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Abstract
Global biodiversity declines, largely driven by climate and land-use changes, urge the 
development of transparent guidelines for effective conservation strategies. Species 
distribution modeling (SDM) is a widely used approach for predicting potential shifts 
in species distributions, which can in turn support ecological conservation where 
environmental change is expected to impact population and community dynamics. 
Improvements in SDM accuracy through incorporating intra- and interspecific pro-
cesses have boosted the SDM field forward, but simultaneously urge harmonizing the 
vast array of SDM approaches into an overarching, widely adoptable, and scientifi-
cally justified SDM framework. In this review, we first discuss how climate warming 
and land-use change interact to govern population dynamics and species’ distribu-
tions, depending on species’ dispersal and evolutionary abilities. We particularly em-
phasize that both land-use and climate change can reduce the accessibility to suitable 
habitat for many species, rendering the ability of species to colonize new habitat and 
to exchange genetic variation a crucial yet poorly implemented component of SDM. 
We then unite existing methodological SDM practices that aim to increase model 
accuracy through accounting for multiple global change stressors, dispersal, or evo-
lution, while shifting our focus to model feasibility. We finally propose a roadmap 
harmonizing model accuracy and feasibility, applicable to both common and rare spe-
cies, particularly those with poor dispersal abilities. This roadmap (a) paves the way 
for an overarching SDM framework allowing comparison and synthesis of different 
SDM studies and (b) could advance SDM to a level that allows systematic integration 
of SDM outcomes into effective conservation plans.
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1  | INTRODUC TION

Biodiversity is under threat across the globe, and its preservation 
requires transparent and effective guidelines for policy, conserva-
tion practitioners, and educators based on realistic assessments of 
biodiversity–environment relations (Elith & Leathwick, 2009; Kok 
et al., 2017; Pereira et al., 2010; Titeux, Henle, Mihoub, & Brotons, 
2016). Species distribution modeling (SDM) has been a popular 
toolbox for studying relationships between environmental change 
stressors and spatial shifts in species’ suitable habitat and for pre-
dicting the potential distribution of single species, communities, 
and ecosystems through user-defined environmental change sce-
narios (Alvarado-Serrano & Knowles, 2014; Peterson, 2003; Weber, 
Stevens, Diniz-Filho, & Grelle, 2017). The overall SDM framework 
is not just an interesting tool for identifying areas of local conser-
vation concern or areas not yet occupied but potentially suitable; 
it has the potential to contribute substantially to the global protec-
tion of biodiversity and ecosystem services threatened by multiple 
environmental stressors, including land-use change and habitat 
fragmentation, climate change, invasive alien species, pollution, and 
overexploitation (Franklin, 2013; Kok et al., 2017; Wiens, Stralberg, 
Jongsomjit, Howell, & Snyder, 2009).

Ignoring the joint effects of multiple environmental stressors can 
be highly misleading; they have been found to give rise to ecological 
outcomes unpredicted by single environmental stressors (Bellard, 
Leclerc, & Courchamp, 2015; Fournier, Barbet-Massin, Rome, & 
Courchamp, 2017; Guo, Lenoir, &Bonebrake, 2018; Marshall et al., 
2017; Peterson & Nakazawa, 2007; Segan, Murray, & Watson, 2016; 
Visconti et al., 2016,) and can trigger evolutionary responses that 

differ from expectations assumed by single stressor evolution (Kelly, 
DeBiasse, Villela, Roberts, & Cecola, 2016; McClanahan, Graham, & 
Darling, 2014). Accounting for multiple environmental changes and 
potential evolutionary responses can greatly improve model accu-
racy (Bellard et al., 2015; Titeux et al., 2016), providing SDM out-
comes that better represent the potential distribution and ultimately 
the occupied distributional area of the species or community under 
study (Figure 1). Indeed, part of the suitable habitat of the potential 
distribution is often not reachable due to dispersal limitation and 
spatially variable habitat connectivity (e.g., physical barriers), siz-
ing the potential distribution down to the accessible habitat (Barve 
et al., 2011; Peterson, Papeş, & Soberón, 2015; Pulliam, 2000). 
Where dispersal of the focal species strongly depends on the dis-
tribution and dispersal of interacting species, the biotic context is 
an additional determinant of the occupied distributional area of the 
focal species (Figure 1). Finally, decreased connectivity among suit-
able habitat patches may promote evolution toward reduced disper-
sal (Cote et al., 2017; Graae et al., 2018), further reducing the size of 
the occupied distributional area (Figure 1).

In this review, we pinpoint how joint environmental changes 
drive population, species, and community dynamics in comparison 
with single stressors, focusing on climate and land-use change as 
two of the most prominent threats to biodiversity. Predominantly 
driven by the ongoing biodiversity crisis, a universal urge for large-
scale land-use restoration, and the existence of user-friendly im-
plementation tools, scientists increasingly study the impacts of 
both climate- and land-use change on biodiversity redistribution 
using SDM (Araújo et al., 2019; Harrison & Gassner 2020; Milanesi, 
Rocca, & Robinson, 2020; Titeux et al., 2016). This ongoing SDM 

F I G U R E  1   Schematic summary of 
the elements contributing to species 
distribution modeling (SDM) reliability and 
utility (a), the eco-evolutionary processes 
underlying distribution dynamics and 
SDM performance (b), and a hypothetical 
representation of the predicted occupied 
distributional area of a species (Phengaris 
arion) that relies on the presence of host 
plants (c). Colors represent the accessible 
and suitable habitat (purple), habitat 
unsuitable due to the predicted absence 
of host plant (gray), habitat with host plant 
but inaccessible (dark purple), inaccessible 
habitat without host plant (dark red), and 
environmentally unsuitable habitat (white 
background). Patches occupied by larger 
butterflies (representing better dispersers) 
are predicted to be accessible due to 
dispersal evolution (after DeKort, Prunier, 
et al., 2018)
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boost opens the door for comparing and synthesizing published 
SDM studies for answering taxon-wide and large-scale research 
questions, including the role of species’ traits and evolutionary 
potential in driving general species distribution shifts in response 
to land-use change. The lack of an overarching, streamlined, and 

widely adoptable SDM framework containing all tools required 
for model preparation, parameterization, and selection, however, 
likely strongly refrains SDM from its full potential (Araújo et al., 
2019). Moreover, a standardized and science-based SDM toolbox 
would pave the way for practitioners to more systematically use 

Box 1 The main sources of uncertainty that can compromise species distribution modeling (SDM)

The main outcomes (predicted range maps) of the whole SDM framework are frequently misleading and sometimes misused (see 
Carlson, Chipperfield, Benito, Telford, & O’Hara, 2020) due to several main sources of uncertainty that the user, especially the begin-
ner user, needs to have in mind when performing SDM. First, the correlative nature of SDM inherently prevents this toolbox from 
building on causal relationships between environmental input variables and the occurrence of a species. This causality limitation is 
unavoidable because SDM inevitably requires predictors able to reflect or capture presumed causal mechanisms from natural his-
tory knowledge. The lack of information about the causal link between the predictor variables and the response variable, usually 
a binary variable representing species presence–absence or presence–background data, is clearly the main limitation that the user 
needs to constantly keep in mind when running SDM. For instance, every single SDM method, and especially the most advanced 
ones such as machine learning methods, will almost always be able to find a statistical link between spatially structured predictors 
and the response variable used to measure species distribution. Even when predictors are known to be completely unrelated to the 
species distribution, such as the caricatural but very eloquent use of paintings to predict species distributions (Fourcade, Besnard, & 
Secondi, 2018), SDM will allow the user to draw nice-looking maps with high prediction accuracy according to the metrics used by 
state-of-the-art SDM methods. This suggests another important limitation hampering the use of SDM techniques which is the misuse 
or overconfidence in metrics used to measure the performance of SDM outcomes (Lobo, Jiménez-Valverde, & Real, 2008). Indeed, 
typical SDM model performance metrics such as the area under the receiving operating characteristic curve (AUC), the Kappa sta-
tistic, and the true skill statistic (TCC) have been heavily criticized, as they tend to overpredict model performance under the influ-
ence of sample prevalence, consequently compromising model validation accuracy and model comparability (e.g., Leroy et al., 2018; 
Morán-Ordóñez, Lahoz-Monfort, Elith, & Wintle, 2017). Hence, the reason why these metrics are misleading measures of the per-
formance of predictive distribution models partly relates to one last limitation to have in mind when running SDM which is the data 
quality of the response variable. Unless reliable and ground-truth distribution data are available, such model validation parameters 
are extremely questionable. In situ validation of the presence or abundance data at locations for a range of predicted probability 
estimates therefore is highly recommended for an unbiased perspective of model performance. The final but equally important issue 
regarding data quality revolves around absence data. All the metrics used to measure the performance of SDM outcomes somehow 
rely on absence information, whether obtained from field observations or from a random selection strategy of background data, also 
known as pseudo-absences. Clearly, collection of field-validated true absence data across the species range is highly encouraged 
over pseudo-absences selection strategies to improve SDM reliability (Leroy et al., 2018; Lobo, 2016). The sampling strategy used to 
select pseudo-absences, such as considerations on the spatial extent to be used, is known to highly influence SDM outcomes (Barbet-
Massin, Jiguet, Albert, & Thuiller, 2012; Lobo, Jiménez-Valverde, & Hortal, 2010; Van Der Wal, Shoo, Graham, & Williams, 2009). 
Even absence data recorded during field surveys are tricky to use and should be carefully handled depending on the aim of the under-
taken SDM exercise (Hattab et al., 2017): mapping the occupied distributional area or modeling the potential distribution. If the user 
aims at mapping the occupied distributional area, which is more or less a spatial interpolation of the suitable and accessible locations 
for the focal species, then all absence data recorded during field surveys are useful for model calibration and validation: whether it 
represents true environmental absences or dispersal-limited absences reflecting sites out of dispersal reach but potentially suitable 
regarding the abiotic and biotic conditions. In such cases, absence data bearing dispersal limitation information are very important 
and should be incorporated in the SDM framework together with predictor variables reflecting dispersal constraints, such as species-
specific dispersal kernel, so as to improve the mapping of the occupied distributional area (Lobo et al., 2010; Meentemeyer, Anacker, 
Mark, & Rizzo, 2008; Václavík & Meentemeyer, 2009). However, if the user aims at modeling the potential distribution, which implies 
spatial extrapolations beyond the actual occupied distributional area, then it is recommended to exclude dispersal-limited absence 
from both model calibration and validation (Hattab et al., 2017). Indeed, using dispersal-limited absences to validate the potential 
distribution predicted from SDM will inevitably and mathematically lead to low AUC or TSS values, which results in models misclas-
sified as having poor predictive performance. Hence, one needs to carefully think about the meaning of the available absence data 
and how to use it for SDM calibration and validation steps. Modeling the potential distribution or mapping the occupied distributional 
area are two very different SDM exercises requiring a different thinking on the use of absence data (Hattab et al., 2017).
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SDM for conservation decision making while being aware of the 
potential pitfalls (Box 1). Strikingly, however, while land use has 
begun its debut into SDM, scientists do not generally quantify or 
map the amount of habitat that will likely be colonized by the spe-
cies under study. To meet this concern, we specifically elaborate on 
the impacts of reduced habitat connectivity, a major side effect of 
various environmental changes, on SDM outcomes. We also inves-
tigate how dispersal is limited both by the effects of the landscape 
structure and configuration, and by changes in biotic interactions 
within communities. We then discuss why evolutionary processes 
should be incorporated to increase the reliability of SDM (Bush 
et al., 2016), and finally propose an SDM roadmap that incorporates 
multiple environmental stressors, dispersal, and evolution into a 
feasible, more reliable, and streamlined modeling framework. We 
stress that even for data-insufficient systems, it is possible to incor-
porate the processes described above. For rare and poor-disperser 
species in particular, realistic scenarios that take into account the 
various drivers of population and range dynamics can have crucial 
conservation implications. An SDM roadmap could also motivate 
nonexperts in the modeling field and young scientists to apply 
SDM to their target species, thereby facilitating the implementa-
tion of SDM in applied sciences and conservation practices. We 
stress, however, that expert evaluation of any SDM study is vital to 
a correct interpretation of SDM outcomes (see Box 1 for potential 
pitfalls).

2  | TOWARD ACCUR ATE AND MORE 
RELIABLE SDM

2.1 | The climatic niche: ecological implications

The majority of SDM studies still relies on a single environmental 
stressor (or group of related stressors), with bioclimatic stressors 
(e.g., warmer and dryer conditions) representing, by far, the most 
popular environmental predictor used to forecast species’ distribu-
tion changes (Titeux et al., 2016). These studies observed drastic 
reductions in the modeled climatic suitability of currently occupied 
habitat for macroinvertebrates (up to 65%, Domisch et al., 2013; 
Parmesan et al., 1999), vertebrates (up to 80%, Warren, Wright, 
Seifert, & Shaffer, 2014), and plants (up to 90%, Aguirre-Gutiérrez, 
van Treuren, Hoekstra, & van Hintum, 2017; Kane et al., 2017). 
In addition, poleward and upward shifts of species distributions 
are widely observed (Perry, Reid, Ibanez, Lindley, & Edwards, 
2005, Kelly & Goulden, 2008, Chen, Hill, Ohlemuller, Roy, & 
Thomas, 2011, Lenoir & Svenning 2013) and predicted (Aguirre-
Gutiérrez et al., 2017; Barton, Irwin, Finkel, & Stock, 2016; 
Inoue & Berg, 2017), yet the velocity of species range shifts is 
generally thought to be inferior to the velocity of climate change 
(Bertrand et al., 2011; Chivers, Walne, & Hays, 2017; Corlett & 
Westcott, 2013; Devictor et al., 2012; Liang, Duveneck, Gustafson, 
Serra-Diaz, & Thompson, 2017; Schloss, Nunez, & Lawler, 2012; 
Zhu, Woodall, & Clark, 2012).

The effective impact of climate change on biodiversity goes be-
yond direct climate–occurrence relations, also involving disruption 
of habitat connectivity and of species interactions within communi-
ties (Bertrand et al., 2016; Garcia, Cabeza, Rahbek, & Araujo, 2014; 
Walther et al., 2002). First, through reducing the amount of suit-
able habitat, climate change increases isolation between remaining 
patches, consequently inhibiting gene flow across the landscape 
and impairing population dynamics (Graae et al., 2018; Inoue & 
Berg, 2017; Razgour et al., 2018). Reduced gene flow increases local 
inbreeding risk and extinction rates, and reduces the exchange of 
adaptive variation (Razgour et al., 2018; Slatkin, 1987). Second, cli-
mate change renders habitat more prone to alien species’ invasions 
(Bellard et al., 2013; Hulme, 2017) and can alter community compo-
sition and ecosystem processes (Carroll et al., 2015; García Molinos 
et al., 2015; Pearson et al., 2013; Perring et al., 2016; Sheldon, Yang, 
& Tewksbury, 2011; Sunday, Bates, & Dulvy, 2012). Global change 
may therefore not only alter species’ distributions through direct 
abiotic environment–occurrence interactions but also indirectly 
through shaping the biotic context (e.g., prey, competitors, and pol-
linators) (Carroll et al., 2015; González-Varo et al., 2013; Warren & 
Bradford, 2014; Wisz et al., 2013).

2.2 | The potential distribution is shaped by a joint 
environmental niche

Over half of the terrestrial, ice-free surface is transformed through 
ongoing land-use change and habitat loss and fragmentation, consid-
erably adding to the impacts of climate change on terrestrial biodi-
versity (Aguiar et al., 2016; Hansen et al., 2013; Newbold et al., 2015; 
Reino, Beja, Araújo, Dray, & Segurado, 2013; Titeux et al., 2016; 
Vitousek, 1994, but see Warren et al., 1999 for antagonistic effects). 
Assuming unchanged (static) land use in SDM thus renders future 
projections questionable (Ay, Guillemot, Martin-StPaul, Doyen, 
& Leadley, 2017; Fournier et al., 2017; Perring et al., 2016; Titeux 
et al., 2016), yet despite the continuous recognition that land-use 
change constitutes a major threat to global biodiversity (Perring 
et al., 2016; Titeux et al., 2016), the translation of this awareness 
into SDM keeps lagging behind. Given the extent and magnitude of 
climate and land-use change, their combined impact on natural eco-
systems is expected to be complex (Guo et al., 2018), urging for a 
transparent framework allowing the identification of areas suscepti-
ble to combined global change threats.

Co-occurrence of climate and land-use change has been shown 
to have interactive and often synergistic effects on biodiversity and 
species redistribution (Jetz, Wilcove, & Dobson, 2007; Marshall et al., 
2017; Pereira et al., 2010; Visconti et al., 2016; Zwiener et al., 2017). 
First, land-use change reinforces climate warming when it is associ-
ated with livestock breeding and deforestation, which considerably 
boost greenhouse gas emissions (Naudts et al., 2016; Reisinger & 
Clark, 2017). Second, land-use change increases the amount of suit-
able habitat edges that are sensitive to climate change due to the 
absence of a protective microclimate (Brook, Sodhi, & Bradshaw, 
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2008; Lembrechts, Nijs, & Lenoir, 2018; Suggitt et al., 2020, 
Vanneste et al., 2020). Typical examples are the increased risk of 
forest fires due to increased wind exposure of forest remnant edges 
and inward desiccation of natural grasslands due to conversion of 
surrounding habitat into intensively managed agricultural land (e.g., 
Alencar, Brando, Asner, & Putz, 2015; Tuff, Tuff, & Davies, 2016). 
Third, deforestation can accelerate the rate of upslope range shifts 
in tropical regions whereas the opposite has been demonstrated for 
higher latitudes (Guo et al., 2018), indicating the confounding effects 
of land-use change on climate-driven range shifts. Fourth, reduced 
gene flow across the remaining suitable landscape jeopardizes the 
exchange of adaptive genetic variation that could otherwise allow 
evolutionary adaptation to a changing climate. Inhibited gene flow 
also compromises genetic diversity and fitness within remaining 
populations, increasing their vulnerability to environmental stress-
ors (Frankham, Ballou, Briscoe, & Ballou, 2002; Markert et al., 2010; 
Schrieber & Lachmuth, 2017). A global study assessing the interac-
tive impacts of climate and habitat loss on vertebrate diversity pre-
dicted that nearly half of the ecoregions worldwide, mainly including 
tropical forest, savannahs, and wetlands, will be impacted by a syn-
ergy between habitat loss and climate change during the 21st cen-
tury (Segan et al., 2016).

Species distribution modeling studies increasingly include vari-
ables representing both climate and land-use change in their models 
and have found varying support for land-use change impacts on pre-
dicted species distributions, depending on the thematic resolution 
of the land-use variables and the species under study (Brodie, 2016; 
Marshall et al., 2017; Martin, Van Dyck, Dendoncker, & Titeux, 2013; 
Scheller & Mladenoff, 2005; Zamora-Gutierrez, Pearson, Green, & 
Jones, 2018). With the availability of a 250-m resolution regional 
land-use map and IUCN distribution maps for 286 mammal species, 
Brodie (2016) was able to study the interactive effects of climate 
change and land-use change (through oil palm plantations) on mam-
mal diversity in South-East Asia. Mammal species were found to be 
robust to changes in climate alone, but responded dramatically to 
the combined effects of climate and land-use change, with median 
habitat suitability losses of 47.5% (low carbon emission scenario) up 
to 67.7% (high emission). In a similar vein, SDM and conservation 
prioritization testing based on 2,255 woody plant species of the 
Brazilian Atlantic Forest showed that contrasting climate change 
scenarios did not shape conservation prioritizations, while man-
agement strategies aiming to reduce habitat fragmentation were 
found to be indispensable for the long-term conservation of Atlantic 
Forest diversity (Zwiener et al., 2017). We stress that while the ma-
jority of SDM studies demonstrates adverse effects of climate and 
land-use change on the extent of species’ distributions, a carefully 
implemented SDM framework could reveal the true extent of pos-
itive global change impacts on species’ distributions. For instance, 
forest fragmentation is likely to be detrimental to the redistribution 
of forest plant species—known to be poor dispersers—under climate 
change while it may favor the spread of more generalist plant species 
that are less constrained by their dispersal abilities and benefit from 
more open conditions inside forest edges.

2.3 | The occupied distributional area is shaped 
by the accessibility of suitable habitat

The potential distribution as predicted by SDM unconstrained by 
dispersal limitations is fundamentally different from the occupied 
distributional area, that is, the distribution actually occupied by 
the species, requiring the integration of species’ dispersal abilities 
and dispersal barriers into SDM. In other words, the occupied dis-
tributional area of a given species (also referred to as the realized 
distribution) can be seen as a spatial interpolation of the suitable 
and accessible locations occupied by the focal species at a given mo-
ment in time: an instantaneous map of the real spatial occupation 
of the focal species. By contrast, the potential distribution can be 
interpreted as a spatial extrapolation, albeit not an environmental 
extrapolation beyond the species environmental niche, of where the 
species could find suitable environmental conditions to occur if it 
would be able to reach that location, that is, unlimited by its own 
dispersal abilities or by dispersal barriers.

Many studies reporting poleward or upward range shifts in the 
occupied distributional area also show that actual expansion rates of 
the studied organisms lag behind the displacement of their climatic 
envelopes (i.e., the potential distribution) (e.g., Bertrand et al., 2011; 
Bertrand et al., 2016), most likely due to dispersal and establishment 
lags at the leading edge (Alexander et al., 2018). Two nonexclusive 
factors can explain dispersal and establishment lags: (a) The dis-
placements of individuals are slowed down by low habitat connec-
tivity, and (b) individuals are struggling to settle viable populations in 
new habitat due to their dependence on biotic interactions. A basic 
understanding of these processes is required to assist with the im-
plementation of dispersal-informed SDM (Alexander et al., 2018).

2.3.1 | Low habitat connectivity impedes the 
accessibility to suitable habitat

Habitat connectivity describes how dispersal of individuals across 
the landscape is facilitated or impeded by landscape structure and 
configuration (Taylor, Fahrig, Henein, & Merriam, 1993). Dispersal, 
that is, movements potentially leading to gene flow among popula-
tions (Ronce, 2007), is thus key for species to track suitable habitat 
shifts (Berg, Julliard, & Baguette, 2010). The study of dispersal in 
ecology and evolution is a swiftly evolving field of investigation 
since almost two decades (Bowler & Benton, 2005), generating 
findings that are crucial for understanding the role of dispersal in 
SDM. Changes in landscape structure and configuration entail high 
dispersal costs and hence strongly affect the fitness of dispersing 
individuals (Bonte et al., 2012). Accordingly, theoretical models 
predict that dispersal will be most generally counterselected if its 
costs increase along habitat fragmentation gradients and exceed 
its expected benefits (Cote et al., 2017; Duputie & Massol, 2013; 
Heino & Hanski, 2001; Mathias, Kisdi, & Olivieri, 2001; Travis & 
Dytham, 1999). Empirical studies confirm that habitat fragmen-
tation can decrease dispersal propensity (the probability that an 
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individual leaves a habitat patch) and increase dispersal efficiency 
by reducing dispersal costs either through a reduced search time 
and/or through the selection of safer dispersal routes (Baguette, 
Blanchet, Legrand, Stevens, & Turlure, 2013; Baguette & Van 
Dyck, 2007). However, under particular conditions of landscape 
configuration and habitat suitability, theory also predicts the 
emergence of dispersal polymorphism within populations, in 
which high dispersal phenotypes with a generalist strategy coex-
ist with low dispersal specialist phenotypes (Mathias et al., 2001). 
Taken together, habitat connectivity can have various ecological 
and evolutionary consequences, and fully ignoring this important 
component of the accessibility to suitable habitat may therefore 
strongly interfere with SDM outcomes.

To increase our understanding of the mismatch between the po-
tential distribution (as modeled through SDM unconstrained by dis-
persal limitations or habitat connectivity) and the effectively occupied 
distributional area, the integration of dispersal and habitat connectiv-
ity metrics into SDM studies was put forward as a priority a decade 
ago (Araújo & Guisan, 2006; Hirzel & Le Lay, 2008). Although a grow-
ing number of studies discussed or implemented the effects of dis-
persal in SDM, the proportion of SDM studies implementing dispersal 
has remained steady for years (Bateman, Murphy, Reside, Mokany, & 
VanDerWal, 2013; Holloway & Miller, 2017). One of the most strik-
ing examples of the spatial lapse between potential distribution and 
the occupied distributional area was provided by an SDM study on 
Bornean Orangutans (Struebig et al., 2015). The authors predicted a 
loss of ca. 74% (within current range) and 84% (outside current range) 
of the potential Orangutan distribution by 2080s due to both climate 
change and direct habitat loss. However, given the sedentary lifestyle 
of the females, it is unlikely that the species would shift its distribu-
tion toward all suitable habitat (not all suitable habitat is accessible, 
even within the current range) with the predicted pace of environ-
mental change. Hence, conservation corridors or assisted transloca-
tion is required to merge suitable and accessible distributions and to 
ensure long-term persistence of this endangered species (Struebig 
et al., 2015). Such extreme examples of jeopardized dispersal clearly 
show the urgency of a paradigm shift in conservation biology distin-
guishing suitable from accessible. In the same vein, Albert, Rayfield, 
Dumitru, and Gonzalez (2017) evidenced that accounting for connec-
tivity in spatial prioritization of protected areas for 14 focal vertebrate 
species strongly modified conservation priorities.

How climate change interacts with landscape features to affect 
dispersal is another key question, and the fine-scale consequences of 
the interplay of climate and land-use change on the spatial distribu-
tion of suitable habitat may explain dispersal lagging behind climate 
change (Lembrechts et al., 2018). Mestre, Risk, Mira, Beja, and Pita 
(2017) accordingly showed that range shift predictions consecutive to 
climate alterations were overly optimistic when using SDM disregard-
ing habitat connectivity. In a very interesting study, Fordham et al. 
(2017) showed that models incorporating both habitat connectivity 
and climate suitability provided better predictions of the range shifts 
observed between 1970 and 2017 for 20 British bird species, than do 
models based on climate suitability changes alone. Such integrated 

modeling scenarios could be greatly simplified by translating climate 
changes directly into habitat connectivity changes after assessing 
how changes in climatic conditions modify both habitat suitability 
and resistance to individual movements (see also Inoue & Berg, 2017; 
Razgour et al., 2017). The end point of this procedure is a single model 
that incorporates the effects of climate change as one of the drivers of 
changes in habitat suitability and connectivity. Accordingly, this parsi-
monious approach is biologically more relevant than the production of 
competing models that consider the effects of either climate change 
or land-use change on the accessibility of suitable habitat, whereas 
these two factors are clearly not independent.

2.3.2 | Biotic interactions modulate the probability 
that accessible and suitable habitat is occupied

Organisms are affected by complex networks of interactions in 
communities that are often neglected in SDM (Wisz et al., 2013). 
The higher conservation value of communities than single species 
is another reason for SDM to stack predictions of multiple species 
distributions (Guisan & Rahbek 2011). The simplest study cases are 
couples of species living in obligatory positive (e.g., symbiotic) or 
negative (e.g., parasitic) relationships. SDM targeting one partner has 
been shown to contribute considerably to the predictive power of 
the presence of its obligatory associate (e.g., DeKort, Prunier, et al., 
2018; Gutiérrez, Fernández, Seymour, & Jordano, 2005; Hanspach 
et al., 2014). Accounting for the presence of specialist species’ part-
ners in SDM can therefore have strong impacts on the probability 
that a suitable and accessible habitat is actually occupied by the focal 
specialist species, and usually results in more restricted species dis-
tributions as compared to SDM based on a single species (Dormann 
et al., 2018; Hanspach et al., 2014; Hof, Jansson, & Nilsson, 2012). In 
a context of shifting abiotic conditions, such close interactions can 
be disrupted by differences in dispersal abilities among interacting 
species further contributing to the observed lag in biotic responses to 
environmental stressors (Alexander et al., 2018). In general, effective 
dispersal of specialists depends on dispersal abilities of their least dis-
persive interactor (see also Supporting Information S1). For instance, 
the expansion rate of specialist butterflies to accessible and suitable 
habitat patches under contrasted scenarios of habitat connectivity 
has been shown to be severely curbed by the dispersal rates of their 
only host plants (DeKort, Prunier, et al., 2018; Schweiger, Settele, 
Kudrna, Klotz, & Kühn, 2008). Conversely, the dispersal lag between 
a weakly mobile parasitoid and its highly dispersive butterfly host 
provides the latter with enemy-free accessible and suitable habitat 
patches in highly fragmented habitats (Bergerot et al., 2010).

2.4 | Evolvability of the accessible and 
suitable habitat

The vast majority of SDM studies implicitly considers the relation-
ship between an organism's ability to survive and the environmental 
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conditions as fixed in time and space. However, the probability for a 
species to overcome environmental changes increases, by definition, 
with its adaptive potential. The ecological niche of a given species 
can thus evolve (Visser, 2008, Wasof et al., 2013), and local adapta-
tion can be seen as an alternative or complementary solution for dis-
persal under changing environmental conditions (Graae et al., 2018). 
Correspondingly, phenological shifts were reported for a variety of 
organisms, ranging from plants (e.g., Franks, Sim, & Weis, 2007) over 
birds (e.g., Charmantier & Gienapp, 2014) to arthropods (e.g., Van Asch, 
Salis, Holleman, van Lith, & Visser, 2013). Other traits, including color 
morphs (Karell, Ahola, Karstinen, Valkama, & Brommer, 2011), dis-
persal ability (Travis et al., 2013) and the thermal niche (Rolland et al., 
2018) have been shown to evolve under climate change.

The key elements to phenotypic evolution and thus the evolu-
tion of the ecological niche under climate change are local genetic 
additive variance (underlying interindividual variation), life history 
(affecting both the pace of natural evolution and the feedbacks 
among traits), and the interplay between dispersal and the landscape 
structure (balancing genetic mixing and drift). Evolutionary potential 
may thus differ considerably within and between species. Using a 
dynamic eco-evolutionary model coupled to correlative niche pro-
jections, Cotto et al. (2017) showed that evolutionary adaptation is 
unlikely to prevent the predicted range contraction of long-lived pe-
rennial alpine plant species under predicted climate change. On the 
contrary, evolutionary rescue was reported for insects with short 
generation time and fast growth (Kearney, Porter, Williams, Ritchie, 
& Hoffmann, 2009). Similarly, using a hybrid SDM approach that 
incorporates dispersal and evolutionary dynamics into correlative 
SDM (see Supporting information S3), Bush et al. (2016) showed 
that evolutionary adaptation reduces projected range losses up to 
33% for 17 species of Drosophila. Although evolution will probably 
not be adequate to ensure population persistence for most species 
under the current pace of climate change, slowing down the pace of 
climate change is expected to promote evolutionary rescue (Cotto 
et al., 2017).

Evolution of phenotypic traits, including dispersal evolution (see 
Supporting information S2), thus plays a major role in shaping and 
conserving the potential distribution of many species.

3  | TOWARD FE A SIBLE SDM 
INTEGR ATING L AND USE ,  DISPERSAL ,  AND 
E VOLUTION

3.1 | Data collection

Researchers are increasingly motivated to share sampling locations 
on online archives, resulting in continuously growing databases. For 
example, the European Vegetation Archive (EVA) counted 1,529,550 
vegetation plots of species co-occurrence data most of them 
with geographical coordinates (Chytry et al., 2016, see also sPlot: 
Bruelheide, Dengler, Jiménez-Alfaro, & Purschke, 2018a, Bruelheide 
et al., 2018b). In addition, the Global Biodiversity Information 

Facility (GBIF) currently contains 1,074,675,056 georeferenced oc-
currence records of microorganisms, plants, and animals. Exploring 
such databases for the species of interest in combination with infor-
mation obtained through regional nature conservation organizations 
and publications can improve the detail of the spatial extent of the 
respective species (e.g., Cardador, Carrete, Gallardo, & Tella, 2016; 
Diniz-Filho et al., 2016) (Figure 2.1). In parallel, researchers should 
continue to share their species survey data on publicly available re-
positories, while increasing computational power and data accessi-
bility might increase the number of species for which mechanistic 
SDM can be parameterized. For instance, in birds, a high number of 
telemetry datasets were made available in public repositories such 
as Movebank (https://www.moveb ank.org) that may help parame-
terizing dispersal in trait-based SDM. The integration of ecology and 
physiology required for trait-based approaches will also certainly be 
favored by the routine integration of metabolic data into life-history 
database such as Pantheria (Jones et al., 2009).

A struggling point complicating SDM for many species is the 
lack of sufficient absence and occurrence data, which is problem-
atic because species detectability often varies in space and time, 
resulting in poor model performance and biased SDM outcomes 
(Guillera-Arroita, 2017; Merow, Wilson, & Jetz, 2017; Morán-
Ordóñez et al., 2017; van Proosdij, Sosef, Wieringa, & Raes, 2016) 
(see also Box 1). To overcome imperfect detection, informative field 
surveys should be combined with a modeling approach accounting 
for the detection process. This could be realized through cropping 
the environmental input maps to the regions that were surveyed 
prior to extrapolation of the environment–occurrence probability 
relations, or through including model parameters describing the de-
tection conditions (Acevedo, Jiménez-Valverde, Lobo, & Real, 2012; 
Guillera-Arroita, 2017; Pennino et al., 2019). The choice of absence 
data could furthermore have strong implications on model outcomes 
(Hattab et al., 2017) (see also Box 1) and are ideally categorized into: 
(a) environmental absence data; reflecting unsuitable habitat; (b) dis-
persal-limited absences, reflecting inaccessible but suitable habitat; 
and where tight species’ interactions occur, (c) community-limited 
absences, reflecting accessible and suitable habitat but lacking the 
species upon which the focal species obligatory depends. Although 
studies implementing field surveys that cover all types of absence 
data are more likely to discriminate between the potential distribu-
tion and the occupied distributional area, this distinction may be ar-
bitrary and the selection of field-confirmed absences in the broad 
sense already considerably improves model reliability (Guillera-
Arroita et al., 2015 Leroy et al., 2018) (Figure 2.2).

Environmental predictor maps (Figure 2.1) are often freely 
downloadable and can be merged with occurrence points using a 
basic GIS application. Global climate data are widely available for 
researchers to model past, current, and future climate projections 
(e.g., WorldClim and CHELSA), rendering climate niche modeling an 
attractive approach for global change research relative to land-use 
modeling. Yet, also regional and global land-use maps have become 
accessible (e.g., GlobCover, MODIS2005, CORINE) and can be con-
verted from a vector to an SDM-friendly raster format using any 

https://www.movebank.org
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geographical information system (GIS rasterizing) to model land-use 
and habitat connectivity. Moreover, while the short-term nature of 
land-use maps and land-use change may complicate land-use change 
SDM, simple land-use change scenarios could be tested in a sensitiv-
ity analysis for a given near-future climate change scenario. Where 
land cover maps generally lack resolutions beyond the dominant 
land cover types (e.g., “grasslands” and “urban area”), there are sev-
eral ways that allow more ecologically relevant land-use mapping. 
Information on the protection level of areas across the globe (e.g., 
through the protected area network) (Kremen et al., 2008) can be 
merged with a land cover map to indicate the level of management 
of specific land cover types (Rodrigues et al., 2004). Grasslands and 
forests are, for example, more likely to be intensively managed or ex-
ploited when unprotected. Alternatively, human population density 
maps and road maps can be used to fine-tune the intensity of land 
disturbance (e.g., Newbold et al., 2015), while a forest cover map 
can be integrated to model high-resolution forest change for spe-
cies strongly depending on the absence or presence of forests (e.g., 
Hansen et al., 2013). Finally, inclusion of microclimatic variables such 
as topography not only allows increasing the spatial resolution and 
accuracy of SDM predictions, it also has been demonstrated to play 
an underappreciated role in shaping the trajectories of species evo-
lution and redistribution (De Kort et al., 2020; Suggitt et al., 2020).

The choice of environmental predictors is crucial for SDM, as 
noncausal and redundant predictors unnecessarily increase model 
complexity and frequently give rise to misleading model performance 
estimates and flawed projections (Brodie et al., 2020; Fourcade 
et al., 2018; Warren, Matzke, & Iglesisa, 2020). Therefore, SDM 

should only be used when the presumed causality and ecological 
relevance of tested predictors are carefully considered (Figure 2.1) 
(see also Box 1). When soil water availability, for example, has been 
suggested to be deterministic for the presence of the species under 
study, a wetness index map or equivalent, should evidently be incor-
porated during modeling.

3.2 | Model parameterization and in silico validation

Although the technical aspects underlying model evaluation lie 
beyond the scope of this review (see, e.g., Aiello-Lammens, Boria, 
Radosavljevic, Vilela, & Anderson, 2015; Muscarella, Galante, Soley-
Guardia, & Boria, 2014; Peterson et al., 2007; Phillips & Dudík, 2008; 
Radosavljevic & Anderson, 2014, for techniclal SDM considerations), 
we highlight the importance of model tuning and parameterization 
as a key criterion for realistic modeling (Box 1). The predictive per-
formance of SDMs is usually evaluated through cross-validation, 
using training data to fit models and a set of testing data that is 
spatially independent of the training data to evaluate these mod-
els (Hijmans, 2012). This model evaluation approach is, however, 
highly sensitive to spatial autocorrelation of environmental variables 
between training and testing data, and only tests the set of known 
occurrence data. These drawbacks artificially inflate cross-validated 
model statistics (Hijmans, 2012; Morán-Ordóñez et al., 2017) and 
stress the importance of in situ validation (see below).

We recommend SDM users to consistently model at least three 
scenarios: climate only, land use only, and climate and land use 

F I G U R E  2   Circular roadmap presenting the necessary steps toward science-based species distribution modeling (SDM) that is feasible 
for most species and implementers, with the emphasis on poor dispersers as a particularly vulnerable and valuable group of species. Note 
that step 4 has been given priority over step 5 because of its direct conservation implications. Step 7 represents the completion of the 
suitable and accessible species distribution as predicted by the SDM framework. See Figure 1 for color scheme of hypothetical distribution. 
We refer to the roadmap steps in the main text using bold references (e.g., Figure 2.2 refers to step 2 of the roadmap), where specific 
directions are provided for the respective steps. Please carefully read Box 1 to understand the importance of the “further considerations” 
presented in the blue rectangle of Figure 2
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together, in addition to a full model that incorporates potential 
additional predictors such as soil moisture and biotic interactions 
(Figure 2.3). Such a standardized SDM framework allows (a) address-
ing model complexity issues (see Brun et al., 2020; Gregr, Palacios, 
Thompson, & Chan, 2019) and (b) comparing the contribution of 
major environmental change stressors to predicted shifts in species 
distributions between independent SDM studies. Although more ef-
forts are needed for true cross-species and cross-study comparison 
of SDM outcomes (e.g., the development of an overarching, deci-
sion tree-based SDM environment that systematically informs users 
about parameter and predictor choice and more detailed land-use 
scenarios), we emphasize the promise that standardizing SDM holds 
(a for uncovering overall effects of dispersal, evolution, life history, 
and anthropogenic stressors on the projected distribution of many 
species and communities, and (b) for framing each study into a much 
larger and significant context.

3.3 | Integrate evolutionary potential

Integrating evolution into SDM without assumptions on mutation 
and demographic rates (Supporting information S3), which can be 
particularly challenging for rare species, can be achieved if the evo-
lutionary potential of populations across the study area is quantified 
(Gotelli & Stanton-Geddes, 2015; Ikeda et al., 2017). Quantitative 
genetic screening of phenotypic traits has long been thought to pro-
vide the most accurate information on the evolutionary potential of 
traits and life-history syndromes. Such quantitative genetic research 
is now, however, questioned due to drawbacks related to limited 
statistical power, high time consumption, unrealistic assumptions on 
the genetic architecture underlying adaptive traits and poor repre-
sentation of natural conditions (Hoffmann, Sgrò, & Kristensen, 2017; 
Wood, Yates, & Fraser, 2016). More recently, the use of genomic 
markers representing neutral and/or adaptive genetic variation has 
been proposed and tested for modeling local adaptation and adap-
tive potential in SDM (Fitzpatrick & Keller, 2015; Ikeda et al., 2017; 
Marcer, Méndez-Vigo, Alonso-Blanco, & Picó, 2016). As a conse-
quence of local adaptation, many populations develop a local genetic 
signature shaped by historical and current environmental conditions 
(Watanabe & Monaghan, 2017). Variation in population responses 
and environmental change is thus expected, and shown, to affect the 
ability of SDMs that do not incorporate genetic structure to predict 
future species’ distributions (Ikeda et al., 2017; Marcer et al., 2016).

In addition to the implementation of neutral genetic structure, 
explicitly incorporating genetic variation underlying adaptive traits 
can be achieved through ecology-informed genome screening (e.g., 
De Kort & Honnay, 2017). As phenotypic traits respond to environ-
mental change through shifts in the underlying genes, associations 
between genetic and environmental variation are assumed to result 
from local adaptation (Manel, Schwartz, Luikart, & Taberlet, 2003; 
Storfer et al., 2007). Even without a sequenced reference genome, 
landscape genomic analysis of genetic markers, allowing the identi-
fication of genetic patterns associated with environmental variation 

(e.g., climate or land use), is a feasible strategy for any species (Frichot, 
Schoville, Bouchard, & François, 2013; Manel & Holderegger, 2013; 
Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015; Sork et al., 
2016). High variation at genetic variants associated with tempera-
ture or habitat fragmentation may therefore indicate a high po-
tential to adapt to future climate and land-use change. While the 
integration of this adaptive potential into SDM is under development 
(e.g., Peterson, Doak, & Morris, 2019), simple correlations between 
neutral and adaptive genetic diversity on the one hand, and SDM 
habitat suitability estimates on the other hand, indicates the ex-
tent to which adaptive evolution may affect SDM projections. High 
adaptive potential at the rear edge, for example, may prevent local 
extinctions despite a projected northward shift with climate change 
(Erichsen et al., 2018; Exposito-Alonso et al., 2018). Low genetic di-
versity at suitable locations, on the other hand, may be indicative of 
imminent local extinction and poor connectivity, and/or of relatively 
recent colonization after a period of reduced habitat suitability (e.g., 
Gutiérrez-Rodríguez, Barbosa, & Martínez-Solano, 2017; DeKort, 
Baguette, et al., 2018; DeKort, Prunier, et al., 2018). Conservation 
actions focusing on expanding or connecting SDM-based suitable 
patches holding populations of low genetic diversity may conse-
quently increase options for dispersal and evolution. We therefore 
recommend conservation prioritization based on a combination of 
SDM and genetic marker assessment (Figures 2.2 and 2.4). Although 
the collection of genetic material for genetic marker analysis may be 
particularly challenging for rare species, noninvasive sampling such 
as fecal, hair, and eggshell sampling may overcome this issue (e.g., 
Beja-Pereira, Oliveira, Alves, Schwartz, & Luikart, 2009) (Figure 2.2).

3.4 | Run global change scenarios

Depending on the scale of the study, land-use change scenarios 
(Figure 2.5) could rely on local managers that are aware of ongoing 
land-use developments, regional storylines related to demands of 
arable production, livestock number, urbanization, and/or interna-
tional socioeconomic parameters (e.g., DeKort, Prunier, et al., 2018; 
Dullinger et al., 2020; La Sorte et al., 2017; Marshall et al., 2018), or 
global land-use scenarios as outlined by the Intergovernmental Panel 
on Climate Change (IPCC). Land-use variables can subsequently be 
manipulated (e.g., partial conversion of extensive grasslands into 
forest, or forest into built-up area) using basic GIS applications to 
generate SDM scenarios integrating both climate change and habitat 
fragmentation (e.g., Lehsten et al., 2015; Marshall et al., 2018; Martin 
et al., 2013). Climate change scenarios have been outlined by the IPCC 
and are freely available at chelsa-climate.org and WorldClim.org.

At this point, all data are available for modeling, using dismo or 
another SDM framework (Figure 2.5). Models are first trained and 
tested using the occurrence points and (cropped) environmental 
maps, finally providing a habitat suitability map that reflects the 
present distribution. The model results are then extrapolated to 
predict future distributions under the provided scenarios. These 
projections do not account for dispersal and evolution, and require 
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fine-tuning and contextualization based on species’ life-history traits 
(through partial dispersal modeling, Figure 2.6) and genetic markers 
(through discussion of the adaptive potential, Figure 2.4).

3.5 | Integrate dispersal into SDM

Dispersal-informed SDM evidently requires a basic understand-
ing of dispersal behavior in the species under study. Obtaining this 
information could be particularly challenging for species that are 
hard to monitor or for plant species that depend on vectors for 
seed dispersal. For plants, dispersal syndrome (wind, animal, ant, 
and ballistic or no syndrome) and growth form (tree, shrub, and 
herb) provide reasonable predictions of maximum dispersal dis-
tance (MacLean & Beissinger, 2017; Tamme et al., 2014; Thomson, 
Letten, Tamme, Edwards, & Moles, 2018), allowing integration 
of dispersal into SDM through simple field observations (e.g., 
Midgley, Hughes, Thuiller, & Rebelo, 2006; Peyre et al., 2020). 
For animals, movement ability, longevity, and habitat breadth are 
important predictors of dispersal distance and climate change-
induced range shifts (MacLean & Beissinger, 2017; Stevens et al., 
2013). These life-history traits can therefore be considered to 
define a partial dispersal SDM approximating the occupied dis-
tributional area to a more accurate extent than a SDM assuming 
no dispersal (Bateman et al., 2013). Alternatively, it is possible to 
create a species-specific dispersal kernel and use it as a predic-
tor variable capturing the impact of dispersal limitations on the 
occupied distributional area (Hattab et al., 2017; Meentemeyer 
et al., 2008; Václavík & Meentemeyer, 2009) (see Box 1). Even 
relatively simple partial dispersal models, where the potential dis-
tribution has been clipped down to accessible distribution based 
on estimates of maximum dispersal distances, have been shown 
to improve distribution projections under environmental change 
(DeKort, Prunier, et al., 2018; Fitzpatrick, Gove, Sanders, & Dunn, 
2008; Meier et al., 2012; Midgley et al., 2006). The implementa-
tion comfort and the limited number of assumptions related to 
demographic rates make this type of partial-dispersal SDM the 
preferred option for many species (Bateman et al., 2013). The most 
reliable and informative partial dispersal SDMs are expected for 
species with poor dispersal capacities, because poor dispersers (a) 
are often of high conservation concern, (b) facilitate integration of 
dispersal into SDM through assuming limited dispersal between 
suitable patches (Figure 2.6), and (c) provide conservative esti-
mates of patch accessibility for associated species. Although we 
do not specifically recommend to focus on poor dispersers, we do 
believe that this important target group should receive particular 
attention in future SDM studies aiming to develop dispersal- and 
evolution-informed conservation strategies. Although model ac-
curacy improves considerably in partial dispersal SDM, they still 
not fully reflect real conditions. A more mechanistic approach, for 
example, through hybrid models integrating both correlative and 
mechanistic principles, could further increase model reliability 
(see Supporting information S3).

3.6 | In situ model validation

In silico model parameterization and validation should be comple-
mented with in situ model evaluation in unsampled regions, through 
extracting a set of suitable and unsuitable habitat coordinates 
from model output and empirically evaluate occurrence in the field 
(Araujo, Pearson, Thuiller, & Erhard, 2005; DeKort, Prunier, et al., 
2018) (Figure 2.8). Among the rare examples of studies using in situ 
SDM validation, Williams et al. (2009) were able to find 24 new lo-
calities (out of 36 checkpoint sites) shared among four rare plant spe-
cies across the Rattlesnake Creek Terrane in California. Area under 
the curve (AUC) of the receiver operating characteristic (Hanley & 
McNeil, 1982), a commonly used model validation statistic retrieved 
from the cross-validation approach, ranged between 0.94 and 0.98, 
commonly interpreted as nearly perfect predictive performance (but 
see Box 1 for pitfalls related to this model validation metrics like the 
AUC statistic). Two important conclusions can be drawn from this 
study. First, there can be considerable inconsistency between in silico 
(simulated) and in situ (real) model validation, which may reflect (a) the 
drawbacks of in silico model validation methods and (b) the (in)acces-
sibility of suitable habitat patches. Second, SDM studies can be highly 
suitable for conservation purposes, given that (a) validation was per-
formed both in silico using independent calibration and testing data 
and in situ, (b) relevant environmental maps and scenarios are gener-
ated, and (c) dispersal and evolution are implemented. We finally rec-
ommend projected shifts in distributions to be followed up in situ at 
regular time intervals (Figure 2.7) (see, e.g., Areias Guerreiro, Mira, & 
Barbosa, 2016; Barbet-Massin, Rome, Villemant, & Courchamp, 2018; 
West, Kumar, Brown, Stohlgren, & Bromberg, 2016). This has two 
major advantages, including the ability to test the power of SDM ap-
proaches to predict distribution shifts and to assess the impact of 
conservation actions on projected shifts in SDM.
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