
HAL Id: hal-02959678
https://hal.sorbonne-universite.fr/hal-02959678v2

Preprint submitted on 9 Oct 2020 (v2), last revised 24 Nov 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A FUNCTIONAL EQUATION WITH POLYNOMIAL
SOLUTIONS AND APPLICATION TO NEURAL

NETWORKS
Bruno Després, Matthieu Ancellin

To cite this version:
Bruno Després, Matthieu Ancellin. A FUNCTIONAL EQUATION WITH POLYNOMIAL SOLU-
TIONS AND APPLICATION TO NEURAL NETWORKS. 2020. �hal-02959678v2�

https://hal.sorbonne-universite.fr/hal-02959678v2
https://hal.archives-ouvertes.fr

A FUNCTIONAL EQUATION WITH POLYNOMIAL SOLUTIONS
AND APPLICATION TO NEURAL NETWORKS

BRUNO DESPRÉS & MATTHIEU ANCELLIN
Abstract. We construct and discuss a functional equation with contraction property. The
solutions are real univariate polynomials. The series solving the natural fixed point iterations
have immediate interpretation in terms of Neural Networks with recursive properties and
controlled accuracy.

1. Introduction

It has been observed recently in [14, 5] that a certain generalization of the Tak-
agi function [10] to the square function x 7→ x2 has an interesting interpretation
in terms of simple Neural Networks with the ReLU function R(x) = max(0, x) as
an activation function. In [14], this generalization is the basis of a general theorem
of approximation of functions by Neural Network architectures, see also [11]. We
generalize the principle of the functional equation [9] to any real univariate poly-
nomial x 7→ H(x), by using techniques which are standard in numerical analysis.
In terms of the design and discussion of Neural Network architectures [8], the new
formulas gain broader generality.

By considering the literature [8] on the current understanding of the mathemati-
cal structure of Neural Networks, the most original output of the construction is the
novel functional equation with three main properties: a) it has general polynomial
solutions under the conditions of the main Theorem, b) it is contractive, so is easily
solved by any kind of standard fixed point procedure and, c) the converging fixed
point iterations can be implemented as reference solutions in Feedforward Deep
Networks with ReLU activation function [8][Chapter 6], with controlled accuracy.
In other words, our construction associates a well posed functional equation and its
solution to some simple Neural Networks. The proof that the equation has poly-
nomial solutions is easy. It is possible that a similar construction has already been
considered in the immense literature on polynomials but to our knowledge, never
in combination with the discussion of Neural Networks architectures.

2. A contractive functional equation

The normalized closed interval is I = [0, 1]. The set of continuous functions
C0(I) over I is equipped with the maximal norm ‖f‖L∞(I) = maxi∈I |f(x)|.

Consider a subdivision in m ≥ 1 subintervals [xj , xj+1] where 0 = x0 < x1 <
· · · < xj < · · · < xm = 1, xj = jh and h = 1/m. Set

Pn = {p real polynomial of degree ≤ n} .
The set of continuous piecewise linear functions is

Vh =
{
u ∈ C0(I), u|(xj ,xj+1) ∈ P 1 for all 0 ≤ j ≤ m− 1

}
.

Similarly with the classical Finite Element setting [3], some basis functions are
chosen in a subset of Vh, even if they are not basis functions in the classical Finite

2020 Mathematics Subject Classification. 65Q20, 65Y99, 78M32.
Keywords. Functional equation, numerical analysis, real polynomials, Neural Networks.
The authors thank CEA for support.

1

2 BRUNO DESPRÉS & MATTHIEU ANCELLIN

Element sense. In the proposed construction, they are taken in subset Eh ⊂ Vh
Eh = {u ∈ Vh : u(I) ⊂ I, u is non constant on exactly one subinterval} .

The assumption u(I) ⊂ I is critical to get the contraction property under the
form of Lemma 2.5. Our interest in this set is because functions in Eh and Vh
are easily assembled or implemented in Neural Networks with the ReLU function
R(x) = max(0, x), see [8, 14, 5, 6, 11].

For the simplicity of the presentation, we start with a given real polynomial
function H ∈ Pn. More general functions are discussed in the last section. We
consider the problem below.

Problem 1. Find (e0, e1, . . . , er, β1, . . . , βr) ∈ Vh×(Eh)r×Rr such that the identity
below holds

H(x) = e0(x) +
r∑
i=1

βiH(ei(x)), x ∈ I, (2.1)

with the contraction condition

K < 1, K =
r∑
i=1
|βi|. (2.2)

Because of the external composition by H in the last sum, the ei’s are not basis
functions in the sense of the Finite Element Method [3]. Once the

(e0, e1, . . . , er, β1, . . . , βr) ∈ Vh × (Eh)r × Rr

are determined, equation (2.1) can be seen as a functional equation with H as a
solution.

A first classical example is based on H1(x) = x(1− x) which satisfies [10, 14, 5]

H1(x) = 1
4g(x) + 1

4H1(g(x)) (2.3)

where g is the hat function (normalized finite element function): g(x) = 2x for
0 ≤ x ≤ 1

2 and g(x) = 2(1 − x) for 1
2 ≤ x ≤ 1. Set e1(x) = min(2x, 1) and

e2(x) = min(2(1− x), 1) with e1, e2 ∈ Eh for h = 1/2. One obtains

H1(x) = e0(x) + 1
4H1(e1(x)) + 1

4H1(e2(x)), e0(x) = 1
4(g(x)− 1) (2.4)

where the contraction property (2.2) is satisfied with a constant
∑
|βi| = 1

4 + 1
4 = 1

2 .
Our second example concerns the function H2(x) = x3. Set e3(x) = 1− e2(x). One
can check the formula

H2(x) = e0(x) + 1
8H2(e1(x)) + 1

8H2(e2(x)) + 1
4H2(e3(x)) with e0(x) = 3

4e3(x)− 1
8 .

The condition of contraction is satisfied with the constant 1/2.
Consider the case m = 1, that is just one subinterval, and take a polynomial

H with deg(H) ≥ 2. For H(x) = xn+ low order terms, then by equating the
coefficients of xn on both sides, one gets 1 =

∑
βiµ

n
i with µi = e′i(x) ∈ R. Because

ei(I) ⊂ I, then |µi| ≤ 1. So 1 ≤
∑
|βi||µi|n ≤

∑
|βi|. It means the contraction

condition (2.2) is not satisfied and Problem 1 has only trivial solutions for m = 1.
Since the contraction property is crucial in the construction, we will not consider
the case m = 1 anymore. The main result is below.

Theorem 2.1. Let H ∈ Pn. There exists a threshold value m∗(H) ≥ 2 such that
the functional equation (2.1) has a solution with the contraction property (2.2) for
all m ≥ m∗(H)⇐⇒ h ≤ 1/m∗(H).

Writing the basis functions as ei(x) = ai+ bi−ai

h (x−xj) in the subinterval where
they are non constant, the parameters (ai, bi) can be taken as in Lemma 2.3 in the
general case. They can also be taken as in Lemma 2.2 if H(x) = xn is a monomial.

POLYNOMIAL SOLUTIONS AND NEURAL NETWORKS 3

For n ≥ 2, the number of basis functions which are non constant in a given subin-
terval is n− 1, the basis functions are duplicated by translation from of subinterval
to the other and so the total number of basis functions is r = m(n− 1).

The proof is based on decoupled and simpler problems posed in subintervals
[xj , xj+1]. Let us note the second derivative of H as p = H ′′ ∈ Pn−2. The
collection of reduced problems for all subinterval [xj , xj+1] writes as follows.

Problem 2. For all subintervals 0 ≤ j ≤ m− 1, find triples (ai, bi, γi) ∈ I × I ×R
(1 ≤ i ≤ s) such that bi − ai 6= 0 for all i and

p(xj + hy) =
s∑
i=1

γip(ai + (bi − ai)y), y ∈ I. (2.5)

Lemma 2.1. The equation (2.1) is equivalent to the equation (2.5).

Proof. The proof is in two parts.
(2.1) ⇒ (2.5): on the interval [xj , xj+1], one can write ei(x) = ai + bi−ai

h (x− xj).
By differentiation, a solution to (2.1) gives p(x) =

∑r
i=1 βi

(
bi−ai

h

)2
p(ei(x)) for

xj < x < xj+1. Retaining in the sum only the indices i such that bi − ai 6= 0, one
gets (2.5) where x = xj + hy and ei(x) = ai + (bi − ai)y.
(2.5) ⇒ (2.1): rewrite the discrete quantities in (2.5) with another lower index j
which refers to the interval in which this equation is considered. It defines ai,j , bi,j
and γi,j . Define

ei,j(x) =


ai,j for 0 ≤ x ≤ xj ,
ai,j + bi,j−ai,j

h (x− xj) for xj ≤ x ≤ xj+1 = xj + h,
bi,j for xj+1 ≤ x ≤ 1.

Define also
βi,j = h2

(bi,j − ai,j)2 γi,j , where bi,j − ai,j 6= 0. (2.6)

Consider the function
e0(x) = H(x)−

∑
j

∑
i

βi,jH(ei,j(x)). (2.7)

By construction e0 is continuous and its second derivative is zero in all open subin-
tervals (xj , xj+1). Therefore e0 ∈ Vh which ends the proof. �

If the polynomials y 7→ p(ai,j + (bi,j − ai,j)y), 1 ≤ i ≤ s, generate a complete
system in Pn−2, then the equation (2.5) has a solution. That is why we will consider
from now on that

s = dim(Pn−2) = n− 1. (2.8)
Next, by differentiation, the equation (2.5) in [xj , xj+1] is equivalent to the square
linear system

MjXj = bj , 0 ≤ j ≤ m− 1. (2.9)
The square matrix is

Mj =


p(a1,j) p(a2,j) . . . p(an−1,j)

c1,jp
′(a1,j) c2,jp

′(a2,j) . . . cn−1,jp
′(an−1,j)

.
cn−2
1,j p

(n−2)(a1,j) cn−2
2,j p

(n−2)(a2,j) . . . cn−2
n−1,jp

(n−2)(an−1,j)

 ∈Mn−1(R)

(2.10)
where we note ci,j = bi,j − ai,j . The unknown of the linear system is Xj =
(γ1,j , γ2,j , . . . , γn−1,j)T ∈ Rn−1. The right hand side of the linear system is bj =(
p(xj), hp′(xj), . . . , hn−1p(n−1)(xj)

)T ∈ Rn−1 which is bounded ‖bj‖∞ ≤ C uni-
formly with respect to the subinterval index j.

4 BRUNO DESPRÉS & MATTHIEU ANCELLIN

One remarks that: a) the matrixMj is close to a Vandermonde matrix, so natural
invertibility conditions arise; b) provided the real numbers ai,j , bi,j ∈ [0, 1] are
chosen independently of the subinterval (it will be written ai,j = ai and bi,j = bi),
thenMj = M is independent of the index j. Two cases of invertibility and one case
of non invertibility are considered below.

Lemma 2.2. Take p(x) = xn−2 with n − 2 ≥ 0. Assume the real numbers ai,j =
ai ∈ [0, 1] and bi,j = bi ∈ [0, 1] are chosen independently of the subinterval (so
Mj = M is independent of the index j) and bi − ai 6= 0 for all i. Then M is non
singular if and only if aibk − akbi 6= 0 for all 1 ≤ i 6= k ≤ n− 2.

Proof. The matrix is M =
(

n!
(n−t)! (bi − ai)

tan−ti

)
1≤t+1,i≤n−1

. By assumption bi −

ai 6= 0 for all i, so M is similar to N =
((

ai

(bi−ai)

)n−t)
1≤t+1,i≤n−1

. It is a

Vandermonde matrix, invertible if and only if ai

bi−ai
6= ak

bk−ak
for i 6= k. The latter

condition is equivalent to aibk − akbi 6= 0. �

Lemma 2.3. Take p ∈ Pn−2 with deg(p) = n − 2 ≥ 0. Assume the real numbers
ai,j = ai ∈ [0, 1] and bi,j = bi ∈ [0, 1] are chosen independently of the subinterval.
Assume ai 6= ak and bi − ai = bk − ak 6= 0 for all 1 ≤ i 6= k ≤ n − 2. Then the
matrix M is non singular.

Proof. The matrix M is similar to the matrix N =
(
p(t)(ai)

)
1≤t+1,i≤n−1 which is

a reducible to a non singular Vandermonde matrix. �

Lemma 2.4. Take p(x) = u+x, e1(x) = a1+(b1−a1)x and e2(x) = a2+(b2−a2)x.
Then the matrix M is singular if and only if u(b2− a2− b1 + a1) + a1b2− a2b1 = 0.

Proof. Indeed p(e1(x)) = u + a1 + (b1 − a1)x and p(e2(x)) = u + a2 + (b2 − a2)x.
The condition of linear independence of these two linear polynomials reduces to the
claim. �

Proof of Theorem 2.1. If n = 0 or n = 1 the result is trivial, so we consider n−2 ≥
0. If H(x) = xn is a monomial function, one can takes the first set of basis functions
given by Lemma 2.2 because the matrices are non singular. Unfortunately, this
simple choice is not always possible as shown by Lemma 2.4. So to cover the case
of general polynomials H ∈ Pn, we continue with basis functions satisfying Lemma
2.3.

One notes µ = 1
2(n−1) . In a generic subinterval , we construct functions ei for

1 ≤ i ≤ n − 1 by taking ai = iµ and bi = (i + 1)µ. By construction bi − ai =
bk − ak = µ > 0, 0 ≤ ai ≤ 1, 0 ≤ bi ≤ n

2(n−1) ≤ 1 (because n ≥ 2) and ai 6= ak for
i 6= k.

The matrix Mj = M being non singular, then the system (2.9) has a solution
Xj = (γ1,j , . . . , γn−1,j) such that ‖Xj‖∞ ≤ ‖M−1‖∞‖bj‖∞ ≤ C uniformly with
respect to the index of the subinterval j. So the representation (2.7) of H holds for
x ∈ I.

The constant is

K =
m−1∑
j=0

n−1∑
i=1
|βi,j | ≤

m−1∑
j=0

n−1∑
i=1

h2 |γi,j |
(bi − ai)2 ≤

m−1∑
j=0

n−1∑
i=1

h2C

µ2 ≤ m(n−1)h
2C

µ2 = (n− 1)C
µ2m

.

Takem∗(H) > (n−1)C
µ2 . So the contraction property is satisfied form ≥ m∗(H). �

Lemma 2.5. Under the contraction condition (2.2), one has the bounds ‖H‖L∞(I) ≤
1

1−K ‖e0‖L∞(I) and ‖
∑
i≥1 βiH ◦ ei‖L∞(I) ≤ K

1−K ‖e0‖L∞(I).

POLYNOMIAL SOLUTIONS AND NEURAL NETWORKS 5

Proof. It is evident but we detail it because the key condition ei(I) ⊂ I is used.
Consider the linear operator

H : L∞(I) −→ L∞(I)
G 7−→

∑
i≥1 βiG ◦ ei.

(2.11)

Then ‖H‖L(L∞(I)) ≤ K < 1, that is H is a strictly contractive operator. The
functional equation rewrites H = e0 + H(H) from which the inequalities are de-
duced. �

3. Application to Neural Networks

In this section, we detail some algorithms which have a natural interpretation in
the language of Neural Networks with the ReLU function as an activation function
[5, 14, 8]. These algorithms provide reference solutions based on the standard fixed
point method where the iteration index is k = 0, 1, . . .

H0 = 0,
Hk+1 = e0 +

∑
1≤i≤r

βiHk ◦ ei. (3.1)

The first terms of the series are H1 = e0, H2 = e0 +
∑
i βie0◦ei, H3 = e0 +

∑
i βie0◦

ei +
∑
i,j βiβje0 ◦ ei ◦ ej and more generally

Hk = e0 +
k−1∑
p=1

 ∑
1≤i1,...,ip≤r

(
βi1 . . . βip

)
e0 ◦ ei1 ◦ · · · ◦ eip

 , k ≥ 1. (3.2)

Lemma 2.5 and the contractive operator (2.11) yield a standard convergence prop-
erty with exponential rate in L∞(I)

‖Hk −H‖L∞(I) ≤ K
k ‖H‖L∞(I) , K =

∑
1≤i≤r

|βi| < 1. (3.3)

3.1. A first Neural Network implementation. To explain how the function
Hk can be implemented in a Neural Network, we need more notations. The ReLU
function is denoted as R(x) = max(0, x). The ReLU function T with threshold is
denoted as 1

T (x) = max(0,min(x, 1)), with T (x) = min(R(x), 1) = R(x)−R(x−1). (3.4)
In the language of Neural Networks [8], functions R and T are called activation
functions. The function T is clearly well adapted to encode the functions in Eh,
that is why we describe in details some implementations features with this function.
Using (3.4), these implementations can be performed without any difficulty with
the ReLU function R.

It is convenient for the rest of the discussion to define a set E more general than
Eh which is included in the new set E
E =

{
e ∈ C0(I) : there exists 0 ≤ α < β ≤ 1 and 0 ≤ a ≤ b ≤ 1 such that

e(x) = a for 0 ≤ x ≤ α,
e(x) = a+ (b− a) x−αβ−α for α ≤ x ≤ β,
e(x) = b for β ≤ x ≤ 1} .

(3.5)
We will also use the standard notation Lx = a + bx for affine functions where

a, b ∈ R. Same notations hold for L1x = a1 + b1x, and so on. We immediately
remark that the composition of two affine functions is also an affine function, that
is with natural notations L1 ◦ L2 = L3.

1This function is a variant of the function hard-tanh [8]. See also the documentation https:
//www.tensorflow.org/api_docs/python/tf/keras/activations/relu.

https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu
https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu

6 BRUNO DESPRÉS & MATTHIEU ANCELLIN

Lemma 3.1. All functions e ∈ E are computable with a composition of, first of
all an affine function, next the activation function T and finally an affine function
(that is e = L1 ◦ T ◦ L2).

Proof. Indeed, with the notation of (3.5), e(x) = a+(b−a)T ((x− α)/(β − α)). �

Lemma 3.2. The series (3.2) can be implemented by linear combination of func-
tions which are the result of at most k activation function T composed with at most
k + 1 affine functions.

Proof. The basic operations in a Neural Network are composition and linear com-
bination of functions, as sketched in Figure 3.1. These operations are already
sufficient to implement the iterations (3.1).

Figure 3.1. Sketch in a Neural Network of the composition h ◦ g
and of the linear combination λg+µh of 2 functions g and h already
implemented as Neural Networks. Empty bullets correspond either
to the input or to pure linear combination. Black bullets show that
an activation function R, T or another one is used.

Now consider (3.2). Since e0 ∈ Vh, then it is also a affine combination of function
in Eh. Therefore e0 ◦ ei1 ◦ · · · ◦ eik can be assembled by linear combination of
composition of the activation functions T and affine functions, with at most k
activation functions T and at most k + 1 affine functions (each of them obtained
by the composition of at most 2 affine functions). �

So the structure described by the Lemma can be implemented in a Neural Net-
work with activation T (or R). It generalizes to any polynomial the algorithm
presented in [5] or used in [6]. The depth of the network is the number of compo-
sition of activation functions, so the depth is k. This implementation is a Neural
Network generalization to all polynomials H of the series in [5, 14, 8] for the poly-
nomial x 7→ x− x2.

3.2. Accuracy. Considering (3.3), two ways to obtain a better accuracy are either
to increase m, that is to increase the number of neurons in the first layer, or to
increase k, that is to increase the number of layers.

The series (3.2) truncated at k = 0 recovers the polynomial H with an accuracy
which arbitrarily small because K = O(h): the number of neurons is r = ms =
s/h = O(h−1). Since polynomial functions are dense in the space C0(I) in the
maximum norm, it can be rephrased as a new constructive proof in dimension one
of the Cybenko Theorem [4]. Using the language of Neural Networks, one hidden
layer of an arbitrary large number of neurons can approximate any function in
C0(I).

POLYNOMIAL SOLUTIONS AND NEURAL NETWORKS 7

Another strategy is to increase the number of layers k = 1,2,3, . . . in the series
(3.2). The structure of the direct implementation of such a Neural Network is non
standard with respect to the literature [8] because the width of the layers has a
dependence with respect to k proportional to rk which is the numbers of terms in
the series (3.2): due to additional overhead, the cost of the implementation or the
run is more O

(
(r + c)k

)
; the approximation of the function e0 brings another cost.

However the accuracy is also a power of k, see (3.3), so there is a balance between
the cost and the accuracy.

3.3. Damping the width. It is possible to circumvent the exponential growth of
the width of the layers by two techniques which are explained below. This is what
we call damping the growth of the width, or damping the width.

3.3.1. Splitting strategy. Here we use a time interpretation of the fixed procedure
coupled with a splitting procedure. It is based on the ordinary differential equation
for the function G(t) ∈ L∞(I)

G(t) = 0,
G′(t) = e0 +

∑
1≤i≤r

βiG(t) ◦ ei −G(t). (3.6)

One has the bound ‖G(t) − H‖L∞(I) ≤ e−(1−K)t‖H‖L∞(I). A possible splitting
technique is based on decreasing time steps ∆t1 ≥ · · · ≥ ∆tk ≥ ∆tk+1 such that
the time step tends to 0 (∆tk → 0) and the total time tends to infinity (tk =∑k
l=1 ∆tl → ∞). Next within one time step tk ≤ t ≤ tk+1 = tk + ∆tk+1, one may

consider the series of ODEs{
G′0(t) = e0 − (1−

∑r
i=1 |βi|)G(t), 0 ≤ t ≤ ∆tk

G′i(t) = βiGi(t) ◦ ei − |βi|Gi(t), 0 ≤ t ≤ ∆tk, for i = 1, . . . , r,

where G0(0) = G(tk), Gi+1(0) = Gi(∆tk) for 0 ≤ i ≤ r − 1 and finally G(tk+1) =
Gr(∆tk).

A fully discrete version of the method takes the form{
Gk+1/r−Gk

∆tk = e0 − (1−
∑r
i=1 |βi|)Gk,

Gk+(i+1)/r−Gk+i/r

∆tk = βiGk+i/r ◦ e1 − |βi|Gk+i/r for i = 1, . . . , r.

At each step of the algorithm, all functions can be updated with the two operations,
composition and linear combination, described in Figure 3.1. Natural bounds can
be written to estimate ‖Gk−H‖L∞(I). This method damps the exponential growth
of the width, because the steps generate a series similar to the general one (3.2)
but with less terms in the right hand side. Nevertheless this gain is mitigated by
the number of additional fractional steps.

3.3.2. Reconfiguration of the Network. Independently of the method by splitting
explained just above, there is the possibility to use the main Theorem of [5] which
explains that a function f which is piecewise linear in [0, 1] can be implemented in
a Neural Network with the ReLU function R with a depth (the number of layers)
proportional to the number of breakpoints of f and an arbitrary constant width
(the number of neurons per layer) W ≥ 4: it can be called a reconfiguration of the
Network because the operations needed to describe a piecewise function f with a
certain number of breakpoints consists in an explicit rearrangement of the order
with which the calculations are done.

In what follows we briefly give a new proof of this result for the function that
corresponds toHk in (3.2) and to the activation function T . It yields reconfiguration
of the Neural Network and damps the width of the layers. This proof has its own

8 BRUNO DESPRÉS & MATTHIEU ANCELLIN

interest because the width of the new resulting Network W = 3 is smaller than the
one made explicit in [5] which is W ≥ 4.

One starts with a preliminary Lemma which shows that the composition of T ,
next an affine function and finally T can be expressed as the composition of an
affine function, next T and finally an affine function.

Lemma 3.3. Take two parameters λ, µ ∈ R. One has the identity

T (λT (x) + µ) = T (µ) + λ(M −m)T
(
x−m
M −m

)
, x ∈ I,

where m = min
(
T
(1−µ

λ

)
, T
(−µ
λ

))
and M = max

(
T
(1−µ

λ

)
, T
(−µ
λ

))
.

Proof. In the calculations below, all functions are continuous with respect to vari-
ables (x, λ, µ) and have a derivative almost everywhere with respect to the variable
x.
One has d

dxT (λT (x) + µ) = λT ′(x)T ′(λT (x) + µ). So the derivative is non zero if
and only if

λ 6= 0, 0 < x < 1, 0 < λT (x) + µ < 1⇔ λ 6= 0, 0 < x < 1, 0 < λx+ µ < 1.

Assume λ > 0. The last inequality is −µλ < x < 1−µ
λ . One gets 0 < x < 1 with −

µ
λ < x < 1−µ

λ ⇔ T
(−µ
λ

)
< x < T

(1−µ
λ

)
. For λ < 0, the bounds are reversed, one

finds the condition T
(1−µ

λ

)
< x < T

(−µ
λ

)
.

In summary the function x 7→ T (λT (x)+µ) has a zero derivative almost everywhere
except if m < x < M . For x in this interval, the derivative is equal to λ.

Consider the function defined by G(x) = λ(M − m)T
(
x−m
M−m

)
. In the case

M − m > 0, the function G has a zero derivative almost everywhere except if
m < x < M , and then its derivative is equal to λ by a direct calculation. Therefore
the difference T (λT (x) + µ) − G(x) = C(λ, µ) is constant with respect to x. In
the case M −m = 0, one checks directly that the difference is also constant with
respect to x.

It remains to identify the constant. Take M −m > 0 and let x→ −∞. One gets
the identity T (µ) − 0 = C(λ, µ). In the case M −m = 0, the result is the same,
and the proof is ended. �

Proposition 3.1. One has E ◦ E = E.

Proof. Take two general functions e1, e2 ∈ E . Let us write e1 = L1 ◦ T ◦ L2 and
e2 = L3 ◦ T ◦ L4 where L1,2,3,4 are affine functions. Since the composition of affine
functions is an affine function, one can write

e1 ◦ e2 = L1 ◦ T ◦ (L2 ◦ L3) ◦ ToL4 = L1 ◦ (ToL5 ◦ T) ◦ L4.

Lemma 3.3 shows there exists two affine functions L6 and L7 such that T ◦L5 ◦T =
L6 ◦T ◦L7. We note if M −m = 0 (resp. λ = 0) in Lemma 3.3, then the singularity

1
M−m (resp. 1

λ) is meaningless because of the exterior multiplication byM −m = 0
(resp. λ = 0). So in this case these singularities are artificial and L7 can be chosen
arbitrarily. One gets

e1 ◦ e2 = L1 ◦ L6 ◦ T ◦ L7 ◦ L4 = L8 ◦ T ◦ L9.

This function has the generic form of functions in E because it is the composition of
an affine function, next T , and finally an affine function. It shows that e1 ◦ e2 ∈ E .
So E ◦ E ⊂ E .

Finally take e2(x) = x. Then e1 = e1 ◦ e2 so E ⊂ E ◦ E . Therefore the equality
of the claim holds. �

POLYNOMIAL SOLUTIONS AND NEURAL NETWORKS 9

Consider the function Hk in (3.2). Expansion of e0 as a linear combination of
functions in Eh and repeated application of Proposition 3.1 show that the sum (3.2)
can be reorganized as

Hk =
D∑
d=1

L+
d ◦ T ◦ L

−
d (3.7)

where L±d are affine functions andD is taken large enough, equal to the total number
of terms in (3.2). In virtue of the contraction condition, the series is convergent∑D
d=1

∥∥L+
d ◦ T ◦ L

−
d

∥∥
L∞(I) <∞.

Theorem 3.1. The series (3.7) can be implemented within a Neural Network with
the ReLU function with T as activation function. The width is W = 3 and the
depth is D.

Proof. The proof is based on two ideas. The first idea is an iterative calculation of
the result. The second idea comes from [5] and the implementation uses a source
channel and a collation channel. Preliminary to describing the implementation, we
rewrite the series (3.7) as

Hk = C

(
1
2 + 1

C

D∑
d=1

L+
d ◦ T ◦ L

−
d

)
− C

2

where C ≥ 2
∑D
d=1

∥∥L+
d ◦ T ◦ L

−
d

∥∥
L∞(I) is taken sufficiently large.

Lf

xxx x x x

L−1

+ 1
CL+

1

L−2 L−3 L−D−1 L−D

+ 1
CL+

2 + 1
CL+

D−1+ 1
CL+

D

h1 h2
1
2 hD−1 hD Hk

Figure 3.2. Structure of the Neural Network associated to the
formula (3.7) and to the iterations (3.8). The top line reproduces
x, it is called a source channel. The bottom line is the collection
channel which realizes the addition in (3.8), it is called a collation
channel. The intermediate lines correspond to the calculation of
the different affine functions. The black bullets are the Neurons,
they represent the application of the ReLU function with threshold
T . The Neurons leave unchanged terms in the source channel and
in the collation channel. The three empty bullets at the input and
at the output signal that no ReLU is applied.

Then partial series hr = 1
2 + 1

C

∑r
d=1 L

+
d ◦ T ◦ L

−
d (for 1 ≤ r ≤ D) take values

between 0 and 1 (for x ∈ I), that is hr(I) ⊂ I and Tohr = hr. One notes the
recurrence relation

h0 = 1
2 , hr+1 = hr + 1

C
L+
r+1 ◦ T ◦ L

−
r+1 1 ≤ r ≤ D − 1. (3.8)

The final result is obtained which a last affine function Hk = ChD − C
2 = Lf ◦ hD.

This recurrence is easily implemented in accordance with the diagram described in
Figure 3.2, using a source channel and a collation channel as it is explained in [5].
The maximal number of Neurons per layer is W = 3.

10 BRUNO DESPRÉS & MATTHIEU ANCELLIN

The depth is the number of hidden layers between the input layer and the output
layer. In the Figure 3.2 it is equal toD+1. However it is possible to concatenate the
last step with the previous one because only affine functions are involved and the
composition of two affine functions can be implemented as just one affine function.
It saves one hidden layer, so the depth can be made equal to D. �

In summary the function Hk can be calculated either from the formula (3.2)
which yields k + 1 layers with an increasing number of neurons per layers, or with
the Network that comes from Theorem 3.1 which has a large number of layers and
3 neurons per layer. One can also implement (3.7) directly with exactly one hidden
layer and with one input layer and one output layer. Many other intermediate
Networks, in terms of the number of layers and neurons per layer, are possible.

3.3.3. Recursive and recurrent Neural Networks. It will be valuable in a near future
to compare with the structure of some Neural Networks which have an iterative
nature. In recursive Neural Networks, similar weights are used in consecutive layers
[8]. In recurrent Neural Networks [2, 8] which are widely used for time signals
analysis, some level of recursivity is also introduced but in a different way in order
to propose an efficient treatment of time series.

3.4. Numerical examples. It is possible to calculate analytically all coefficients
βi and γi by solving the linear system (2.9), and to compare numerically the numer-
ical error with the theoretical rate of convergence (3.3), as done in Table 3.4. Since
it is elementary, we complement with another more interesting approach, which is
to evaluate the efficiency of the training of the coefficients for a certain depth k
and a certain collection of basis functions ei for 1 ≤ i ≤ r, with r conveniently
chosen. We formulate training as the problem of finding the best coefficients βi for
1 ≤ i ≤ r and e0 ∈ Vh by minimizing the L2 cost function

W = (e0, β1, . . . , βr) 7→ J(W) = ‖Hk(W)−H‖L2(I) , (3.9)

where the integral (in the L2 norm) is evaluated by quadrature and the basis func-
tions ei for i ≥ 1 are chosen in advance. This procedure provides insights in the
convergence properties of the training stage which is a major algorithmic issue [8]
for Neural Networks. For exemple, in [6], various tests for x 7→ x2 implemented
within a dense Neural Network of width 3 and arbitrary depth k completely failed
to recover the accuracy O(4−k). In the tests below which are based on the structure
explained in this document, the asymptotic accuracy is much better captured.

Elementary tests were implemented2 in Julia (see https://julialang.org) us-
ing an automatic differentiation library [13] and an optimization library [12]. The
integral in (3.9) being evaluated by quadrature with uniform discretization, it is
equivalent to say that the dataset for training is

D = {(xi, H(xi)) , i = 1, 2, . . . , N}
where 0 ≤ xi = i−1

N−1 ≤ 1. Since we take N = 1000 in our tests, the dataset is
oversampled. We used various standard optimizers, such as the Newton-Raphson
method, the LBFGS quasi-Newton method or a simple Gradient Descent method
with line research. Tests with the Gradient Descent showed that the optimum
is unchanged but the rate of convergence is much slower. We expect that with
Stochastic Gradient Descent [8], the convergence will be even slower.

So to display results with good accuracy obtained in a reasonnable time, we
present the results obtained with the Newton or quasi-Newton method. We record
the accuracy in function of the depth k. For increasing values of k, we report the

2Source code is available at https://doi.org/10.5281/zenodo.3936433. It implements the
iterations (3.1) with the two operations described in Figure 3.1.

https://julialang.org
https://doi.org/10.5281/zenodo.3936433

POLYNOMIAL SOLUTIONS AND NEURAL NETWORKS 11

numerical L2(I) error E(k) = J(Wk) where the optimal valueWk has been obtained
at the end of the training and K(k) which is the value of the constant K evaluated
in function of Wk. A value K(k) < 1 is an indication of the stability of the method
and can be compared with the theoretical value (see Table 3.4).

For the tests in Tables 3.1 and 3.2, the basis functions are e1(x) = min(2x, 1),
e2(x) = max(1 − 2x, 0), e3(x) = max(0, 2x − 1) and e4(x) = min(1, 2 − 2x). By
comparison with the tests shown in [6], the gain in accuracy as a function of k (and
of stability) is spectacular, even if these new tests need much more neurons per
layers for large k. These first two examples show the scaling E(k) = O(αk) with
α ≈ 1

4 < min2≤k≤8K(k), that is the convergence is at a better rate than what
is predicted by the evaluation of K(k). This is confirmed by the other examples
below.

Next we perform similar tests but with m = 3 subintervals. The accuracy is
better than form = 2 subintervals. The factor per layer is ≈ 1/9 (it comes probably
from the formula x2 = e0(x) + 1

9g(x)2 which is easy to check). The numerical value
of K(k) is close to 1/3.

k 1 2 3 4 5 6 7 8
E(k) 1.8e-2 4.6e-3 1.2e-3 2.9e-4 7.3e-5 1.8e-5 4.6e-6 1.1e-6
K(k) 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 3.1. The polynomial is H(x) = x − x2. One observes
E(k) = O(4−k) in accordance with the theoretical prediction issued
from (2.3).

k 1 2 3 4 5 6 7 8
E(k) 2.5e-2 6.2e-3 1.5e-3 3.9e-4 9.6e-5 2.4e-5 6.0e-6 1.5e-6
K(k) 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 3.2. The polynomial H(x) = x − x2/2 − x3/2. One also
observes E(k) = O(4−k).

k 1 2 3 4
E(k) 3.3e-2 3.4e-3 3.8e-4 4.2e-5
K(k) 0 0.94 0.38 0.36

Table 3.3. The polynomial is H(x) = x − x2. One observes
E(k) ≈ O(9−k) in accordance with the best theoretical prediction.

In the last test, we take H(x) = x2 + x3 + x4, m = 3 subintervals and 9 basis
functions in total. The three basis functions e1(x) = min(3x, 1), e2(x) = max(1 −
3x, 0) and e3(x) = min(1/3 + 2x, 1) are duplicated by translation in the three
subintervals. The results are in Table 3.4, where we also provide the accuracy
with the Neural Network with the exact coefficients (obtained by solving the linear
systems (2.9)) and the exact constant K. One observes convergence of the training
at a better rate than the theoretical prediction.

Other tests have been made. Two difficulties were observed: the constant K(k)
can be greater than one as in Table 3.4, which makes the results more difficult to
interpret; or the time of training with a large number of basis functions (≥ 10)
becomes important with our current implementation.

12 BRUNO DESPRÉS & MATTHIEU ANCELLIN

k 1 2 3 4
E(k) 4.4e-2 4.5e-3 6.0e-4 2.7e-4
K(k) 0 3.53 0.39 0.46
Eex(k) 8.4e-1 6.3e-1 4.6e-1 3.3e-1
Kex(k) 0.94 0.94 0.94

Table 3.4. The function is H(x) = x2+x3+x4 and the number of
subintervals is m = 3. One observes good initial convergence, and
low gain of accuracy from k = 3 to k = 4 layers. It is correlated to
large value of K(4). The trained solution is better than the exact
solution: E(k) ≤ Eex(k).

4. Last remarks

Firstly we think it is worthwhile to replace the set Eh by the set
Fh = {u ∈ Vh : u(I) ⊂ I} .

Considering (2.3), we conjecture that the contraction constant
∑
|βi| will be better

with Fh instead of Eh: indeed the contraction constant is 1/4 in (2.3), better than
1/2 in (2.4) (with this respect, the set Eh is non optimal). Instead of matrices like
(2.10) local to the subintervals, one will get a global matrix coupling all subintervals.
The analysis of the global matrix is still to be done.

Secondly an interesting issue would be to replace the polynomial H by piecewise
polynomial continuous functions. It would make strong connections with high order
finite elements [3].

Thirdly, new questions arise for multivariate versions of Problem 1 because the
theory of multivariate polynomials is more involved than univariate polynomials
and, if one follows a similar strategy as the one presented. the matrices will neces-
sarily be global.

Fourthly, the exact solutions obtained from (3.2) can be used for evaluation
(benchmarking) of various Neural Networks implementations with ReLU activation
functions.

Fifthly, it is possible to use our approach to modify a key step in modern proofs
of convergence [5, 14, 11] of Deep Neural Networks with ReLU functions. This is
left for further research.

Last, we point out the recent work [1] where a fixed point equation is also intro-
duced in relation with a Neural Network architecture, but for a different purpose.

References
[1] A. Bensoussan, Y. Li, D. P. C. Nguyen, M.-B. Tran, S. C. P. Yam, X. Zhou, “Machine

Learning and Control Theory”, arXiv:2006.05604.
[2] M. Bodèn, “A Guide to Recurrent Neural Networks and Backpropagation”, in the Dallas

project, SICS technical report T2002:03, SICS, 2002.
[3] P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, 2013.
[4] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Sig-

nals Systems 2 (1989), no. 4, p. 303-314.
[5] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, G. Petrova, “Nonlinear Approximation and

(Deep) ReLU Networks”, arxiv:905:02199v1.
[6] B. Després, “Machine Learning, adaptive numerical approximation and VOF methods”, 2020,

colloquium LJLL/Sorbonne university, https://www.youtube.com/watch?v=OPKFYe01hH4.
[7] B. Després, H. Jourdren, “Machine Learning design of Volume of Fluid schemes for compress-

ible flows”, Journal of Computational Physics 408 (2020).
[8] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http://www.

deeplearningbook.org.

https://www.youtube.com/watch?v=OPKFYe01hH4
http://www.deeplearningbook.org
http://www.deeplearningbook.org

POLYNOMIAL SOLUTIONS AND NEURAL NETWORKS 13

[9] M. Hata, M. Yamaguti, “Weierstrass’s function and chaos”, Hokkaido Mathematical Joumal
12 (1983), p. 333-342.

[10] ———, “The Takagi Function and Its Generalization”, Japan J. AppL Math. 1 (1984),
p. 83-199.

[11] J. Lu, Z. Shen, H. Yang, S. Zhang, “Deep Network Approximation for Smooth Functions”,
https://blog.nus.edu.sg/matzuows/publications/, 2020.

[12] P. K. Mogensen, A. N. Riseth, “Optim: A mathematical optimization package for Julia”,
Journal of Open Source Software 3 (2018), no. 24, p. 615, https://doi.org/10.21105/joss.
00615.

[13] J. Revels, M. Lubin, T. Papamarkou, “Forward-Mode Automatic Differentiation in Julia”,
arXiv:1607.07892 (2016).

[14] D. Yarotsky, “Error bounds for approximations with deep ReLU networks”, Neural Networks
97 (2017), p. 103-114.

Laboratoire Jacques-Louis Lions, Sorbonne Université, 4 place Jussieu, 75005 Paris,
France and Institut Universitaire de France

E-mail address, B. Després: despres@ann.jussieu.fr

Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-
Yvette, France

E-mail address, M. Ancellin: matthieu.ancellin@ens-paris-saclay.fr

https://blog.nus.edu.sg/matzuows/publications/
https://doi.org/10.21105/joss.00615
https://doi.org/10.21105/joss.00615

	1. Introduction
	2. A contractive functional equation
	3. Application to Neural Networks
	3.1. A first Neural Network implementation
	3.2. Accuracy
	3.3. Damping the width
	3.4. Numerical examples

	4. Last remarks
	References

