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Nonlinear multiple breathing cracks detection using Direct Zeros Estimation of Higher-Order Frequency Response Function

On-board structures are currently submitted to high-level vibrations which may affect their integrity and operational lifetime. Structural health monitoring is then of great interest to avoid mechanical failures and to increase operational safety of mechanical systems. Indeed, in the case of cracked structures, the presence of cracks may affect the dynamic behavior. Thus, this paper focusses particularly on the detection and location of small cracks using the nonlinear response of cracked structures and more specifically using the zeros of the Higher-Order Frequency Response Function. The proposed method is based on the Direct Zeros Estimation algorithm to identify the antiresonances of the system. The locus of the identified antiresonances according to the crack location are discussed through numerical examples applied to the simplified nonlinear finite element model of a rectangular beam with multiple breathing cracks.

Introduction

In transport and in the aerospace industry, high-level and repeated vibrations may affect the integrity and the operational lifetime of embedded systems by inducing fatigue cracks and defaults [START_REF] Chomette | Semi-adaptive modal control of onboard electronic boards using an identification method[END_REF][START_REF] Chomette | Damage reduction of on-board structures using piezoelectric components and active modal control -application to a printed circuit board[END_REF]. Therefore, structural health monitoring seems to be of great interest to increase the safety of systems by detecting and identifying defaults. Crack modelling is an important point of the structural health monitoring process. In the case of beam-like structures, simplified analytical or numerical models are a welcome compromise to model and study the influence of open cracks on the dynamic response of structures [START_REF] Christides | One dimensional theory of cracked bernoulli-euler beam[END_REF][START_REF] Sinha | Simplified models for the location of cracks in beam structures using measured vibration data[END_REF][START_REF] Friswell | Crack modeling for structural health monitoring[END_REF]. In the case of breathing cracks, opening and closing with the excitation, it is necessary to use nonlinear models [START_REF] Cheng | Vibrational response of a beam with a breathing crack[END_REF][START_REF] Douka | Time-frequency analysis of the free vibration response of a beam with a breathing crack[END_REF].

Cracks detection methods can be based on the modification of modal parameters, particularly using changes in frequency [START_REF] Salawu | Detection of structural damage through changes in frequency: A review[END_REF], amplitude [START_REF] Owolabi | Crack detection in beams using changes in frequencies and amplitudes of frequency response functions[END_REF], damping [START_REF] Montalvao | A method for the localization of damage in a cfrp plate using damping[END_REF] and antiresonances [START_REF] Wahl | On the significance of antiresonance frequencies in experimental structural analysis[END_REF][START_REF] Dilena | The use of antiresonances for crack detection in beams[END_REF]. A review of different methods can be found in [START_REF] Montalvo | A review of vibration-based structural health monitoring with special emphasis on composite materials[END_REF]. Open cracks can also be identified using an a-posteriori error estimator of the Frequency Response Functions (FRF) with noisy measurements [START_REF] Faverjon | Identification of an open crack in a beam using an a posteriori error estimator of the frequency response functions with noisy measurements[END_REF]. In the case of multiple open cracks, FRFs and the Constitutive Relation Error updating method [START_REF] Faverjon | Robust damage assessment of multiple cracks based on the frequency response function and the constitutive relation error updating method[END_REF] can be used to identify cracks location and depth. However, the temperature or boundary conditions variation may be misleading for the detection process by affecting modal parameters. Moreover, little cracks induce small changes in modal parameters which may be difficult to detect. In this case, nonlinear approaches seem to be a preferable alternative. Indeed, these methods are mainly based on the nonlinear behaviour induced by breathing cracks and appear to be more robust to the changes in environment. Nonlinear cracks detection can use identification methods [START_REF] Altunisik | Modal parameter identification and vibration based damage detection of a multiple cracked cantilever beam[END_REF], super-harmonic [START_REF] Sinou | Detection of cracks in rotor based on the 2x and 3x super-harmonic frequency components and the crack-unbalance interactions[END_REF] and more particularly Higher-Order Frequency Response Functions (HOFRF) to analysis nonlinear dynamics and to detect and locate cracks [START_REF] Sinou | On the use of non-linear vibrations and the anti-resonances of higher-order frequency response functions for crack detection in pipeline beam[END_REF]. Indeed, the presence of a breathing crack induces an additional nonlinear force on the structure which may affect the location of HOFRFs antiresonances. If the location of one crack using the minimum value of antiresonances has been observed on pipeline beam [START_REF] Sinou | On the use of non-linear vibrations and the anti-resonances of higher-order frequency response functions for crack detection in pipeline beam[END_REF], few efforts have been dedicated to the location of multi cracks using antiresonances locus.

Therefore, the present study proposes to numerically investigate the antiresonances locus of HOFRFs according to the cracks location using zeros identification algorithm in the case of a cracked beam and to the author's knowledge, for the first time, in the case of a beam with multi cracks. The paper is organized as follow: the simplified finite element model of the cracked beam including a breathing crack is detailed in the first part. Secondly, the Direct Zeros Estimation (DZE) algorithm is presented and finally, the identified antiresonances locus according to the cracks location is dicussed for both cracked and multi-cracked beams.

Modelling and identification

Firstly, the finite element model of the beam including a breathing crack is presented. Secondly, the method to approximate the dynamic nonlinear response using finite Fourier series is detailed. Finally, the proposed identification method to estimate the antiresonances (zeros) of the system is presented.

Simplified nonlinear cracked beam modelling

The cracked structure is a rectangular beam with a length L = 0.996 m, a width w = 0.05 m and a depth d = 0.025 m (see Fig. 1). The beam material is defined by its Young's modulus E = 69.79e9 P a, its Poisson's ratio ν = 0.33 and its density ρ = 2600 Kg.m -3 . The crack depth is defined in this study using the non-dimensional crack depth µ = dc d . The model of the simply supported cracked beam is based on the linear simplified model proposed by Sinha and Friswell [START_REF] Sinha | Simplified models for the location of cracks in beam structures using measured vibration data[END_REF] and uses the dicretized stiffness variation introduced by Chomette et al [START_REF] Chomette | Cracks detection using active modal damping and piezoelectric components[END_REF]. The crack is located at x c and modelled using a triangular stiffness variation located between x c and x cr as shown in Fig. 2. I 0 = wd 3 12 and I c = w(d-dc) 3 are the second moment of areas of the uncracked and cracked beam respectively. The length of the stiffness variation has been experimentally defined by Christides and Barr [START_REF] Christides | One dimensional theory of cracked bernoulli-euler beam[END_REF] to be equal to c = 1.5 d. The beam is discretized in 53 Euler-Bernoulli finite elements with two degrees of freedom for each node, namely the transversal translation v and the bending rotation θ. This choice is discussed in section 3. The mesh of the beam is defined in such a way as to locate nodes at the crack location (x c ) and at the left (x c ) and right (x cr ) end of the stiffness variation. Moreover, the stiffness variation is discretized in two elements in this study. This specific mesh allows to simplify the expression of the stiffness variation EI(x e ) discretized with several elements. This formulation also enables mesh refinement. The stiffness variation can be thus written for the left ( ) and right (r) parts

EI (x e ) = EI 0 - E (I 0 -I c ) c x e + x me -(x c -c ) (1) 
Figure 2: Finite element model of the cracked beam and stiffness variation EI(x).

and

EI r (x e ) = EI 0 + E (I 0 -I c ) c x e + x me -(x c + c ) , (2) 
where x e defines the coordinate of a point in the local basis of the element with x e ∈ [0, e ]. x me denotes the global coordinate of the left node of the element with x me ∈ [0, L]. The stiffness matrix of the cracked element can be written

K e,crack = K e -K (r),crack , (3) 
where K e is the stiffness matrix of the element without crack and K (r),crack is the stiffness reduction induced by the crack for the left (K ,crack ) and right (K r,crack ) parts. After integration over an element between 0 and e , the symmetric stiffness reduction matrix can be written for the left and right elements

K (r),crack = K e -K e,crack = (-1) p+1 E(I 0 -I c )     k 11 k 12 k 13 k 14 k 22 k 23 k 24 k 33 k 34 sym k 44     , (4) 
with

k 11 = 6 2x me -2 x c + (-1) p c + e / (l c 3 e ) k 12 = 2 3x me -3 x c + (-1) p ell c + e / (l c 2 e ) k 13 = -6 2x me -2 x c + (-1) p c + e / (l c 3 e ) k 14 = 2 3x me -3 x c + (-1) p c + 2 e / (l c 2 e ) k 22 = 4x me -4 x c + (-1) p c + e / (l c e ) k 23 = -2 3x me -3 x c + (-1) p c + e / (l c 2 e ) k 24 = 2x me -2 x c + (-1) p c + e / (l c e ) k 33 = 6 2x me -2 x c + (-1) p c + e / (l c 3 e ) k 34 = -2 3x me -3 x c + (-1) p c + 2 e / (l c 2 e ) k 44 = 4x me -4 x c + (-1) p c + 3 e / (l c e ) , (5) 
where p = 1 for the left part and p = 0 for the right part of the stiffness variation. After assembling over all elements, the stiffness matrix K o of the fully system with an open crack can be written using the stiffness reduction K crack

K o = K -K crack , (6) 
where K is the stiffness matrix when the crack is fully closed. However, the stiffness reduction matrix due to the crack constantly varies under a periodic excitation force. Supposing that the breathing mechanism is mainly governed by the first mode, the stiffness of the cracked beam can be modelled in steady state according to Cheng et al [START_REF] Cheng | Vibrational response of a beam with a breathing crack[END_REF] using

K n (t) = K - 1 2 K crack 1 -cos(Ωt) , (7) 
where K n (t) is the nonlinear stiffness matrix. Ω defines the pulsation of the excitation and consequently the breathing frequency of the crack.

• If Ωt = 2nπ, the nonlinear stiffness matrix can be written K n (t) = K and the crack is fully closed.

• If Ωt = (2n -1)π, the nonlinear stiffness matrix can be written K n (t) = K -K crack and the crack is fully open.

The equation of the cracked beam can be thus written using the nonlinear stiffness

M ẍ(t) + C ẋ(t) + K n (t) x(t) = f(t), (8) 
where ẍ(t), ẋ(t) and x(t) define the acceleration, the velocity and the displacement vectors respectively. M and C are the mass and the damping matrix respectively. f(t) is the vector of the periodic external load. Eq. ( 8) can be written using Eq. ( 7)

M ẍ(t) + C ẋ(t) + K x(t) = f(t) + f n (t), (9) 
where

f n (t) = 1 2 K crack 1 -cos(Ωt) x(t) (10) 
is the nonlinear additional force induced by the breathing crack. It is well known [START_REF] Wahl | On the significance of antiresonance frequencies in experimental structural analysis[END_REF] that an external load induces a change in antiresonances. The presence of this nonlinear load is thus responsible for the evolution of super-harmonic antiresonances as explained by Sinou [START_REF] Sinou | On the use of non-linear vibrations and the anti-resonances of higher-order frequency response functions for crack detection in pipeline beam[END_REF]. In order to investigate this phenomenon, the non linear response of the cracked beam is determined using approximated expression of nonlinear response by finite Fourier series following the process introduced in [START_REF] Sinou | On the use of non-linear vibrations and the anti-resonances of higher-order frequency response functions for crack detection in pipeline beam[END_REF]. As mentioned in [START_REF] Wahl | On the significance of antiresonance frequencies in experimental structural analysis[END_REF], the number of modes taken into account must be sufficient to adequately predict the exact position of antiresonances. Indeed, the location of antiresonances is highly sensitive to the out of range modes. The nonlinear response can be approximated by

x(t) = m k=1 A k cos(k Ωt) + B k sin(k Ωt) , ( 11 
)
where m is the number of harmonic components and A k and B k are the coefficients of the Fourier serie. The nonlinear load can be thus written

f n (t) = 1 2 K crack 1 -cos(Ωt) m k=1 A k cos(k Ωt) + B k sin(k Ωt) . (12) 
The periodic external excitation force can be exactly defined using first-order Fourier series

f(t) = C 1 cos(Ωt) + S 1 sin(Ωt). (13) 
Using Eqs. ( 9), ( 11), ( 12) and ( 13), the coefficients A k and B k can be obtained from the following matrix expression

α 11 0 α 13 α 14 α 11 0 0 α 11 -α 14 α 13 0 α 11         A k-1 B k-1 A k B k A k+1 B k+1         = δ k1 C 1 δ k1 S 1 , with δ k1 = 1 if k = 1 δ k1 = 0 if k = 1 ( 14 
)
where

α 11 = K crack 4 , α 13 = K -k 2 Ω 2 M - K crack 2 , α 14 = k Ω C and A n = B n = 0 if n < 1.

Direct Zeros Estimation (DZE)

The proposed method to identify super-harmonic zeros is based on the Direct Modal Parameter Estimation (DMPE) algorithm [START_REF] El-Kafafy | Direct calculation of modal parameters from matrix orthogonal polynomials[END_REF][START_REF] Chomette | Modal control based on direct modal parameters estimation[END_REF] conventionally used to extract frequencies and modal damping using the denominator of the FRF. We propose here a new algorithm namely the DZE algorithm to extract zeros using the numerator of the FRF. This method permits to extract the numerator roots of the FRF in order to directly obtain the system zeros. We remind that the numerator roots are the antiresonances of the FRF and correspond to the system zeros. The estimation of zeros is supposed to be done after a classical identification of the system poles and then based on a modal formulation. Consequently, the HOFRFs are already identified in a discretized form for each s i using orthogonal polynomials for both the numerator and the denominator. The idea here, to obtain a continuous formulation in modal basis, is to use the recurrence relation of the orthogonal polynomials of the numerator to rewrite the eigenvalue problem. The benefit of this approach is to use the same technique as to extract the system poles using the orthogonal polynomials of the denominator. This method is always based on well conditioned matrices even for large frequency range and permits to identify all the system zeros using only one frequency range. The FRF can be expressed in a rational form using orthogonal polynomials written for n modes

H(s i ) = 2n-1 k=0 β k φ i,k (s i ) 2n k=0 α k θ i,k (s i ) , (15) 
where s i = jω i is the Laplace variable evaluated at frequency ω i . φ i,k and θ i,k are the numerator and the denominator orthogonal polynomials matrix associated to the coefficients β k and α k respectively, at frequency i and order k. These coefficients are supposed to be earlier estimated using the algorithm detailed in [START_REF] Forsythe | Generation and use of orthogonal polynomials for data-fitting with a digital computer[END_REF][START_REF] Van Der | Multiple input orthogonal polynomial parameterestimation[END_REF]. The 2n -1 system zeros correspond to the roots of the equation

2n-1 k=0 β k φ i,k (s i ) = 0. ( 16 
)
The numerator roots of Eq. ( 15) can be thus calculated with

φ i,2n-1 = -(β 2n-1 ) -1 2n-2 k=0 β k φ i,k (s i ). ( 17 
)
Eq. ( 17) can be written in an equivalent matrix form

φ i,2n-1 φ i,2n-2 • • • φ i,1 1 × (2n-1) = φ i,2n-2 φ i,2n-3 • • • φ i,0 1 × (2n-1) D num (18) 
where

D num =      -(β 2n-1 ) -1 β 2n-2 1 • • • 0 . . . . . . . . . . . . -(β 2n-1 ) -1 β 1 0 • • • 1 -(β 2n-1 ) -1 β 0 0 • • • 0      (2n-1) × (2n-1)
.

Using the recurrence relation of orthogonal polynomials [START_REF] Forsythe | Generation and use of orthogonal polynomials for data-fitting with a digital computer[END_REF][START_REF] Chomette | Modal control based on direct modal parameters estimation[END_REF],

φ i,k = s φ i,k-1 D k + V k-1 φ i,k-2 D k (20) 
Eq. ( 18) can be written

φ i,2n-1 φ i,2n-2 • • • φ i,1 1 × (2n-1) = φ i,2n-2 φ i,2n-3 • • • φ i,0 1 × 2n-1 (s Z num + P num ) (21) 
where

Z num =    D -1 2n-1 • • • 0 . . . . . . . . . 0 • • • D -1 1    (2n-1) × (2n-1)
,

P num =      0 0 • • • 0 V 2n-2 D -1 2n-1 0 • • • 0 . . . . . . . . . . . . 0 • • • V 1 D -1 2 0      (2n-1) × (2n-1)
.

Eq. ( 21) can be finally written in the form of an eigenvalue problem

D num = s Z num + P num ⇔ (D num -P num ) Z -1 num -s Id = 0. (23) 
The system zeros z k can be therefore obtained using the eigenvalues λ k of Eq. ( 23) using z k = |λ k |. This stable numerical method permits to estimate higher order models to identify several zeros and does not need to cut the FRF in several frequency ranges that need only a few zeros in the identification procedure. Using stabilization chart, this method can be easily automatizable in a structural health monitoring process to detect and locate cracks.

Results and discussion

The antiresonances locus of HOFRFs obtained using the DZE algorithm is presented for a cracked beam in section 3.1 and for a multi-cracked beam including two and three cracks in section 3.2.

Cracked beam

Classical results in relation to the nonlinear behaviour of breathing cracks are observable on the HOFRF at x = 0.5 m in Fig. 3 for three cases with the same non-dimensional crack depth µ = 0.1:

• case 1: x c = 0.5 m • case 2: x c = 0.7 m • case 3: x c = 0.9 m
The first order corresponds to the linear response of the cracked beam with only one harmonic component. Peaks at f1 2 , f 1 and 2f 1 are observed for the second order depending on the crack location. The second harmonic does not appear in the first case. Peaks at f1 3 , f1 2 , f 1 , f 1 + f1 3 , 2f 1 and 3f 1 are observed for the third order, also depending on the crack location. Peaks at

f 1 + f1
3 and 2f 1 do not appear in the first case. Moreover, antiresonances appear on orders 2 and 3 at different locations depending on the crack location. The influence of the mesh refinement is presented in figure 3d. It appears that from a number of elements equal to 13, the resonances and the antiresonances are correctly located and that the number of modes taken into account is sufficient to study the crack behaviour around the first mode at frequency f 1 . Moreover, to study more precisely the evolution of the antiresonances location along the beam, the mesh is even more refined using 53 elements. In order to investigate the impact of the crack location on the antiresonance values, HOFRFs of the cracked beam are presented in Fig. 4 at different locations for cases 1 to 3. In the first case, the minimum values of antiresonances are 70.51 Hz and 46.17 Hz and are located at x = 0.5 m for order 2 and 3 respectively (see Figs. 4a and4b). In the second case, the minimum values of antiresonances are 48.06 Hz and 31.51 Hz and are found at x = 0.7 m for order 2 and 3 respectively (see Figs. 4c and4d). In the third case, two minimum values of antiresonances are identified for each order, 33.26 Hz and 136.2 Hz for order 2, 22.28 Hz and 90.56 Hz for order 3. Theses values are located at x = 0.9 m for order 2 and 3 respectively (see Figs. 4e and4f). A single crack can therefore be located using HOFRFs and the minimum values of antiresonances. Indeed, the HOFRFs of order 2 and 3 are only due to the presence of the crack. The link between anti-resonances of HOFRFs and crack location can then be explained. But the fact that the crack location corresponds to the minimal values of antiresonance frequencies is just a numerical observation noticed for the first time by Sinou [START_REF] Sinou | On the use of non-linear vibrations and the anti-resonances of higher-order frequency response functions for crack detection in pipeline beam[END_REF] in the case of one crack and which is generalized in the case of a beam with multi cracks in section 3.2. To the author's knowledge, there is no formal study yet providing formal proof. Moreover, depending on the crack location, two minimum values can be found at the same location and an asymptotic behaviour of the antiresonances locus close to the boundary conditions can make more difficult the exact location of the crack. In this case, the presence of two values can be a good help to increase the robustness of the crack location. These results can be automatically identified using the DZE algorithm. The stabilization charts for two HOFRFs are presented for example in Fig. 5 between n = 5 and n = 20 for order 2 and between n = 15 and n = 30 for order 3. HOFRFs and crack are measured and located at x = 0.5 m. It is recalled that the stabilization chart is based on several runs of the zeros identification process by using models of increasing order. In this study, physical zeros always appear at a nearly antiresonance frequency whereas mathematical zeros tend to scatter around the frequency range. The typical stabilization criteria are chosen as equal to 1% for antiresonance frequency and 5% for damping between two runs at order n and n + 1. The DZE algorithm allows here to identify all system zeros using only one frequency range between 0 and 200 Hz without numerical problems.

f 1 / 3 f 1 / 2 f 1 2 f 1 3 f 1 f 1 + f 1 / 3 (b) case 2
f 1 3 f 1 2 f 1 f 1 / 2 f 1 / 3 f 1 + f 1 / 3 (c) case 3 (d) case 1, mesh sensitivity
The evolution of identified antiresonances of the cracked beam for cases 1 to 3 using the DZE algorithm according to the location of the HOFRFs is presented in Fig. 6. Even near the boundary conditions, the identification permits to identify the miminum values of antiresonances. But in the case of noisy data and with the configuration presented in Fig. 6c, the asymptotic behaviour of the antiresonances locus would not allow to identify precisely the crack location.

Multi-cracked beam

In this section, the previous criterion is applied to the beam with multi cracks. The finite element model is shown in Fig. 7 in the case of two cracks located at x c1 and x c2 with the same nondimensional crack depth µ = 0.1. Three cases are studied:

• case 4: x c1 = 0.5 m and x c2 = 0.9 m

• case 5: x c1 = 0.2 m and x c2 = 0.7 m

• case 6: x c1 = 0.3 m and x c2 = 0.7 m

The HOFRFs of the beam with two cracks are presented in Fig. 8. The minimum values of antiresonance frequencies of the HOFRFs can be used to locate the two cracks in case 4 using order 2 and 3 (see Figs. 8a and8b). The first crack is exactly located at x = 0.5 m using order 2 with a minimum value equal to 77.51 Hz. The minimum value associated to the second crack is found to be equal to 71.14 Hz and located at x = 0.9187 m. This location is included in the stiffness variation location. Using order 3, the minimum values are 49.18 Hz and 54.11 Hz located at x = 0.5 m and x = 0.9187 m respectively. The method is still effective in case 5 as shown in Figs. 8c and8d. Using order 2, the minimum values are 62.23 Hz and 201.8 Hz located at x = 0.7187 m and x = 0.1812 m respectively. Using order 3, the minimum values are 51.41 Hz and 145.3 Hz located at x = 0.7 m and x = 0.2 m respectively. However, the antiresonances locus become asymptotic and it is difficut to know exactly where the minimum values are located. In case 6, the location appears to be more complicated as shown in Figs. 8e and 8f both for order 2 and 3. For the first crack, there is no minimum value of antiresonance for order 2. For order 3, a minimum value appears to be at x = 0.3 m and equal to 129.2 Hz. The minimum values for the second crack are 68.6 Hz and 59.05 Hz for order 2 and 3 and located at x = 0.7187 m and x = 0.7 m respectively.

The method is finally tested on a beam with three cracks located at: minimum value (78.3 Hz located at 0.7 m) is found using order 2 as shown in Fig. 9c but three minimum values (39.15 Hz located at 0.2375 m, 127 Hz located at 0.4 m and 68.6 Hz located at 0.7 m) are found using order 3 as shown in Fig. 9d. In view of these elements, the location of several cracks using the minimum values of antiresonances can be more difficult and further research on the location of antiresonances could help to develop a better understanding of the link to the problem of multi-cracks location.

Conclusion

This paper investigates numerically the problem of crack and multi-cracks location in the case of beam-like structures using the antiresonances locus of HOFRFs. The proposed method is also based on the DZE algorithm to automatically identify the system zeros. If the method appears to be efficient to locate one crack, the location of a crack close to the boundary conditions can be less accurate. Moreover, the problem of multi-cracks location requires more research in some cases to better understand the link between the cracks location and the antiresonances locus. Future works will deal with the comprehensive study of the antiresonance locus under nonlinear load and with the experimental identification of HOFRFs that are an important issue of this method and more generally of the analysis and identification of structural nonlinearities. 
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 1 Figure 1: Cracked beam.
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 3 Figure 3: HOFRFs of the cracked beam in cases 1,2 and 3 (a, b and c) at x = 0.5 m ( : order 1, -.-: order 2 --order 3); sensitivity to the mesh density (d) in case 1 for order 1, 2 and 3 ( : 5 elements, : 13 elements, ---: 53 elements)
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 4 Figure 4: HOFRFs of the cracked beam ( : minimum values of antiresonances).

Figure 5 :

 5 Figure 5: HOFRF at x = 0.5 m and stabilization chart of zeros identification (markers 's' denote stable zeros) using the DZE algorithm for a crack located at x c = 0.5 m.

• case 7 :

 7 x c1 = 0.2 m, x c2 = 0.5 m and x c3 = 0.9 m • case 8: x c1 = 0.2 m, x c2 = 0.4 m and x c3 = 0.7 m In case 7, three minimum values (82.44 Hz located at 0.5 m, 171.3 Hz located at 0.1812 m and 80.53 Hz located at 0.9 m) are found using order 2 as shown in Fig. 9a but only one minimum value (63.03 Hz located at 0.5 m) is identified for order 3 as shown in Fig. 9b. In case 8, just one

Figure 6 :

 6 Figure 6: Identified antiresonances locus of the cracked beam using the DZE algorithm in relation to the location of the HOFRFs (+: order 2, x: order 3).

Figure 7 :

 7 Figure 7: Finite element model of the multi-cracked beam and stiffness variation EI(x).

  (a) case 4 and order 2 (b) case 4 and order 3 (c) case 5 and order 2 (d) case 5 and order 3 (e) case 6 and order 2 (f) case 6 and order 3
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 8 Figure 8: HOFRFs of the multi-cracked beam including two cracks ( : minimum values of antiresonances).

(a) case 7 and order 2 (b) case 7 and order 3 (

 23 c) case 8 and order 2 (d) case 8 and order 3

Figure 9 :

 9 Figure 9: HOFRFs of the multi-cracked beam including three cracks ( : minimum values of antiresonances).
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