space H3 can be represented as the hyperboloid x2
1 + x2

2 + x2
3 − x2

4 = −1 embedded in
4D Minkowski space, provided that the 4D metric is defined as d	2 = dx2

1 + dx2
2 + dx2

3 − dx2
4. To

parameterize H
3, we choose the exponential coordinate system (μ, ν,σ) defined by [20]

x1 = μe−σ, x2 = νe−σ, x3 =
1

2
e−σ

(
μ2 + ν2

)
+ sinh(σ),

x4 =
1

2
e−σ

(
μ2 + ν2

)
+ cosh(σ).

(19)

In this coordinate system, the positively defined metric reads d	2 = e−2σ(dμ2 + dν2) + dσ2. The H3 scalar
curvature is R = −6, and its isotropic nature is seen in diag(Ri

j) = (−2,−2,−2).
Because the eigenvalues of the mixed Ricci tensor are all degenerate, this tensor is proportional to the

identity, and all vectors are eigenvectors. For that reason, we have complete freedom to choose any three
orthonormal vectors as our set of Ricci eigenvectors. One convenient choice is just along the conventional
tangent vectors, so that ai = (eσ , 0, 0), bi = (0, eσ, 0), and ci = (0, 0, 1). Following equation (4), we define
the director n̂ in terms of this basis as n̂ = sin β cos α â + sin β sin α b̂ + cos β ĉ, with constant
azimuthal angle α and polar angle β. A direct computation of the different deformation modes then gives

S2 = 4 cos2 β, |B|2 = sin2 β, T2 = 0, Tr(Δ2) = 0. (20)

All of the director fields in this family satisfy the relation

S2 + 4|B|2 = 4. (21)

10
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Figure 5. Pure splay and bend configurations in the Poincaŕe ball representation of H3. (a) Pure splay field lines, along parallel
geodesics coming from a point at infinity (here the north pole on the limit sphere). (b) Pure bend field lines, tangent to a bundle
of horocircles drawn on a bundle of horospheres (here tangent to the north pole on the limit sphere).

Figure 4 shows a polar plot of the four deformation modes as functions of the angles α and β. Two special
cases are particularly interesting: the director field has pure constant splay if β = 0, and it has pure constant
bend if β = π/2. In the latter case, note that there is a continuous set of pure bend field upon varying α.

To visualize these director fields in H
3, we use the Poincaré ball representation, analogous to the

Poincaré disk discussed in section 3.3. For this representation, we make a stereographic projection from the
hyperboloid onto the (x, y, z) space, by constructing a line from any point in the hyperboloid to the pole
(0, 0, 0,−1). This line maps any point of the hyperboloid (x1, x2, x3, x4) onto x = x1/(1 + x4),
y = x2/(1 + x4), z = x3/(1 + x4), which lies inside the unit ball B3. In this Poincaré ball, points at infinity
of H3 are represented by the limit sphere R = 1. Geodesics are represented by arcs of circles orthogonal to
the limit sphere, as shown in figure 5(a), and geodesic surfaces by spherical caps orthogonal to the limit
sphere. Horospheres are spheres tangent to the limit sphere, shown in figure 5(b), and horocircles are fibers
on those spheres.

Now the two special cases of director field are easily identified. The pure splay field (with β = 0)
amounts to varying σ with constant μ and ν, leading to the geodesic field lines in figure 5(a), which
converge toward a single point at infinity. The corresponding director field n̂ = ĉ has pure constant splay,
with zero bend, twist, and biaxial splay. (The zero bend is expected because the field lines are geodesics.)
There is a continuous set of such director fields with pure constant splay, which can be obtained by global
rotations changing the bundle end point on the unit sphere bounding the Poincaré ball.

For the pure bend field (with β = π/2), we can use any unit vector in the {â, b̂} plane. For example,
varying μ with constant σ and ν leads to the field lines shown in figure 5(b). Here, the constant σ defines a
horosphere, and the constant ν selects a horocircle on that horosphere. We can therefore build an overall
horocircle bundle of H3. The corresponding director field tangent to these horocircles is n̂ = â, which has
pure constant bend, along with zero splay, twist, and biaxial splay.

Note that the pure bend field lines are everywhere orthogonal to the pure splay field lines. Therefore, the
chosen exponential coordinate system gives a local basis of tangent vectors with pure constant splay along
one direction, and pure constant bend along the other two.

From these results, we can see that the hyperbolic space H3 allows director fields with pure constant
splay or with pure constant bend, just as the three-sphere S

3 allows director fields with pure constant twist.
If we change the curvature radius of H3 from 1 to ρ, the splay of the first director field would change to
S2 = 4/ρ2, and the bend of the second director field would change to |B|2 = 1/ρ2. Hence, if the free energy
for bent-core molecules favors a certain bend, as in equation (12), or the free energy for pear-shaped
molecules favors a certain splay, as in equation (13), the ideal structure can be achieved without frustration
in a hyperbolic space with the appropriate curvature radius.

As previously discussed for H2, we can also transform, by inversion, from a Poincaré ball visualization to
an upper half-space visualization of H3. This upper half-space visualization is defined for positive z, and it
has the metric d	2 = z−2(dx2 + dy2 + dz2). In this visualization, the pure splay case corresponds to field
lines along z, and the pure bend case corresponds to parallel lines in the (x, y) plane.

We now extend the analysis to the remaining five 3D homogeneous geometries, which are anisotropic,
especially to search for an example of pure constant biaxial splay.

4.4. Space S2 × R

The space S2 × R consists of the 2D sphere S2 extended uniformly in an orthogonal direction. A natural
coordinate system (θ, φ, z) is just the (θ, φ) angular coordinates of S2 combined with the z coordinate along
R. In this coordinate system, the metric is d	2 = dθ2 + sin2 θ dφ2 + dz2. This space is clearly anisotropic,
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because the z direction is different from the other two directions. The (θ, φ) surface is a sphere with positive
Gaussian curvature, while any surface containing z is a cylinder with zero Gaussian curvature. The scalar
curvature is R = 2, and its anisotropic nature is seen in diag(Ri

j) = (1, 1, 0).
One trivial director field in this space is just in the z direction, with ni = (0, 0, 1). This director field has

zero splay, twist, bend, and biaxial splay.
Two other possibilities are the director fields on the 2D sphere S2 defined in section 3.2, with no

component in the z direction. Along the meridians, varying θ with constant φ and z gives the director field
ni = (1, 0, 0). It has nonuniform splay S2 = cot2 θ and nonuniform biaxial splay Tr(Δ2) = 1

2 cot2 θ, with
zero twist and zero bend. Along the parallel circles, varying φ with constant θ and z gives the director field
ni = (0, csc θ, 0). It has nonuniform bend |B|2 = cot2 θ.

In each of the latter two cases, the director field has singularities at θ = 0 and π. To avoid the free energy
cost of these singularities, the director field might escape into the third dimension by developing a nonzero
z component. In that sense, it could form a non-Euclidean analogue of the structure that is often observed
in liquid-crystal tubes, which has bend, splay, and biaxial splay.

The space S2 × R is apparently not useful for our current purpose of finding geometries with pure
constant deformation modes. However, as an aside, we should note that this space was previously studied to
solve another soft-matter frustration problem, which was in lamellar and smectic liquid crystals [3, 24, 25].
In that case, the special feature of S2 × R geometry is to provide equal spacing between smectic layers.

4.5. Space H2 × R

The space H2 × R is the 2D hyperbolic plane H2 extended uniformly in an orthogonal direction. We
construct a coordinate system (σ,μ, z) by combining the exponential coordinates (σ,μ) of H2, which were
presented in section 3.3, with the z coordinate for R. In this coordinate system, the metric is
d	2 = dσ2 + e−2σdμ2 + dz2. The scalar curvature is R = −2, and its anisotropic nature is seen in
diag(Ri

j) = (−1,−1, 0).
Because the third eigenvalue of the mixed Ricci tensor is distinct from the other two, the corresponding

eigenvector must be ci = (0, 0, 1). The other two orthonormal eigenvectors can be chosen as ai = (1, 0, 0)
and bi = (0, eσ , 0). Following equation (4), we define the director n̂ with respect to this basis as
n̂ = sin β cos α â + sin β sin α b̂ + cos β ĉ, with constant α and β. Direct computation of the
deformation modes then gives

S2 = cos2 α sin2 β, |B|2 = sin2 α sin4 β, T2 = sin2 α sin2 β cos2 β,

Tr(Δ2) =
1

2

[
cos2 α sin2 β + sin2 α sin2 β cos2 β

]
=

1

2

[
S2 + T2

]
.

(22)

Figure 6 shows a polar plot of the four deformation modes as functions of the angles α and β. In these
expressions, we do not see a general relation analogous to equation (21) that is valid in the whole space.
However, H2 × R has a natural product structure, suggesting that we may look for an expression value in
the H2 part, where β = π/2. Here, we find the relation

S2 + 2|B|2 + T2 + 2 Tr(Δ2) = 2. (23)

Note that we could have omitted the T2 term because it vanishes on the plane β = π/2. However, we keep it
for consistency with other relations that will be found on 2D eigenplanes of the mixed Ricci tensor in other
geometries, discussed below.

To visualize director fields in this space, we extend the Poincaré disk into a tube along the vertical axis,
as shown in figure 7. A first, trivial director field is just n̂ = ĉ, i.e. β = 0, represented in figure 7(a). This
director field is parallel to R in the product manifold H

2 × R, which is vertical in this visualization. It is
nematic-like with vanishing splay, twist, bend, and biaxial splay.

For more interesting director fields, one may extend the 2D fields found in H
2 to H

2 × R. This amounts
to fixing β = π/2. As a first possibility, we begin with the pure splay director field on H

2, with the director
tangent to geodesic bundles. In H

2 × R, this director field is parallel to â, corresponding to α = 0,
represented in figure 7(b). It has constant splay S2 = 1 and constant biaxial splay Tr(Δ2) = 1

2 , with zero
bend and zero twist. We emphasize that this field is not pure splay in 3D, because it includes a component
of Δ. It is an example of planar splay, which is mixed splay and Δ, as discussed in the review article [9].

As an alternative, we can begin with the pure bend director field on H
2, with the director orthogonal to

the geodesic bundles. In H
2 × R, this director field is parallel to b̂, corresponding to α = π/2, represented

in figure 7(c). It has constant bend |B|2 = 1, and zero splay, twist, and biaxial splay. We emphasize that this
field is pure bend in 3D. The difference between this case with pure bend and the previous case with mixed
splay and Δ arises from a fundamental distinction between bend and splay in 3D: pure bend is a planar
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Figure 6. Deformation modes for the H2 × R manifold. The intensity of each deformation mode is represented by the distance
of the corresponding surface from the origin, at that orientation of n̂.

Figure 7. Field lines in H
2 × R represented in 3D Euclidean space with a horizontal Poincaŕe disk for H2 and an orthogonal R

vertical direction. (a) Trivial uniform field lines in the z direction, with zero director gradients. (b) The H2 geodesic pure splay
line bundle, repeated by translation along the z direction. This director field has constant splay S and biaxial splay Δ, with zero
bend and zero twist. (c) The H2 pure bend horocircles bundle, repeated by translation along the z direction. This director field
shows constant bend and vanishing splay, twist, and biaxial splay.

deformation, but pure splay is double splay, which is not a planar deformation. That distinction occurs in
3D but not in 2D, where bend and splay are both planar deformations.

4.6. The S̃L(2, R) geometry
The next Thurston geometry, S̃L(2, R), is related to SL(2, R), the group of 2 × 2 matrices with real entries
and unit determinant. At a topological level, S̃L(2, R) is the ‘universal cover’ of SL(2, R), meaning that the
latter is not simply connected. The simplest example of a non-simply connected manifold is the unit circle
S

1, because a path encircling the origin cannot be deformed continuously to a non-encircling path. The
covering space of S1 is R1, derived by shifting the 2π-periodic coordinate to the full real line. A similar
process is followed from SL(2, R) to S̃L(2, R).

To see how SL(2, R) arises in the context of 3D manifolds, let us recall that H3 was above described in R
4

with a Minkowski metric {1, 1, 1,−1}, as a sheet of the 3D hyperboloid defined by the equation
x2

1 + x2
2 + x2

3 − x2
4 = −1. This construction can be generalized [26] to other hyperboloids Hp,q with∑p

i=1 x2
i −

∑p+q+1
j=p+1 x2

j = −1. With these notations, the hyperboloid used to represent H3 reads H3,0, and

even S
3 could be defined as H0,3.

The so-called anti-de-Sitter space AdS3 corresponds to H2,1 with equation x2
1 + x2

2 − x2
3 − x2

4 = −1, and
with a Minkowski signed metric of the form {1, 1,−1,−1}.
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Any element M ∈ SL(2, R) can be written as

M =

(
x1 + x4 x2 + x3

x2 − x3 x4 − x1

)
(24)

with det M = −x2
1 − x2

2 + x2
3 + x2

4 = 1. Hence, there is a one-to-one correspondence between AdS3 and
SL(2, R), and a 3D manifold can be associated with this group. We could now follow a similar analysis as in
the H3 case, and define three coordinates on the generalized hyperboloids to search for interesting vector
fields. However, this procedure is not convenient here because the induced metric on the hyperboloid,
inherited from the Minkowski metric, is generically not positive definite (leading to vectors having possibly
negative norm).

We shall therefore proceed differently, and follow reference [27], where S̃L(2, R) is described as the
covering space of the unit tangent bundle of H2, denoted UH

2, the latter being also closely related to
SL(2, R). A unit vector at a point (x, y) of H2 (say given in the upper plane model) needs another quantity z,
in the range from 0 to 2π, to capture the local orientation of that unit vector. Lifting from SL(2, R) to
S̃L(2, R) amounts to letting the z coordinate run along R. Although this representation of S̃L(2, R)
topologically recalls that of H2 × R, the two geometries are different, as demonstrated by the explicit form
of their metric and Ricci tensor.

With the above defined (x, y, z) coordinates, the covariant metric tensor is [27]

gij =
1

y2

⎛
⎝2 0 y

0 1 0
y 0 y2

⎞
⎠ , (25)

and the Ricci tensor Rij becomes

Rij =
1

2y2

⎛
⎝−2 0 y

0 −3 0
y 0 y2

⎞
⎠ . (26)

The scalar curvature is R = − 5
2 for this negatively curved space, with an anisotropy shown by

diag(Ri
j) = (− 3

2 ,− 3
2 , 1

2 ).
Because the third eigenvalue of the mixed Ricci tensor is distinct from the other two, the corresponding

eigenvector must be ci = (0, 0, 1). The other two orthonormal eigenvectors can be chosen as ai = (−y, 0, 1)
and bi = (0, y, 0). Again, we define the director n̂ in this basis as n̂ = sin β cos α â + sin β sin α b̂
+ cos β ĉ, with constant α and β. Direct computation then gives the deformation modes

S2 = sin2 α sin2 β, |B|2 = sin2 β[cos β − cos α sin β]2,

T2 = cos2 β[cos β − cos α sin β]2,

Tr(Δ2) =
1

8
sin2 β

[
5 − cos 2β − 2 cos 2α sin2 β + 4 cos α sin 2β

]
.

(27)

Figure 8 shows a polar plot of the four deformation modes. In these expressions, we cannot find a general
relation that is valid in the whole space. However, following the same reasoning as in the H2 × R case, we
focus on the mixed Ricci eigenplane spanned by â and b̂, where β = π/2. In that plane, we find

S2 + 2|B|2 + T2 + 2 Tr(Δ2) = 3. (28)

This relation is similar to equation (23) for H2 × R, except that the constant is now 3 rather than 2.
These results allow us investigate vector fields defined on this manifold, and we find two interesting

cases.
The first case is n̂ = ĉ, i.e. β = 0. This director field follows field lines in the direction of variable z,

leading to a pure constant twist configuration characterized by T2 = 1. This result might be surprising,
because it shows that global positive curvature, as in the Hopf field on S

3, is not a necessary condition for
having constant twist. Note however that, because S3 is isotropic, pure twist solutions can be defined in any
direction in the tangent space. By contrast, because SL(2, R) is anisotropic, the pure twist field can only
occur along one direction, which is the direction along which the average sectional curvature is positive. We
therefore conjecture that a positive average sectional curvature along one direction might be a necessary
condition for the existence of a pure twist field configuration. This point will be discussed again in the Nil
space case.

The second interesting case is provided by n̂ = (â + ĉ)/
√

2, i.e. α = 0 and β = π/4, so that
ni = (−y, 0, 1)/

√
2. Explicit calculation shows that this vector field has zero splay, zero twist, zero bend, but
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Figure 8. Deformation modes for the ˜SL(2, R) manifold. The intensity of each deformation mode is represented by the distance
of the corresponding surface from the origin, at that orientation of n̂.

constant nonzero biaxial splay with Tr(Δ2) = 1/2. The tensor structure of the biaxial splay is

Δij = − 1

2
√

2y2

⎛
⎝0 2 0

2 0 y
0 y 0

⎞
⎠ . (29)

The eigenvalues of Δi
j = gikΔkj are 0, 1

2 , and − 1
2 . The eigenvalue of 0 corresponds to the director, because

the biaxial splay tensor is constructed to be orthogonal to the director. The other two eigenvalues
correspond to the eigenvectors ui = (−y/2, y/

√
2, 0) and vi = (y/2, y/

√
2, 0), respectively. Hence, the

director field splays outward in the u direction, and it splays inward in the v direction.
This is the first time that we have found a director field with pure constant biaxial splay. At this point,

we have identified non-Euclidean geometries with each pure type of nematic director deformation. Still, we
will continue analyzing the last two Thurston geometries, which will provide further examples.

4.7. Nil space
Nil geometry is a homogeneous 3D space associated with the Heisenberg matrix group, the multiplicative
group of triangular real matrices of the form [21, 28]

H =

⎛
⎝1 x z

0 1 y
0 0 1

⎞
⎠ . (30)

Such matrices can be labeled by the triplet (x, y, z), which provides a simple representation in Euclidean 3D
space. However, Nil geometry is highly non-trivial, since ‘translations’ in Nil correspond to matrix
multiplication, and are therefore (generically) non-commutative. A translation by Nil vector (x, y, z) acts on
a point (a, b, c), leading to the point (x + a, y + b, z + c + xb), as given by the matrix product⎛

⎝1 x z
0 1 y
0 0 1

⎞
⎠ .

⎛
⎝1 a c

0 1 b
0 0 1

⎞
⎠ =

⎛
⎝1 x + a z + c + xb

0 1 y + b
0 0 1

⎞
⎠ . (31)

Nil space has the covariant metric tensor

gij =

⎛
⎝1 0 0

0 1 + x2 −x
0 −x 1

⎞
⎠ , (32)

and hence the Ricci tensor

Rij = −1

2

⎛
⎝1 0 0

0 1 − x2 x
0 x −1

⎞
⎠ . (33)

15



New J. Phys. 22 (2020) 093036 J-F Sadoc et al

Figure 9. Deformation modes for the Nil manifold. The intensity of each deformation mode is represented by the distance of the
corresponding surface from the origin, at that orientation of n̂.

The scalar curvature is R = − 1
2 for this negatively curved space, and the anisotropy is shown by

diag(Ri
j) = (− 1

2 ,− 1
2 , 1

2 ).
Once again, the third eigenvalue of the mixed Ricci tensor is distinct from the other two, and hence the

corresponding eigenvector must be ci = (0, 0, 1). The other two orthonormal eigenvectors can be chosen as
ai = (1, 0, 0) and bi = (0, 1, x). As before, we define the director as n̂ = sin β cos α â + sin β sin α b̂ +

cos β ĉ with fixed α and β. The deformation modes can then be calculated as

S2 = 0, |B|2 = sin2 β cos2 β, T2 = cos4 β, Tr(Δ2) =
1

2
sin4 β. (34)

Figure 9 gives a polar plot of the deformation modes. All of the director fields in this family satisfy the
relation

S2 + 2|B|2 + T2 + 2 Tr(Δ2) = 1. (35)

This relation is similar to equations (23) and (28) for H2 × R and S̃L(2, R), except that the relation applies
in the full space Nil, and the constant is different.

We now have a situation similar to S̃L(2, R), with two directions of negative average sectional curvature,
and one with a positive value. Hence, we can test our conjecture that a pure twist configuration may be
obtained by a director field aligned with the positive direction. Indeed, we find that behavior: the director
field n̂ = ĉ, with β = 0, shows a pure constant twist with T2 = 1, and zero splay, bend and biaxial splay.

For another interesting case, we consider a director field in the {â, b̂} plane, with β = π/2 and arbitrary
α, so that ni = (cosα, sinα, x sinα). This director field has zero splay, zero twist, zero bend, but constant
nonzero biaxial splay Tr(Δ2) = 1

2 . The tensor structure of the biaxial splay is

Δij =
1

2

⎛
⎝ 0 −x sin α sin α

−x sin α 2x cos α − cos α

sin α − cos α 0

⎞
⎠ . (36)

The eigenvalues of Δi
j = gikΔkj are 0, 1

2 , and − 1
2 . The eigenvalue of 0 corresponds to the director, as always.

The other two eigenvalues correspond to the eigenvectors ui = (sin α,− cos α, 1 − x cos α)/
√

2 and
vi = (− sin α, cos α, 1 + x cos α)/

√
2, respectively. Hence, the director field splays outward in the u

direction, and it splays inward in the v direction. This is therefore a new example of a geometry with a pure
constant biaxial splay configuration.

4.8. Sol space
As discussed by Scott [21], the space Sol has the least symmetry of all eight homogeneous geometries. Even
so, we can follow the same procedure as for the other geometries, and consider simple field configurations
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Figure 10. Deformation modes for the Sol manifold. The intensity of each deformation mode is represented by the distance of
the corresponding surface from the origin, at that orientation of n̂.

in Sol. To parameterize this space, we can use the standard coordinates (x, y, z), with a special role for the
(x, y) plane. A translation has the form [21]

(x, y, z).(x′, y′, z′) = (x + e−zx′, y + ezy′, z + z′), (37)

with (0, 0, 0) as the identity. This corresponds to a standard translation when limited to the (x, y) plane, but
is more complicated when leaving that plane. With this parameterization, the metric becomes
d	2 = e2zdx2 + e−2zdy2 + dz2. The scalar curvature is R = −2 for this negatively curved space, with an
anisotropy shown by diag(Ri

j) = (0, 0,−2).
As in several previous cases, the third eigenvalue of the mixed Ricci tensor is distinct from the other two,

and the corresponding eigenvector must be ci = (0, 0, 1). The other two orthonormal eigenvectors can be
chosen as ai = (ez, 0, 0) and bi = (0, e−z, 0). As usual, we define the director as n̂ = sin β cos α â +

sin β sin α b̂ + cos β ĉ. The deformation modes then become

S2 = 0, |B|2 = 1

4
sin2 β

[
3 + cos 2β + 2 cos 4α sin2 β

]
,

T2 = 2 sin2 2α sin4 β,

Tr(Δ2) =
1

32

[
35 − 3 cos 4α+ 4 cos 2β(7 + cos 4α) + 2 sin2 2α cos 4β

]
.

(38)

These four modes are shown in the polar plot of figure 10. We cannot find a general relation among the
modes that is valid in the entire space, and hence we concentrate on the mixed Ricci eigenplane spanned by
â and b̂, where β = π/2. In that plane, we have

S2 + 2|B|2 + T2 + 2 Tr(Δ2) = 2. (39)

This relation is analogous to equations (23), (28) and (35) in the spaces H2 × R, S̃L(2, R), and Nil,
respectively.

We can now analyze properties of some simple configurations in Sol. First, consider the director field
n̂ = ĉ, i.e. β = 0, which is tangent to lines of varying z with constant x and y. This director field has pure
constant biaxial splay Tr(Δ2) = 2, with zero splay, twist, and bend. The tensor structure of the biaxial splay
is

Δij =

⎛
⎝e2z 0 0

0 −e−2z 0
0 0 0

⎞
⎠ . (40)
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The eigenvalues of Δi
j = gikΔkj are 0, 1, and −1. These eigenvalues correspond to the director (along z)

and to the x and y directions, respectively. Hence, the director field splays outward in the x direction, and it
splays inward in the y direction.

Another interesting class of director fields is in the {â, b̂} plane, with β = π/2 and arbitrary α, so that
ni = (e−z cosα, ez sinα, 0). This class of director fields has zero splay, constant twist T2 = sin2 2α, constant
bend |B|2 = cos2 2α, and constant biaxial splay Tr(Δ2) = 1

2 sin2 2α. If α = 0 or π
2 , the director field is

tangent to lines of varying x or y, respectively, and it has pure constant bend, with zero splay, twist, and
biaxial splay.

5. Conclusions

In this article, we have explored the eight Thurston 3D geometries, which are all the possible homogeneous
3D spaces, and we have investigated whether they allow director field configurations with pure constant
deformation modes. This study can be viewed as a generalization of the work of Sethna et al [6] for the
double twist case on S

3. We were indeed able to find several such configurations, which we summarize here:

• Pure constant splay

We found a 2D example in H
2, and a 3D example in H

3.

• Pure constant bend

We found a 2D example in H
2, and 3D examples in H

3, H2 × R, and Sol.

• Pure constant twist

In addition to the previously known example in S
3, we found new examples in S̃L(2, R) and Nil. Notice

that although these two geometries have negative scalar curvature, they each have a direction such that the
average sectional curvature, for planes sharing this direction, is positive. In each case, the double twist
solution is aligned with that direction.

• Pure constant biaxial splay

We found examples in S̃L(2, R), Nil and Sol.
Based on these examples, we can see that compatibility between director deformations and spatial

geometry is much more complex in 3D than in 2D. In 2D, Niv and Efrati [7] derived the simple relation
S2 + B2 = −KG between constant splay S, constant bend B, and the Gaussian curvature KG of the surface.
This relation shows that a nonzero splay or bend can exist everywhere in a 2D surface with the appropriate
negative curvature, but must be frustrated in a surface with zero or positive curvature. By contrast, in 3D,
we find that the compatibility of a director field depends on the type of director deformation and on the
type of curved geometry. For all the negatively curved anisotropic manifolds (H2 × R, S̃L(2, R), Nil and
Sol), for director fields which have constant orientation in the tangent space derived from a global
coordinate system, we find that the expression S2 + 2|B|2 + T2 + 2 Tr(Δ2) is constant in sub-manifolds
which are eigenspaces of the mixed Ricci tensor. Interestingly, the latter expression is proportional to the
one-constant free energy expression given in equation (10). The corresponding sub-manifolds where this
expression is constant are therefore degenerate with respect to this form of the free energy (which is only
one among the different forms of free energy discussed in section 2.3).

One might hope that the examples found here will guide future work on the general compatibility
conditions, indicating what mathematical constraints must be satisfied for a deformation to fill up a space.

In any case, these examples certainly show that the formation of an ideal liquid-crystal deformation is a
subtle geometric issue. In ordinary Euclidean space R3, such structures are usually frustrated. For that
reason, liquid crystals often form extra deformation modes beyond the favored mode (as in the heliconical
twist-bend nematic phase), or form lattices of defects (as in blue phases). As a result, this geometric
frustration leads to rich phase behavior of liquid crystals.
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