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Abstract

The classical 2-orthogonal polynomials share the so-called Hahn property, this means that they are
2-orthogonal polynomials whose the sequences of their derivatives are also 2-orthogonal polynomials.
Based only on this property, a new class of classical 2-orthogonal polynomials is obtained as particular
solution of the non-linear system governing the coefficients involved in the recurrence relation fulfilled
by these polynomials. A differential-recurrence relation as well as a third-order differential equation
satisfied by the resulting polynomials are given. Many interesting subcases are highlighted and
explicitly presented with special reference to some connected results that exist in the literature.
The integral representations of their associated linear functionals will be exhaustively discussed in a
forthcoming publication.

Keywords. Orthogonal polynomials, classical orthogonal polynomials, d-orthogonal polynomials, multi-
ple orthogonal polynomials, recurrence relation, differential equations.
AMS Classification. 33C45; 42C05.

1 Introduction

The d-orthogonal polynomials are polynomials of one variable satisfying a specific orthogonality relations
with respect to (w.r.t.) d different linear functionals [1, 2]. This concept is a naturel extension of the
general orthogonal polynomials relative to a regular linear functional. By means of this notion, the
second author showed that, the d-orthogonality of a given sequence of polynomials w.r.t. any vector
of d linear functionals is equivalent to the d-orthogonality of these polynomials relative to the vector
consisting of the first d elements of its associated dual sequence, see [1, Th. 2.1]. That is why, instead
of considering the orthogonality conditions w.r.t. any set of linear functionals, it is somewhat easier
and more naturel to consider directly the orthogonality conditions w.r.t. the first d functionals of the
dual sequence. It should be noted that there are many d-orthogonal polynomials for which the weight
functions are not known or are not unique but has a characteristic high-order standard recurrence
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relation. That is why, the questions of the integral representations of the associated linear functionals
will be considered posteriorly wherever possible (here for d = 2).

The paper is organized as follows. In the rest of this section we recall some known results on the
ordinary orthogonality as well as on the d-orthogonality of polynomials which we need in the sequel.
Section 2 is devoted to the introduction of the new class of 2-orthogonal polynomials with its explicit
recurrence coefficients. In Section 3, we provide some properties satisfied by the resulting polynomials
and to conclude we enumerate many interested subcases.

1.1 The orthogonal polynomials

First of all, let us recall some basic notations that we will use through this paper as introduced, for
instance, in [3]. Let P be the vector space of polynomials of one variable with complex coefficients
and P ′ its algebraic dual. By

〈
. , .
〉
we denote the duality brackets between P and P ′. Let us denote

by {Pn}n>0 a polynomials sequence (PS in short), with degPn = n, and {un}n>0 its associated dual
sequence defined by

〈
un, Pm

〉
= δnm; n,m > 0, where δnm is the Kronecker’s delta symbol. Throughout

this article, we will always consider the sequence of monic polynomials, i.e. the leading coefficient of
each polynomial Pn is one (Pn(x) = xn + · · · ). If a PS {Pn}n>0 is not monic and kn denotes the leading
coefficient of Pn(x), then P̂n(x) = k−1n Pn(x) yields the corresponding monic PS, {P̂n}n>0.

Given a linear functional u ∈ P ′. The sequence of complex numbers (u)n, n = 0, 1, 2, . . . , denotes
the moments of u with respect to the sequence {xn}n>0, namely, the moment of order n for the functional
u is denoted by (u)n :=

〈
u, xn

〉
. Thus, the linear functional u is completely determined by its moments.

To terminate we define by ∆n = det
(
(u)i+j

)n
i,j=0

, n > 0, the ordinary Hankel determinants constructed
from the moments of u (see e.g. [3] and the references given there).

Definition 1.1 : A PS {Pn}n>0 is said to be orthogonal w.r.t. the linear functional u, if it satisfies the
orthogonality conditions 〈

u , PnPm
〉

= 0, n 6= m, (1.1)〈
u , P 2

n

〉
6= 0, n > 0. (1.2)

In this case (1.2) are said to be the regularity conditions.

Theorem 1.2 [4]: Let u be a linear functional with moments sequence given by (u)n, n > 0. A
necessary and sufficient condition for the existence of an orthogonal polynomials sequence (OPS) {Pn}n>0
with respect to u is ∆n 6= 0 for n = 0, 1, 2, . . .. The functional u is then said to be regular.

Equivalently, the polynomials Pn, n = 0, 1, 2, . . ., are orthogonal if and only if they satisfy the
well-known second-order recurrence relation

Pn+2(x) = (x− ζn+1)Pn+1(x)− ξn+1Pn(x), n > 0, (1.3)

with the regularity conditions ξn+1 6= 0, n > 0, and the initial conditions

P0(x) = 1, P1(x) = x− ζ0. (1.4)
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Remarks 1.1:

(a) The coefficient ξ0 does not appear in the recurrence relation (1.3), it is convenient here to set
ξ0 := (u)0. When ξ0 = 1, the linear functional u is said to be normalized.

(b) In view of the orthogonality conditions (1.1)-(1.2), the coefficients ζn and ξn are given by

ζn =

〈
u , xP 2

n

〉〈
u , P 2

n

〉 , n > 0, and ξn+1 =

〈
u , P 2

n+1

〉〈
u , P 2

n

〉 , n > 0, with
〈
u , P 2

n

〉
=

n∏
k=0

ξk, n > 0.

In addition, we have ∆n+1 = ∆n

〈
u , P 2

n+1

〉
, yielding ξn+1 = ∆n−1∆n+1/∆

2
n, n > 0, (where ∆−1 :=

1).

(c) It follows from (1.2), that if an OPS for a linear functional u exists, then (u)0 6= 0. Thus, no regular
OPS can exist if (u)0 =

〈
u , 1

〉
= 0.

1.2 The d-orthogonal polynomials

It should firstly be noted that the d-orthogonal polynomials are considered as an interesting subclass of
type II multiple orthogonal polynomials whose multi-indices lie on the step-line near the diagonal1. In
the literature, most of the people working on the multiple orthogonal polynomials often introduce the
orthogonality relations using weight functions or considering orthogonality conditions via an extension to
measures. Manifestly, on this question, our points of view diverge, because in all our works we consider
the orthogonality w.r.t. different linear functionals not necessarily regular. For more details about the
multiple orthogonal polynomials, we refer to [5–9], [10, Chapter 23] and the references contained therein.

Definition 1.3 [1,2]: A PS {Pn}n>0 is said to be d-orthogonal polynomials sequence (d-OPS in short)
with respect to the d-dimensional functional U = t(u0, u1, . . . , ud−1) ∈ (P ′)d if it fulfills the following
orthogonality conditions 〈

uk , PnPm
〉

= 0, m > dn+ k + 1, (1.5)〈
uk , PnPdn+k

〉
6= 0, n > 0, (1.6)

where d is a positive integer, k = 0, 1, . . . , d− 1, and n ∈ N = {0, 1, 2, . . .}.

One of the most important characterization of the d-orthogonal polynomials is the fact that they
satisfy a standard recurrence relation of order d+ 1 which we write as follows

Pn+d+1(x) = (x− βn+d)Pn+d(x)−
d−1∑
ν=0

γd−1−νn+d−νPn+d−1−ν(x), n > 0, (1.7)

1Let n ∈ N and write it as n = md + j, with 0 6 j < d. The nearly diagonal multi-index `(n) corresponding to n is
then given by `(n) = (m+ 1,m+ 1, . . . ,m+ 1,m,m, . . . ,m), with j times m + 1 and d − j times m. If we denote the
corresponding multiple orthogonal polynomials by Pn(x) = P`(n)(x); then the sequence {Pn}n>0 satisfies the (d+1)-order
recurrence relation (1.7) with the initial conditions (1.8)-(1.9).
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with the regularity conditions γ0n+1 6= 0, n > 0, and the initial conditions

P0(x) = 1 , P1(x) = x− β0 and if d > 2 : (1.8)

Pn(x) = (x− βn−1)Pn−1(x)−
n−2∑
ν=0

γd−1−νn−1−νPn−2−ν(x), 2 6 n 6 d. (1.9)

When d = 1, we recover the ordinary orthogonality described above.
The recurrence relation (1.7), with its initial conditions (1.8)-(1.9), plays a primordial role in various

works published before, since this is a starting point to provide some explicit examples of d-orthogonal
polynomials as an extension of the classical orthogonal polynomials.

Definition 1.4 [1]: The d-dimensional functional U = t(u0, u1, . . . , ud−1) is called regular if there
exists a PS {Pn}n>0 satisfying the conditions (1.5) and (1.6).

In order to provide another criterion equivalent to the regularity conditions stated in the above
definition, let us denote by (uk)n =

〈
uk , x

n
〉
, the n-th moment of the linear functional uk for a fixed

k ∈ {0, . . . , d − 1}. By ∆k
n = det

(
(uk)i+j

)n
i,j=0

, n > 0, we denote the ordinary Hankel determinants
constructed from the moments of uk. It was established in [1, Lemme 2.1] or in [2, p.142] that the
conditions which ensure both the regularity of the d-dimensional vector U and, consequently, the existence
and uniqueness of the corresponding d-OPS are related to generalized Hankel determinants, constructed
from the moments of the d linear functionals u0, u1, . . . , ud−1. Such determinants must be non-zero,
and hence one has conditions that are analogous, and generalize, those of Hankel’s determinants in the
ordinary orthogonality. It is to be noted in passing that this condition is often difficult to verify.

Definition 1.5 [11]: The d-dimensional functional U = t(u0, u1, . . . , ud−1) is called d-symmetric if the
moments of each component uk, k = 0, 1, . . . , d− 1, satisfy

(uk)(d+1)n+j =
〈
uk , x

(d+1)n+j
〉

= 0, j = 0, 1, . . . , d, n > 0, for j 6= k. (1.10)

Evidently, when d = 1, the vector U reduces to u0 and the conditions (1.10) lead to the fact that all
the odd moments of the symmetric functional u0 are zero [4]: (u0)2n+1 =

〈
u0 , x

2n+1
〉

= 0, n > 0.
Remarks 1.2:

(a) By applying the definition of the dual sequence, it is easily seen that, for each k ∈ {0, . . . , d − 1},
the moments of the functionals uk satisfy: (u0)0 = 1 and (uk)0 = 0 for k 6= 0. Then, in accordance
with Remarks 1.1 (c), none of the linear functionals uk, k = 1, 2, . . . , d− 1, is regular. Only the
first functional u0 could be regular and one can associate with it an OPS. Of course, this holds if
the regularity conditions described in Definition 1.1. are fulfilled to guarantee the existence and
uniqueness of a such OPS.

(b) For d > 2, if U is d-symmetric, then u0 is also non regular, since at least one of its Hankel’s
determinants vanish. Indeed, for n = 0 in (1.10), we get that (u0)j = 0, j = 1, . . . , d, yielding

∆0
1 =

∣∣∣∣∣(u0)0 (u0)1

(u0)1 (u0)2

∣∣∣∣∣ =

∣∣∣∣∣1 0

0 0

∣∣∣∣∣ = 0, (1.11)
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where ∆0
n, n > 0, are the Hankel determinants generated by the moments of u0. But (1.11) is in

contradiction with the regularity conditions already mentioned in Definition 1.1 (or in Th. 1.2).
Hence there is no OPS associated to u0. Notice that, in this case, none of the components is regular
although the d-dimensional functional U is still regular as required by Definition 1.3.

On account of the above remark, we will give at the end of this part, when d = 2, some interesting
families of classical 2-OPS w.r.t. the regular vector functional U = t(u0, u1), without either of the
two functionals u0 and u1 being regular. Likewise, we will provide three subcases when the first linear
functional u0 is a classical one: Laguerre or Hermite. Accordingly, one could argue that we are in a
position to establish a connection between the ordinary orthogonality and the two-orthogonality.

Definition 1.6 [11]: A PS {Pn}n>0 is called d-symmetric if each polynomial verifies

Pn(ωkx) = ωnkPn(x), n > 0, (1.12)

where ωk = exp(2kiπ/(d+ 1)), for k = 1, 2, . . . , d, and ωd+1
k = 1 (these are the (d+ 1)th roots of unity).

Notice that, if d = 1, then the identity (1.12) reduces to the well-known identity of a symmetric
polynomials.

Theorem 1.7 [11, Th. 4.1]: For every PS {Pn}n>0 d-orthogonal with respect to the vector functional
U = t(u0, u1, . . . , ud−1), the following statements are equivalent.
(1) The d-dimensional functional U is d-symmetric.
(2) The sequence {Pn}n>0 is d-symmetric.
(3) The sequence {Pn}n>0 satisfies the recurrence relation

Pn+d+1(x) = xPn+d(x)− γn+1Pn(x), n > 0, (1.13)

with Pn(x) = xn for 0 6 n 6 d, and γn+1 6= 0, n > 0.

An immediate consequence of this theorem is that a d-OPS is d-symmetric if and only if there
exist (d + 1) sequences of d-orthogonal polynomials denoted {P jn}n>0, j = 0, 1, . . . , d, and called the
components of {Pn}n>0, such that P(d+1)n+j(x) = xjP jn(xd+1), for 0 6 j 6 d.

As examples, the particular cases d = 1 and d = 2 are worth quoting. We check at once that,
when we substitute d = 1 in (1.12), we recover the ordinary quadratic decomposition of a symmetric
OPS [4]. For the case d = 2, the obtaining results provide the cubic decomposition of the 2-symmetric
polynomials {Pn}n>0 whose its components {P jn}n>0 (j = 0, 1, 2) are given by [11]:

P3n(x) = P 0
n(x3) ; P3n+1(x) = xP 1

n(x3) ; P3n+2(x) = x2P 2
n(x3). (1.14)

On account of Theorem 1.7, if {Pn}n>0 is a 2-OPS, then the three components {P jn}n>0 are also 2-OPS.
Before considering our problem in the next section, let us recall the Hahn property described in [12],

which is conjointly satisfied by the classical orthogonal polynomial sequences of Hermite, Laguerre,
Jacobi and Bessel: the sequence of their derivatives are also orthogonal polynomial sequences. In our
view, the extension of this property to define the classical character in the context of d-orthogonality is
crucial to give new classes of d-OPS. For this purpose, we state the following definition.
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Definition 1.8 : A monic d-orthogonal polynomial sequence {Pn}n>0 is called “classical” if the sequence
of its derivatives {Qn := P ′n+1/(n+ 1)}n>0 is also a d-orthogonal polynomial sequence.

Our motivation to adopt this definition is the fact that it agrees with the Hahn’s property. Moreover,
its direct application for d = 1 leads to a non-linear system involving the recurrence coefficients whose
solutions provide exhaustively the four families of the classical OPS as it was shown in [11]. The same
approach is also applied in many other works when d > 2 (see e.g. [11,13–17]. This provides, for example,
the entire description of the d-symmetric classical d-OPS families made in [13] where the authors revealed
that there are exactly 2d different cases. In particular, for d = 1, the obtained results correspond to the
two (21) families of symmetric classical OPS (Hermite and Gegenbauer), and for d = 2, there are exactly
four (22) families of 2-symmetric classical 2-OPS. For more details we refer the reader to [11,18].

The case d = 2 will be the one of interest to us in all what follows. In fact, our main goal in this
case is to find explicitly new solutions to the non-linear system governing the coefficients relating to
the third-order recurrence relation. By the way, the obtained polynomials provide a new classical of
2-OPS, and so they bring a small step forward in this perspective. It should be noted that, obtaining
the complete solution to such a system with all classes of 2-OPS is currently far from being achieved.

2 A new class of classical 2-orthogonal polynomials

To begin, take d = 2 to keep the notations simple. Let {Pn}n>0 be the 2-OPS w.r.t. the vector functional
U = t(u0, u1). Thus, the PS {Pn}n>0 satisfies the orthogonality relations, valid for k = 0 and k = 1:〈

uk , PnPm
〉

= 0, m > 2n+ k + 1, (2.1)〈
uk , PnP2n+k

〉
6= 0, n > 0. (2.2)

Equivalently, {Pn}n>0 satisfies a third-order recurrence relation which we write in the form

Pn+3(x) = (x− βn+2)Pn+2(x)− αn+2Pn+1(x)− γn+1Pn(x), n > 0, (2.3)

P0(x) = 1, P1(x) = x− β0, P2(x) = (x− β1)P1(x)− α1, (2.4)

γn+1 6= 0, n > 0, (regularity conditions). (2.5)

Our main result here consists in the presentation of a new class of 2-OPS with some of its special
cases that deserve particular attention. Certain families of polynomials have already been explored
across different studies, the others seem to be new. In each case, we give the explicit formulas of the
recurrence coefficients and some of their properties as a differential-recurrence relation and a third-order
differential equation. As previously stated, we will not discuss here the integral representations of the
corresponding linear functionals.

Let us first remember the sequence of polynomials {Qn := (n + 1)−1P ′n+1}n>0 with its associated
dual sequence denoted by {vn}n>0. The latter is being related to {un}n>0 via v′n = −(n+1)un+1, n > 0.

In the rest of this section we assume the 2-OPS {Pn}n>0 to be classical. Thus, the PS {Qn}n>0 is
also 2-orthogonal (w.r.t. the vector functional V = t(v0, v1)), and so it satisfies a third-order recurrence
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relation given by

Qn+3(x) = (x− β̃n+2)Qn+2(x)− α̃n+2Qn+1(x)− γ̃n+1Qn(x), n > 0, (2.6)

Q0(x) = 1, Q1(x) = x− β̃0, Q2(x) = (x− β̃1)Q1(x)− α̃1, (2.7)

γ̃n+1 6= 0, (regularity conditions). (2.8)

By differentiating (2.3) and using (2.6), we easily obtain that each polynomial Pn can be written in
terms of Qn, Qn−1, Qn−2 and Qn−3. Hereafter we write this relation by shifting n −→ n+ 3 as

Pn+3(x) =Qn+3(x)+(n+ 3)
(
βn+3 −β̃n+2

)
Qn+2(x) +

(
(n+ 2)αn+3 −(n+ 3)α̃n+2

)
Qn+1(x)

+
(
(n+ 1)γn+2 − (n+ 3)γ̃n+1

)
Qn(x), n > 0, (2.9)

with the initial conditions

P0(x) = Q0(x) = 1, P1(x) = Q1(x) + β1 − β̃0, P2(x) = Q2(x) + 2(β2 − β̃1)Q1(x) + (α2 − α̃1). (2.10)

We can now proceed as in [11,15] to establish the system in question and rewriting it in a reduced form.
For this, let us put

β̃n = βn+1 + δn, n > 0, (2.11)

α̃n =
n

n+ 1
αn+1ρn, n > 1,

(
ρn 6= 0

)
, (2.12)

γ̃n =
n

n+ 2
γn+1θn, n > 1,

(
θn 6= 0

)
. (2.13)

Under the transformations (2.11)-(2.13), the relations (2.9)-(2.10) change into

Pn+3(x) = Qn+3(x)− (n+ 3)δn+2Qn+2(x) + (n+ 2)αn+3

(
1− ρn+2

)
Qn+1(x)

+ (n+ 1)γn+2

(
1− θn+1

)
Qn(x), n > 0, (2.14)

P0(x) = Q0(x) = 1, P1(x) = Q1(x)− δ0, P2(x) = Q2(x)− 2δ1Q1(x) + α2(1− ρ1). (2.15)

Substituting (2.3)-(2.4) with (2.6)-(2.7) in (2.14)-(2.15) and making use of (2.11)-(2.13), the desired
system follows immediately. In its reduced form this system can be written, for all n > 1, as

7



βn+1 − βn = nδn−1 − (n+ 2)δn; (2.16)

β1 − β0 = −2δ0, (2.16)′[
(n+ 3)(ρn+1 − 1) + 1

] αn+2

n+ 2
−
[
n(ρn − 1) + 1

] αn+1

n+ 1
= δ2n; (2.17)(

3ρ1 − 2)α2 − 2α1 = 2δ20 , (2.17)′[
(n+ 4)(θn+1 − 1) + 1

] γn+2

n+ 3
−
[
n(θn − 1) + 1

] γn+1

n+ 1
={[

(n+ 4)(ρn+1 − 1) + 1
]
δn+1 −

[
n(ρn+1 − 1) + 1

]
δn

}
αn+2; (2.18)(

4θ1 − 3
)
γ2 − 3γ1 = 3

[
(4ρ1 − 3)δ1 − δ0

]
α2, (2.18)′[

(ρn+1 − 2) ρn + 1
]
αn+2αn+1 =

−
{[

(n+ 4)(θn − 1) + 1
]
δn+1 +

[
θn − 1

]
δn −

[
(n− 1)(θn − 1) + 1

]
δn−1

}
γn+1, (2.19)[

(ρn+2 − 2) θn + 1
]
αn+3γn+1 +

[
(θn+1 − 2) ρn + 1

]
αn+1γn+2 = 0, (2.20)

θn+2 +
1

θn
= 2. (2.21)

Starting with the observation that Equation (2.21) stands out from the rest, since it plays a primordial
role to determine all other coefficients. In fact, this is a simple Riccati equation all of whose solutions
are given by

A) θn = 1, n > 1,

B) θ2n =
n+ µ+ 1

n+ µ
, θ2n−1 = 1, n > 1,

C) θ2n = 1, θ2n−1 =
n+ ν + 1

n+ ν
, n > 1,

D) θ2n =
n+ µ+ 1

n+ µ
, θ2n−1 =

n+ ν + 1

n+ ν
, n > 1,

(where µ, ν 6= −1,−2, . . .) .

The system under consideration is at present far from being fully solved. Thus to look for other new
solutions, we have to work under certain assumptions on the coefficients since this strategy was already
generated some families of classical 2-OPS in various previous works (see e.g., [6, 15, 19–21]). For this,
observe that the expression in braces in the right-hand side of Equation (2.19) vanishes if and only if
αn = 0, n > 1, or (ρn+1 − 2) ρn + 1 = 0, n > 1. The first condition implies that βn = 0, n > 0. This
is easily verified when substituting αn = 0, n > 1, in Equations (2.17)-(2.17)′. Under these specific
conditions one gets a simple system that was integrally solved by the authors in [11] obtaining the four
families of 2-symmetric 2-OPS. Recall that these polynomials are recently reviewed in [18].
When αn 6= 0, n > 1, and βn = 0, n > 0, the resulting polynomials belong to the Appell’s class [11, 14].
We certainly believe a priori that Equation (2.19) is the second one to be regarded to progress in the
resolution of the above system, since its exploration produce new results as we will see below. For this
purpose, we set αn 6= 0, n > 1, and βn 6= 0, n > 0. Under these assumptions, we deduce from (2.19) that

(ρn+1− 2) ρn+1 = 0⇐⇒
[
(n+ 4)(θn−1)+1

]
δn+1 +

[
θn−1

]
δn −

[
(n− 1)(θn−1)+1

]
δn−1 = 0. (2.22)
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The left-hand side of the equivalence (2.22) is another simple Riccati equation which can be written as

ρn+1 +
1

ρn
= 2, n > 1, (2.23)

whose solutions are explicitly given by

i) ρn = 1, n > 1,

ii) ρn =
n+ ρ+ 1

n+ ρ
, n > 1,

(where ρ 6= −1,−2, . . .) .

In the light of the solutions of Equations (2.21)-(2.23), it is clear that various cases may be investigated.
However, to provide a new particular solution of the system (2.16)-(2.21), we will mainly focus in this
study on the priority case what will referred to as A-i): θn = 1 and ρn = 1, ∀n > 1.
This is the straightforward one to be examined, since it is completely resolved as we will see thereafter.
Indeed, when θn = ρn = 1, the right-hand side of the equivalence (2.22) leads to δn+1−δn−1 = 0, n > 1.
In consequence, the foregoing system reduces to

βn+1 − βn = nδn−1 − (n+ 2)δn, n > 0, (δ−1 = 0), (2.24)
αn+2

n+ 2
− αn+1

n+ 1
= δ2n, n > 0, (2.25)

γn+2

n+ 3
− γn+1

n+ 1
=
(
δn+1 − δn

)
αn+2, n > 0, (2.26)

δn+2 − δn = 0, n > 0. (2.27)

Our reasoning starts with the observation that δn satisfies an homogeneous second-order recurrence
relation whose the general solution is given by

δn = s+ εnr, (2.28)

where s and r are two arbitrary constants (taken here as real parameters), and εn = (−1)n, n > 0.
On account of (2.28), it is easy verified that Equations (2.24)-(2.26) give rise to

β2n = (r − 2s)(2n) + β0, n > 0,

β2n+1 = −(r + 2s)(2n+ 1)− r + β0, n > 0;

α2n+1 = (2n+ 1)
(
(r2 + s2)(2n) + α1

)
, n > 0;

α2n+2 = (2n+ 2)
(
(r2 + s2)(2n+ 1) + 2rs+ α1

)
, n > 0;

γ2n+1 = (2n+ 2)(2n+ 1)
(
2r(r − s)2n+ γ

)
, n > 0,

γ2n+2 = (2n+ 3)(2n+ 2)
(
−2r(r + s)2(n+ 1)− 2rα1 + γ

)
, n > 0,

with γ := 1
2γ1, provided the conditions of regularity remain always fulfilled.

We conclude by observing that the above expressions can be written simply as follows

βn = (εnr − 2s)n− 1

2
(1− εn)r + β0, n > 0; (2.29)

αn+1 = (n+ 1)
[
(r2 + s2)n+ (1− εn)rs+ α1

]
, n > 0; (2.30)

γn+1 = (n+ 2)(n+ 1)
[
εn(r − εns)2rn−

1

2
(1− εn)

(
(r + s)2 + 2α1

)
r + γ

]
, n > 0. (2.31)
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In addition, substituting (2.29)-(2.31) into (2.11)-(2.13) yields the recurrence coefficients for {Qn}n>0

β̃n = (s− εnr)n−
1

2
(1 + εn)r + 2s+ β0, n > 0; (2.32)

α̃n = n
[
(r2 + s2)n+ (1− εn)rs+ α1

]
, n > 1; (2.33)

γ̃n = (n+ 1)n
[
εn(r − εns)2rn−

1

2
(1− εn)

(
(r + s)2 + 2α1

)
r + γ

]
, n > 1. (2.34)

Likewise, when θn = 1, ρn = 1 and δn = s+ rεn, the relations (2.14) and (2.15) lead to

Pn(x) = Qn(x)− δn+1nQn−1(x), n > 0; (Q−1 = 0). (2.35)

The relation (2.35) (referred to as the second structure relation) plays an important role in different
steps of the present paper as well as throughout some other articles on this topic. This is the key to
constructing the above system as previously noted, and then for establishing certain properties for all its
solutions. For instance, this allows us to derive the differential-recurrence relation (the main structure
relation) and the third-order differential equation satisfied by the resulting polynomials as we will see in
the next section. Mention also that, when dealing with the integral representations, the use of (2.35) in
determining the distributional differential equations involving u0 and u1 is of fundamental importance.

3 Some properties of the polynomials Pn, n = 0, 1, 2, . . .

3.1 A differential-recurrence relation

Proposition 3.1 : The 2-OPS {Pn}n>0 defined by the recurrence coefficients (2.29)−(2.31) fulfills the
following differential-recurrence relation (first structure relation)

φ(x)Qn(x) = (r2 − s2)Pn+1(x) + anPn(x) + bnPn−1(x), n > 0,
(
P−1 = 0

)
, (3.1)

where φ(x) = (r2 − s2)(x− β0) + (s− r)α1 + γ, (3.2)

an = (s2 − r2)
(
sn+

1

2
(1− εn)r

)
+ (s− r)α1 + γ, (3.3)

bn = n
[
r(r2 − s2)(r + εns)

(
n− 1

2
(1− εn)

)
+ (εnr − s)

(
(1 + εn)rα1 − γ

)]
. (3.4)

Proof: First, since δn = s+ rεn for each n, we then have δnδn+1 = δ0δ1 = s2− r2. Now, write (2.35) as

P ′n+1(x) = (n+ 1)Pn(x) + (n+ 1)δn+1P
′
n(x), n > 0, (3.5)

which successively gives for the subscripts n+ 2 and n+ 3:

P ′n+2(x) = (n+ 2)Pn+1(x) + (n+ 2)δnP
′
n+1(x), n > 0, (3.6)

P ′n+3(x) = (n+ 3)Pn+2(x) + (n+ 3)δn+1P
′
n+2(x), n > 0. (3.7)

Substituting for P ′n+2 from (3.6) into (3.7), yields

P ′n+3(x) = (n+ 3)Pn+2(x) + (n+ 3)(n+ 2)δn+1Pn+1(x) + (s2 − r2)(n+ 3)(n+ 2)P ′n+1(x), n > 0.

(3.8)
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Now, using again (3.5) to write P ′n as

P ′n(x) =
1

(n+ 1)δn+1
P ′n+1(x)− 1

δn+1
Pn(x), n > 0. (3.9)

Moreover, the differentiation of the third-order recurrence relation (2.3) gives

Pn+2(x) = P ′n+3(x) + αn+2P
′
n+1(x) + γn+1P

′
n(x)−

(
x− βn+2

)
P ′n+2(x), n > 0. (3.10)

Consequently, substituting for P ′n+3, P ′n+2 and P ′n from (3.8), (3.6), and (3.9), respectively, into (3.10)

and using again the recurrence relation (2.3), we obtain[
(r2 − s2)

(
x− βn+2 − (n+ 3)δn+1

)
+
δn+1αn+2

n+ 2
+

γn+1

(n+ 1)(n+ 2)

]
P ′n+1(x) =

(r2 − s2)(n+ 1)Pn+1(x) +
(
δn+1αn+1 +

γn+1

n+ 2

)
Pn(x) + δn+1γnPn−1(x), n > 0. (3.11)

Lastly, by dividing both sides of (3.11) by n+ 1, the differential-recurrence relation (3.1) follows imme-
diately, with

φ(x) = (r2 − s2)
(
x− βn+2 − (n+ 3)δn+1

)
+
δn+1αn+2

n+ 2
+

γn+1

(n+ 1)(n+ 2)
;

an =
δn+1αn+1

n+ 1
+

γn+1

(n+ 1)(n+ 2)
and bn =

δn+1γn
n+ 1

.

Substituting the coefficients βn, αn and γn from (2.29)-(2.31) into the last identities, we find the explicit
expressions of the polynomial φ and the coefficients an and bn given by (3.2)-(3.4). �

3.2 A third-order differential equation

Proposition 3.2 : Each polynomial Pn of the 2-OPS fulfilling (3.1) satisfies a third-order differential
equation of the form

φ(x)y′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, n > 0, (3.12)

where φ(x) = (r2 − s2)(x− β0) + (s− r)α1 + γ;

p(x) = −2s(x− β0) + r2 − s2 + α1,

q(x, n) = −(x− β0) + s(n− 1)− 1

2
r(1 + εn).

Proof: Our proof starts from the differential-recurrence (3.1) written in the form

φ(x)P ′n+1(x) = (r2 − s2)(n+ 1)Pn+1(x) + (n+ 1)anPn(x) + (n+ 1)bnPn−1(x), n > 0,

Differentiating twice, we successively obtain

φ(x)P ′′n+1(x) = (r2 − s2)nP ′n+1(x) + (n+ 1)anP
′
n(x) + (n+ 1)bnP

′
n−1(x), n > 0, (3.13)

φ(x)P ′′′n+1(x) = (r2 − s2)(n− 1)P ′′n+1(x) + (n+ 1)anP
′′
n (x) + (n+ 1)bnP

′′
n−1(x), n > 0. (3.14)

11



The procedure is to eliminate P ′′n and P ′′n−1 in (3.14) and replace them in terms of Pn+1 and its derivatives.
For this, we use the recurrence relation (2.3) which we write after shifting n −→ n− 1 as

γnPn−1(x) = (x− βn+1)Pn+1(x)− αn+1Pn(x)− Pn+2(x), (P−1 = 0).

By differentiating, the last equation gives

γnP
′
n−1(x) = (x− βn+1)P

′
n+1(x)− αn+1P

′
n(x)− P ′n+2(x) + Pn+1(x). (3.15)

Using (3.6) to eliminate P ′n+2, yields

γnP
′
n−1(x) = (x− βn+1 − (n+ 2)δn)P ′n+1(x)− αn+1P

′
n(x)− (n+ 1)Pn+1(x). (3.16)

Differentiating again (3.16) leads to

γnP
′′
n−1(x) =

(
x− βn+1 − (n+ 2)δn

)
P ′′n+1(x)− nP ′n+1(x)− αn+1P

′′
n (x). (3.17)

For n −→ n+ 1, (3.17) becomes

γn+1P
′′
n (x) =

(
x− βn+2 − (n+ 3)δn+1

)
P ′′n+2(x)− (n+ 1)P ′n+2(x)− αn+2P

′′
n+1(x). (3.18)

Using again (3.6) to eliminate P ′′n+2 and P ′n+2 in (3.18), yields

γn+1

n+ 2
P ′′n (x) = fn+1(x)P ′′n+1(x) + gn+1(x)P ′n+1(x)− (n+ 1)Pn+1(x), (3.19)

with

fn+1(x) = δn
[
x−βn+2−(n+ 3)δn+1

]
− αn+2

n+ 2
and gn+1(x) = x−βn+2−(n+ 3)δn+1−(n+ 1)δn.

In the same manner we substitute (3.19) in (3.17) to eliminate P ′′n , yielding

γnP
′′
n−1(x) = hn+1(x)P ′′n+1(x) + kn+1(x)P ′n+1(x) + ln+1Pn+1(x), (3.20)

where hn+1(x) = x− βn+1 − (n+ 2)δn − (n+ 2)
αn+1

γn+1
fn+1(x), (3.21)

kn+1(x) = −n− (n+ 2)
αn+1

γn+1
gn+1(x) and ln+1 = (n+ 2)(n+ 1)

αn+1

γn+1
. (3.22)

Besides, using (3.19) and (3.20) to eliminate P ′′n and P ′′n−1 in (3.14), we obtain

φP ′′′n+1 + (s2 − r2)(n− 1)P ′′n+1−
n+ 1

γn
bn
{
hn+1P

′′
n+1 + kn+1P

′
n+1 + ln+1Pn+1

}
−(n+ 2)(n+ 1)

γn+1
an
{
fn+1P

′′
n+1 + gn+1P

′
n+1 − (n+ 1)Pn+1

}
= 0.

Remark that (n + 1)bn/γn = δn+1 and (n + 2)(n + 1)an/γn+1 = 1 + (n + 2)δn+1αn+1/γn+1, therefore
rearranging the terms in the above equation yields

φP ′′′n+1 + [(s2 − r2)(2n+ 1)− δn+1(x− βn+1)− fn+1]P
′′
n+1 + [nδn+1 − gn+1]P

′
n+1 + (n+ 1)Pn+1 = 0.
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Replacing both fn+1 and gn+1 by their expressions in the last differential equation and making use of
(2.29)-(2.31), Equation (3.12) follows immediately. �

We should note in passing the very important role of the polynomial φ arising in both (3.1) and (3.12).
This appears again as the leading polynomial in the differential equation satisfied by the functional u0,
which constitutes one of the two equations derived by direct application of the characterization theorem
of the classical d-OPS [16, Th. 3.1] when d = 2. Hence, for the 2-OPS highlighted in Section 2, this
characterization is specified by the matrix distributional equation (ΦU)′ + ΨU = 0, where Φ and Ψ

are the 2× 2 matrices given by (see [11,16] for more details):

Φ(x) =

(
1 −δ0

ϕ(x) λ0

)
, Ψ(x) =

(
0 1

ψ(x) λ1

)
and U =

(
u0

u1

)
,

where ϕ(x) = −δ1(x−β0)/γ, ψ(x) = δ1(x−β0)/γ, λ0 = 1+δ1α1/γ, λ1 = −α1/γ, δ0 = s+r, δ1 = s−r.
In addition, a trivial verification shows that φ(x) = γ|Φ(x)| which reveals the determining role of

this polynomial when discussing the integral representations of the two functionals u0 and u1. For
the moment, let us focus on the six subcases that occur naturally when the parameters δ0, δ1 and
η := 2rα1 − γ take certain specific values. In each case, we recapitulate the first structure relation, the
third-order differential equation fulfilled by the 2-OPS {Pn}n>0 and the related recurrence coefficients.
All these polynomials still obey the second structure relation (2.35).

3.3 The special cases

I. For δ1 = δ0 = 0⇔ s = r = 0 with η = −γ 6= 0, the polynomials Pn, n > 0, obey each of the following
structure relation and differential equation:

Qn(x) = Pn(x), (3.23)

γy′′′ + α1y
′′ − (x− β0)y′ + ny = 0, (3.24)

with the recurrence coefficients βn = β0, αn+1 = α1(n+ 1), γn+1 = γ(n+ 2)(n+ 1), n > 0.

By virtue of (3.23), it is clear that these polynomials belong to the class of Appell polynomials
sharing the basic property P ′n+1 = (n + 1)Pn. They were comprehensively studied in the context of d-
orthogonality (d > 1) by the first author in [14]. For d = 1, we recover the classical Hermite polynomials.

Now, when d = 2, the following three subcases need to be considered separately.
- Subcase I.1: γ = 1, β0 = 0 and α1 := 2α 6= 0 (with α > 0).
- Subcase I.2: γ = 1, β0 = 0 and α1 = 0.
- Subcase I.3: γ = 1/9, β0 = 0 and α1 = 0.
Clearly, the Subcase I.1 provides an Appell-type polynomials with the following recurrence coeffi-

cients βn = 0, αn+1 = 2α(n+ 1), γn+1 = (n+ 2)(n+ 1).
The Subcase I.2 produces the 2-symmetric polynomials referred to as the Airy polynomials in [22] and
denoted there by Pin, n > 0. In this subcase, we tacitly adopt this notation instead of Pn, n > 0. Their
recurrence coefficients are βn = 0, αn+1 = 0, γn+1 = (n+ 2)(n+ 1), n > 0.
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Remember that these polynomials are related to the Airy function of the first kind Ai(x) via the
Airy transform of the monomial xn as

Pin(x) = xn ∗Ai(x) =

∫ +∞

−∞
tnAi(x− t)dt, n > 0,

where the original Airy function Ai(x) is defined by the Airy integral

Ai(x) =
1

π

∫ +∞

0
cos
(
xt+

t3

3

)
dt, x > 0.

Besides, the polynomials Pin, n > 0, satisfy the differential-recurrence formula

Pin+1(x) = xPin(x)− Pi′′n(x), n > 0,

which combined with (3.23) leads to the third-order recurrence relation fulfilled by the PS {Pin}n>0.
Mention that these polynomials are the first ones investigated in [18] where the authors gave most
notably the integral representations of their corresponding linear functionals via the Airy function Ai(x)

and its derivative. Obviously, we will take account of these representations in [23].
Lastly, in Subcase I.3, we encounter the 2-symmetric polynomials Pn, n = 0, 1, 2, ..., whose the

recurrence coefficients are given by βn = 0, αn+1 = 0, γn+1 = 3−2(n+ 2)(n+ 1).
By setting B̄n(x) := a−nBn(ax + b), n > 0, for (a; b) ∈ C∗ × C the shifted polynomials for the

polynomials Bn, n > 0, it is easily verified that the polynomials Pn, n > 0, are a shifted Airy poly-
nomials Pin, n > 0, (with a = 3

2
3 and b = 0). Accordingly, we get the identities Pn(x) = P̄in(x) =

3−
2
3
nPin(3

2
3x), n > 0. For this reason, the notation Pin is adopted in Subcase I.2.

Furthermore, by virtue of the symmetry property of the 2-OPS {Pn}n>0, the cubic decomposition
described in (1.14) leads to a connection between the three cubic components P jn, n > 0, j ∈ {0, 1, 2} (of
Pn, n > 0) and the hypergeometric polynomials given by Bα,β

n (x) := 1F2

(
−n ; 1+α , 1+β ; x

)
, n > 0.

For a deeper study of these polynomials, we refer to [19] and references therein. This connection is given
through the following three relations

P 0
n(x) = B̂

− 2
3
,− 1

3
n (x); P 1

n(x) = B̂
− 1

3
, 1
3

n (x); P 2
n(x) = B̂

1
3
, 2
3

n (x), (3.25)

where B̂α,β
n = (−1)n(1 + α)n(1 + β)nB

α,β
n , n > 0, are the monic polynomials related to Bα,β

n , n > 0.
Based on the relations (3.25), a connection between Airy polynomials and the polynomials B̂α,β

n , n > 0,
is then established as follows

Pi3n(x) = 33nB̂
− 2

3
,− 1

3
n (3−2x3); Pi3n+1(x) = 33nxB̂

− 1
3
, 1
3

n (3−2x3); Pi3n+2(x) = 33nx2B̂
1
3
, 2
3

n (3−2x3). (3.26)

Moreover, it was also shown in the same papier that the polynomials B̂α,β
n , n > 0, are 2-OPS w.r.t.

two weight functions associated with Macdonald functions. Recall that an analogous polynomials of the
B̂α,β
n , n = 0, 1, ..., are also studied in [21] where the authors considered the orthogonality conditions of

these polynomials w.r.t. a system of two positive weight functions associated with Macdonald functions.
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II. For δ1 = δ0 6= 0⇔ s 6= 0, r = 0 with η = −γ 6= 0, the polynomials Pn, n > 0, satisfy

φ(x)Qn(x) = −s2Pn+1(x) + anPn(x) + bnPn−1(x), (3.27)

φ(x)y′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, (3.28)

where φ(x) = −s2(x− β0) + sα1 + γ, an = s3n+ sα1 + γ, bn = sγn,

p(x) = −2s(x− β0)− s2 + α1, q(x, n) = −(x− β0) + s(n− 1),

with the recurrence coefficients βn = −2sn+β0, αn+1 = (n+1)
(
s2n+α1

)
, γn+1 = γ(n+2)(n+1), n > 0.

Subcase II.1: Herein we encounter the classical 2-OPS studied by the first author in [15] (denoted there
Case A). In particular, for s = −1 and γ = 1, with an appropriate change of the variable, the singularity
of the third-order differential equation can be placed at the origin. To do this, we take β0 − α1 + 1 = 0.
Setting α1 = α + 3, the last equality yields β0 = α + 2, and so the recurrence coefficients become
βn = 2n+ α+ 2, αn+1 = (n+ 1)

(
n+ α+ 3

)
, γn+1 = (n+ 2)(n+ 1).

Then, the resulting 2-OPS consists of Laguerre type with one parameter that are 2-orthogonal w.r.t.
the pair of weight functions associated with the modified Bessel function of the first kind.

Notice that these polynomials were also studied in [6] where the authors considered the pair of
positive weight functions associated with the modified Bessel function of the first kind.

Subcase II.2: As stated above the case η = 0 cannot occur, since this contradicts our assumption.
III. For δ1 = −δ0 6= 0 ⇔ s = 0, r 6= 0, taking into account the parameter η, two subcases must be

distinguished.
- Subcase III.1: s = 0, r 6= 0 and η 6= 0.
- Subcase III.2: s = 0, r 6= 0 and η = 0 (⇔ γ = 2rα1).
For the Subcase III.1, we obtain that the polynomials Pn, n > 0, fulfill

φ(x)Qn(x) = r2Pn+1(x) + anPn(x) + bnPn−1(x), (3.29)

φ(x)y′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, (3.30)

where φ(x) = r2(x− β0)− rα1 + γ,

an = −1

2
(1− εn)r3 − rα1 + γ, bn = rn

[
r3(n− 1) +

1

2
(1 + εn)

(
r3 + 2rα1

)
− εnγ

]
,

p(x) = r2 + α1, q(x, n) = −(x− β0)−
1

2
(1 + εn)r,

with the recurrence coefficients:

βn = εnrn−
1

2
(1− εn)r + β0, αn+1 = (n+ 1)

(
r2n+ α1

)
, n > 0,

γn+1 = εn(n+ 2)(n+ 1)
[
r3n+

1

2
(1− εn)

(
r3 + 2rα1

)
+ εnγ

]
, n > 0.

In such case, taking r = 1, we recover again the classical 2-OPS obtained in [15] (denoted Case B).
However, the integral representations of their associated linear functionals are not yet given. They will
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be examined in the next study [23]. In order to deal with this question, it is once again convenient to
move the singularity of the third-order differential equation to the origin by setting β0 + α1 − γ = 0.

In the Subcase III.2, the polynomials Pn, n > 0, satisfy

φ(x)Qn(x) = rPn+1(x) + anPn(x) + bnPn−1(x), (3.31)

φ(x)y′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, (3.32)

where φ(x) = r(x− β0) + α1,

an = −1

2
(1− εn)r2 + α1, bn = rn

[
r2n− 1

2
(1− εn)(r2 − 2α1)

]
,

p(x) = r2 + α1, q(x, n) = −(x− β0)−
1

2
(1 + εn)r.

The recurrence coefficients are given by

βn = εnrn−
1

2
(1− εn)r + β0, αn+1 = (n+ 1)

(
r2n+ α1

)
, n > 0,

γn+1 = εnr(n+ 2)(n+ 1)
[
r2n+

1

2
(1− εn)r2 + (1 + εn)α1

]
, n > 0.

If we take r = 1 and β0 = α1 = α + 1, we get that the linear functional u0 satisfies the first order
functional equation (σ(x)u0)

′ + τ(x)u0 = 0, with the two polynomials σ(x) = x and τ(x) = x − α − 1.
This actually shows that u0 is the classical linear functional of Laguerre.

IV. For δ1 = 0, δ0 6= 0⇔ s = r 6= 0, on account of η, we distinct the two subcases.
- Subcase IV.1: s = r 6= 0 and η 6= 0.

- Subcase IV.2: s = r 6= 0 and η = 0.
For the Subcase IV.1, we get that the polynomials Pn, n > 0, satisfy

Qn(x) = Pn(x) + (1− εn)rnPn−1(x), (3.33)

γy′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, (3.34)

where p(x) = −2r(x− β0) + α1, q(x, n) = −(x− β0) + r
[
n− 1

2
(3 + εn)

]
,

with the recurrence coefficients

βn = −(2− εn)rn− 1

2
(1− εn)r + β0, αn+1 = (n+ 1)

[
2r2n+ (1− εn)r2 + α1

]
, n > 0,

γn+1 = −(n+ 2)(n+ 1)
[
2(1− εn)r3(n+ 1) + (1− εn)rα1 − γ

]
, n > 0.

To get the result we need in this subcase, we put r = 1 and γ = 1, under the condition α1 6= 1
2 .

In the Subcase IV.2, the polynomials Pn, n > 0, satisfy

Qn(x) = Pn(x) + (1− εn)rnPn−1(x), (3.35)

γy′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, (3.36)

where p(x) = −2r(x− β0) + α1, q(x, n) = −(x− β0) + r[n− 1

2
(3 + εn)],
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with the recurrence coefficients

βn = −(2− εn)rn+
1

2
(1 + εn)r + β0, αn+1 = (n+ 1)

[
2r2n+ (1− εn)r2 + α1

]
, n > 0,

γn+1 = −r(n+ 2)(n+ 1)
[
2(1− εn)r2(n+ 1)− (1 + εn)α1

]
, n > 0.

By choosing α1 = 1/2 and β0 = 0, we get that the linear functional u0 satisfies the functional equation
u′0 + 2xu0 = 0. This implies that the functional u0 coincides with the classical functional of Hermite.

V. For δ1 6= 0, δ0 = 0⇔ s = −r 6= 0, only the subcase relative to η 6= 0 take place as we will clarify
thereafter (cf. Remark 3.1). To this effect, the polynomials Pn, n > 0, fulfill

Qn(x) = Pn − (1 + εn)rnPn−1, (3.37)

− ηy′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, (3.38)

where p(x) = 2r(x− β0) + α1, q(x, n) = −(x− β0)− r
[
n− 1

2
(1− εn)

]
,

with the recurrence coefficients

βn = (2 + εn)rn− 1

2
(1− εn)r + β0, αn+1 = (n+ 1)

[
2r2n− (1− εn)r2 + α1

]
, n > 0

γn+1 = (n+ 2)(n+ 1)
[
2(1 + εn)r3n− (1− εn)rα1 + γ

]
, n > 0.

Subcase V.1. The subcase to be explored in [23] arise when taking r = 1, γ = 1, with α1 6= 1
2 .

Remark 3.1:

For s = −r 6= 0, it is clear that the subcase with η = 0 cannot occur. In fact, when the two
restrictions are simultaneously imposed, we get γn+1 = r(1 + εn)(n + 2)(n + 1)

(
2r2n+ α1

)
, and

so γ2n = 0 for each n > 1, since εn = (−1)n, which contradicts the regularity conditions (2.5).

VI. For δ1 6= 0, δ0 6= 0 ⇔ s 6= ±r, only the subcase η = 0 (⇔ γ = 2rα1) will be considered. Before
making use these conditions, let us gather the proprieties of the polynomials Pn, n > 0 as follows:

φ(x)Qn(x) = −δ0δ1Pn+1(x) + anPn(x) + bnPn−1(x), (3.39)

φ(x)y′′′ + p(x)y′′ + q(x, n)y′ + ny = 0, (3.40)

where φ(x) = −δ0δ1(x− β0) + δ0α1,

an = δ0δ1
[
sn+

1

2
(1− εn)r

]
+ δ0α1, bn = nrδ0

[
δ1(r + εns)

(
n− 1

2
(1− εn)

)
+ (1− εn)α1

]
,

p(x) = −2s(x− β0)− δ0δ1 + α1, q(x, n) = −(x− β0) + s(n− 1)− 1

2
r(1 + εn).

Their recurrence coefficients are given by

βn = (εnr − 2s)n− 1

2
(1− εn)r + β0, αn+1 = (n+ 1)

[
(r2 + s2)n+ (1− εn)rs+ α1

]
, n > 0,

γn+1 = (n+ 2)(n+ 1)
[
εn(s− εnr)2

(
rn+

1

2
(1− εn)

)
+ (1 + εn)rα1

]
, n > 0.
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- Subcase VI.1. As in Subcase III.2, for δ1 = −1 (⇔ s = r− 1) and β0 = α1 = α+ 1, we find once
again that the linear functional u0 corresponds to the classical functional of Laguerre, since it satisfies
the first order equation (xu0)

′+(x−α−1)u0 = 0. The second functional u1 satisfies (2r−1)u′1−u1 = u′0,
provided that r 6= 1/2 and r 6= 0. Because r = 1/2 implies s = −1/2, which contradicts our assumptions
s 6= ±r, and r = 0 leads to a contradiction with the regularity conditions. However, it is to be noted
that for r = 1 (so s = 0) we recover the result given in Subcase III.2.
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