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Abstract	
The	neural	coding	metaphor	is	so	ubiquitous	that	we	tend	to	forget	its	metaphorical	nature.	What	do	we	
mean	when	we	assert	that	neurons	encode	and	decode?	What	kind	of	causal	and	representational	model	
of	 the	 brain	 does	 the	metaphor	 entail?	What	 lies	 beneath	 the	 neural	 coding	metaphor,	 I	 argue,	 is	 a	
bureaucratic	model	of	the	brain.	
	
	
Neural	 coding	 is	a	popular	metaphor	 in	neuroscience,	where	objective	properties	of	 the	world	are	
communicated	to	the	brain	in	the	form	of	spikes.	Most	commentators	have	recognized	that	the	neural	
coding	 metaphor	 is	 often	 misused,	 but	 they	 diverge	 on	 the	 extent	 to	 which	 these	 problems	 are	
constitutive	of	that	metaphor.	
	
What	 is	wrong	with	metaphors	 (R1)?	Metaphors	 can	 in	 principle	 be	 useful,	 as	 they	allow	 reusing	
concepts	 from	 a	 different	 domain.	But	 they	 can	also	be	misleading	when	applied	 to	 very	 different	
domains.	 Perhaps	 sensory	 transduction	 can	 be	 framed	 as	 a	 problem	 of	 communication.	 But	 are	
perception	and	cognition	really	cases	of	“world-brain	communication”	(Gallistel)?	Unfortunately,	this	
question	is	rarely	explicitly	formulated	and	addressed.	Instead,	the	metaphor	captures	language	and	
thought	in	disguise,	preempting	the	meaning	of	words	such	as	“representation”	and	“information”,	in	
a	way	that	introduces	confusion	between	the	organism’s	and	the	observer’s	perspective	(information	
for	 whom?).	 To	 understand	 what	 lies	 beneath	 “neural	 codes”,	 one	 must	 then	 take	 a	 pragmatic	
approach:	how	does	the	neural	coding	metaphor	unfold	in	reasonings	about	brain	and	cognition?	
	
The	neural	coding	metaphor	promotes	a	particular	way	of	understanding	causality	in	complex	systems	
(R2),	explanations	of	the	type	“A	causes	B”	(e.g.	the	firing	of	neuron	X	causes	behavior	B).	This	is	an	
inadequate	way	of	understanding	even	moderately	complex	systems	of	coupled	components,	such	as	
a	system	of	gears	or	even	a	parking	lot.	In	systems,	explanations	are	to	be	articulated	at	the	level	of	the	
organization	of	processes,	not	single	or	even	pairs	of	components.	What	kind	of	model	of	organization	
features	agents	that	pass	formally	encoded	information	along	a	chain	of	command	with	no	dynamical	
constraint?	Conceptually,	what	lies	beneath	the	neural	coding	metaphor	is	more	than	the	computer	
model	(Reeke):	it	is	a	bureaucratic	model	of	the	brain.	
	
The	 neural	 coding	 metaphor	 is	 tightly	 linked	 with	 the	 concept	 of	 representation,	 as	 many	
commentators	have	noted	(R3).	Representation	is	an	important	concept,	but	all	supporting	arguments	
are	articulated	at	the	level	of	persons,	not	neurons	–	they	are	considered	useful,	or	necessary	to	explain	
certain	aspects	of	cognition.	Therefore	those	arguments	do	not	entail	that	representations	are	neural	
encodings,	as	the	forms	of	the	bureaucratic	model.	In	fact	they	cannot	be	encodings,	because	encodings	
need	a	reader	and	then	we	need	to	explain	how	the	activity	of	reading	produces	an	experience	with	
representational	 content.	 The	 way	 out	 of	 the	 infinite	 regress	 is	 to	 conceive	 representation	
pragmatically	 in	 terms	 of	 processes	 with	 certain	 properties.	 This	 is	 a	 challenge	 the	 neural	 coding	
metaphor	covers.	
	
R1.	The	metaphorical	nature	of	neural	codes	
	



R1.1.	Is	it	a	metaphor,	and	what	is	wrong	with	metaphors?	
	
Is	the	“neural	code”	actually	a	metaphor?	Schultz	&	Gava	propose	that	the	neural	code	is	simply	“the	
set	of	rules	which	neurons	obey”,	while	admitting	that	the	intended	meaning	is	usually	more	specific,	
as	 the	 target	 article	 illustrates.	 When	 defined	 in	 this	 very	 broad	 way,	 the	 terms	 seem	 indeed	
unproblematic.	 But	 is	 it	 plausible	 that	 nothing	more	 is	 implied	when	 neurons	 are	 said	 to	 encode	
stimuli?	 Schultz	&	Gava	answer	 themselves	negatively:	 claiming	 that	 the	 spiking	 cells	 of	 the	 heart	
encode	 running	 speed	 in	 their	 firing	 rate	 is	 objectionable	 because	 it	 is	 not	 a	 “reasonable	 coding	
analysis”,	since	it	does	not	identify	the	appropriate	coding	variables.	However,	what	this	“reasonable	
coding	analysis”	might	be	 in	the	context	of	 the	brain	is	precisely	what	 is	at	stakes	and	needs	to	be	
defined.	Schultz	&	Gava	propose	that	neural	codes	are	“the	rules	governing	how	sensory	events	in	the	
world	map	on	to	neuronal	activity”,	but	this	does	not	help	understanding	why	the	relation	between	
running	speed	and	firing	rates	of	heart	cells	is	not	a	reasonable	code.	
	
This	latter	quote	is	not	free	of	preconceptions:	it	assumes	that	the	relation	between	the	world	and	the	
brain	is	a	mapping	(the	stimulus-response	view),	rather	than	a	coupling.	As	pointed	out	by	Keijzer,	it	
pictures	 the	 organism	 as	 an	 input-output	 device	 (stimulus	 in,	 behavior	 out),	 rather	 than	 an	
autonomous	entity.	It	rules	out	the	alternative	possibility	of	autonomous	neural	activity	influenced	by	
the	environment.	Any	deviation	from	the	determinism	of	stimulus	responses	must	then	be	considered	
as	noise.	The	notion	that	the	world	is	mapped	to	neural	activity	corresponds	to	a	familiar	philosophical	
position,	according	to	which	the	brain	must	hold	some	copy	of	the	world	in	order	to	perceive	it.	Such	
philosophical	positions	deserve	exposure	and	discussion,	rather	than	denial	(Andersen	et	al.,	2019).	
	
“A	 neuron	 encodes	 a	 stimulus”	 may	 be	 presented	 as	 a	 literal	 description	 of	 an	 experimental	
observation	 (a	 contextual	 correlation),	 not	 a	metaphor.	 But	 the	 discourse	 slips	 into	metaphorical	
territory	every	time	the	brain	 is	claimed	to	“decode”,	 “read”,	“interpret”	or	“manipulate”	the	neural	
codes.	 All	 commentators	 who	 defended	 neural	 coding	 in	 some	 form	 also	 used	 a	 narrower,	
metaphorical	sense.	Gallistel	defends	the	use	of	information	theory	by	first	framing	the	problem	in	
terms	of	“world-brain	communication”	and	considers	that	“the	brain	performs	arithmetic	operations	
on	the	signals	and	symbols”.	Gauthier	et	al.	claim	that	“neural	codes	must	implement	the	empirically	
validated	 representations	 of	 computational	 models”.	 In	 both	 cases,	 the	 neural	 code	 is	 not	 just	 a	
contextual	correlation,	it	is	an	atom	in	a	mechanistic	model	of	the	brain.	De	Wit	et	al.	agree	that	the	
neural	coding	discourse	often	improperly	focuses	on	what	the	experimenter	can	decode	from	neural	
activity	(the	technical	sense),	and	consider	that	 the	 important	question	 is	what	“the	brain	might	be	
able	to	decode	from	that	activity”.	But	 this	more	cautious	use	of	 the	coding	metaphor	 is	not	 free	of	
preconceptions.	“Decoding”	cannot	be	literal	here	since	a	decoder	maps	signals	to	the	domain	of	the	
original	message,	not	 to	 the	biological	domain.	What	then	 is	meant	exactly	by	“decoding”	once	 the	
observer-centric	perspective	is	rejected?	
	
This	imprecision	is	not	without	risk.	Merker	complains	that	“code”	is	often	used	improperly.	Codes	
are	“rule-governed	relations	of	correspondence	between	two	domains	with	arbitrary	correspondence	
assignments	 in	 the	 sense	 that	 alternative	 assignments	 would	 work”,	 giving	 the	 example	 of	 the	
nucleotide-triplet	code	for	amino	acids.	But	the	terminology	is	often	applied	to	any	kind	of	observed	
relation,	creating	confusion.	Confusion	is	indeed	one	risk	of	metaphor.	Frezza	and	Zoccolotti	point	
out	that	metaphor,	including	the	coding	metaphor,	is	often	imprecise	and	multi-patterned,	which	might	
explain	its	success.	The	danger	of	metaphor	in	science,	especially	when	their	metaphorical	nature	is	
denied,	is	that	key	presuppositions	are	hidden	behind	the	narrative:	“The	pervasive	and	persuasive	
effects	of	the	metaphorical	narrative	hinder	the	fundamental	self-correcting	trait	of	science	that	aims	
to	provide	counter-examples	of	dominant	theories	instead	of	just	supporting	them”.	This	is	because	
the	dominant	metaphorical	narrative	preempts	the	meaning	of	words,	making	it	challenging	to	even	
articulate	 an	 alternative	 viewpoint.	 Gibson,	 for	 example,	 while	 developing	 a	 relational	 view	 of	
perceptual	information	as	lawful	relations	between	observables	(the	“invariant	structure”	in	sensory	
flow),	warned	that	he	used	the	word	“information”	for	a	lack	of	a	better	term,	and	not	in	the	sense	of	
the	dominant	 information	processing	view	(Gibson,	1979).	The	 issue	 is	 rampant	 in	 this	discussion	
about	neural	coding,	because	the	dominant	narrative	identifies	information	with	Shannon	information	
and	representations	with	encodings.	For	example,	when	I	develop	an	alternative	view	of	information	



as	knowledge	built	by	the	organism,	in	analogy	with	the	way	scientific	knowledge	is	built,	Schultz	&	
Gava	object	 that	“information	cannot	be	built”,	presumably	because	Shannon	information	can	only	
decrease	with	processing.	They	failed	to	notice	that	I	attempted	to	provide	a	more	biologically	relevant	
definition	of	information,	for	which	the	data	processing	inequality	is	irrelevant.	Similarly,	a	number	of	
commentators	 objected	 to	my	 alleged	 anti-representational	 stance	 (Huetz	 et	 al.;	 Gauthier	 et	 al.;	
Birch),	 while	 others	 regretted	 my	 commitment	 to	 representations	 (Keijzer;	 Aranyosi;	 Harnad).	
What	this	surprising	state	of	affairs	reveals	is	that	representations	are	identified	with	encodings,	which	
makes	a	criticism	of	encodingism	either	anti-representationalist	or	incoherent	(see	R3).	
	
The	great	danger	of	metaphor,	when	it	becomes	ubiquitous,	is	that	by	preempting	the	language	it	also	
freezes	the	concepts	and	hinders	critical	discussion.	As	Jones	and	Kording	observe,	“Language	affects	
the	way	we	 formulate	models	which	 in	 turn	 affects	 the	experiments	we	 do.	 As	 such,	 it	 is	not	 just	
language,	but	it	is	the	core	of	what	do	as	a	field.”.	Therefore	the	issue	with	the	neural	coding	metaphor	
goes	much	beyond	a	matter	of	terminology.	Neuroscientists	might	use	the	term	“code”	in	an	improper	
way	as	Merker	points	out,	but	 this	 is	hardly	 the	major	problem	at	stake.	To	address	the	scientific	
impact	of	the	neural	coding	metaphor,	one	must	take	a	pragmatic	approach	to	the	meaning	of	“neural	
codes”,	focusing	on	how	they	are	used	in	reasonings	about	brain	and	cognition.	
	
R1.2.	The	epistemic	danger	of	the	coding	metaphor	
	
Several	 commentators	 have	 noted	 that	 the	 coding	 metaphor	 promotes	 a	 confusion	 between	 the	
experimenter’s	 and	 the	 organism’s	perspective	 (Keijzer;	Arsiwalla	 et	al.;	Gomez-Marin).	 Gomez-
Marin	insightfully	calls	this	conflict	a	“clash	of	Umwelts”.	When	a	correlation	between	an	experimental	
parameter	and	neural	 activity	measurements	 is	 reported	as	a	“neural	 code”,	what	 the	 term	“code”	
covers	is	a	relation	of	command	between	the	experimenter	and	the	organism,	where	the	experimenter	
imposes	a	known	stimulus	onto	the	observed	organism.	The	“neural	code”	is	about	the	experimenter’s	
Umwelt,	 not	 the	 organism’s	 Umwelt.	 Spikes	 might	 be	 signals	 for	 the	 observer,	 indications	 that	 a	
particular	stimulus	has	been	presented.	But	for	the	organism,	spikes	are	just	the	activity	of	its	brain,	
which	obviously	depends	on	the	environment	it	is	coupled	with,	but	is	not	commanded	by	it;	spikes	
are	 not	 necessarily	 a	 map	 of	 the	 stimulus	 world.	Arsiwalla	 et	 al.	warn	 us	 about	 “the	 fallacy	 of	
extending	conditional	epistemic	descriptors	to	ontological	explanations	of	brain	and	behavior”:	this	is	
what	 is	 done	 every	 time	 the	 brain	 is	 presumed	 to	 “decode”	 or	 “interpret”	 the	 “neural	 code”,	 a	
construction	of	the	observer’s	Umwelt.	
	
This	 confusion	 of	Umwelts	 leads	 the	 observer	 to	project	 their	 own	 perspective	 onto	 the	 organism	
(Gomez-Marin;	Cao	&	Rathkopf).	As	Gomez-Marin	puts	it,	“a	description	of	what	the	neuroscientist	
can	do	prescribes	what	 the	animal	must	do”.	This	 is	 illustrated	by	Gauthier	et	al.:	 “the	 search	 for	
neural	representations	begins	with	an	understanding	of	the	task	that	an	organism	solves	[…]	The	next	
step	is	to	propose	computational	models	capable	of	solving	this	task”,	and	finally	“neural	codes	must	
implement	 the	 empirically	 validated	 representations	 of	 computational	 models”	 (my	 emphasis).	
Gallistel	describes	a	similar	methodology	to	study	how	animals	use	the	sun	for	navigation:	“their	brain	
must	subtract	the	current	solar	azimuth	from	the	desired	compass	course	to	obtain	the	current	solar	
bearing	of	the	source”,	concluding	that	these	angles	must	be	encoded	by	the	brain.	
	
This	 methodology	 follows	 David	 Marr’s	 classical	 three	 levels	 of	 analysis	 (Marr,	 1982):	 the	
computational	 level	(what	does	 it	do?),	 the	algorithmic	 level	(how	does	 it	do	 it?),	the	physical	level	
(how	is	it	implemented?),	to	be	studied	in	this	order.	The	key	assumption	is	that	these	three	levels	are	
independent,	an	assumption	inspired	from	computers,	as	Reeke	and	Frezza	&	Zoccolotti	have	noted.	
But	this	independence	assumption	is	not	a	logical	necessity.	Tony	Bell	has	argued	convincingly	(Bell,	
1999)	that	no	such	independence	exists	in	the	brain:	“a	computer	is	an	intrinsically	dualistic	entity,	
with	 its	 physical	 set-up	 designed	 not	 to	 interfere	 with	 its	 logical	 set-up,	 which	 executes	 the	
computation.	In	empirical	investigation,	we	find	that	the	brain	is	not	a	dualistic	entity”.	In	theory	also,	
we	find	that	there	is	an	epistemic	problem	with	the	postulate	of	independence.	The	brain’s	algorithms	
(the	second	level)	are	assumed	to	be	based	on	the	manipulation	of	representations	independent	from	
the	physical	 level	 (“computational	 objectivism”,	 to	 use	 the	words	 of	 Thompson	et	 al.	 (1992)).	 But	
where	do	those	representations	come	from,	if	not	the	physical	level?	Mirski	&	Bickhard	explains	the	



fallacy	 of	 encodingism:	 “encodings	 always	 require	 an	 interpreter	 who	 already	 knows	 about	 or	
represents	 the	 two	 ends	 of	 the	 encoding	 relationship,	 as	 well	 as	 the	 relationship	 itself.	 But	 this	
representation	is	exactly	the	knowledge	we	are	trying	to	account	for	when	researching	minds,	and	so	
encodingism	becomes	circular,	and	leads	to	an	infinite	regress	of	interpretive	homunculi.”.	
	
Some	commentators	partially	recognize	the	epistemic	problem	of	encodings,	but	remain	entrenched	
in	the	coding	metaphor.	de	Wit	et	al.	agree	that	the	neural	coding	discourse	often	improperly	focuses	
on	what	the	experimenter	can	decode	from	neural	activity,	and	conclude	that	what	matters	is	what	
“the	brain	might	be	able	to	decode	from	that	activity”.	But	while	“decode”	literally	describes	what	the	
experimenter	does,	it	is	only	applied	metaphorically	to	the	brain:	the	brain	does	not	literally	transform	
its	own	biological	activity	into	stimulus	parameters.	And	how	could	one	read	its	own	biological	activity,	
if	“reading”	is	designates	exactly	that	activity?	This	weaker	version	of	the	coding	metaphor	does	not	
depart	from	the	observer’s	perspective.	Lehky	&	Sereno	agree	that	there	is	a	conceptual	problem	with	
extrinsic	codes,	defined	in	reference	to	something	external,	as	for	example	tuning	curves.	They	propose	
two	solutions:	 to	 replace	 individual	neural	 responses	with	high-dimensional	population	 responses,	
named	“population	coding”,	and	to	consider	relations	between	these	high-dimensional	vectors,	named	
“intrinsic	 coding”.	 However,	 with	 respect	 to	 the	 problem	 of	 encodingism,	 there	 is	 no	 qualitative	
difference	between	 individual	and	population	responses,	and	a	vector	 is	no	more	structured	than	a	
scalar.	 Secondly,	 to	 call	 relations	 between	population	 responses	 “intrinsic	 coding”	 raises	again	 the	
observer-organism	confusion.	It	is	the	observer	who	notices	the	relation	between	high-dimensional	
responses	to	stimuli:	the	responses	do	not	represent	the	relation,	they	only	instantiate	it.	Whatever	
“encodes”	 these	 relations	 is	 left	 unexplained.	 Clearly,	 it	 is	 challenging	 to	 conceptualize	 intrinsic	
relational	 representations.	 But	 if	 the	 goal	 is	 to	 provide	 an	 alternative	 to	 encodingism,	 then	 the	
temptation	to	frame	them	in	terms	of	encodings	should	be	resisted	(see	R3).	
	
R1.3.	Can	it	be	a	useful	metaphor?	
	
Although	metaphors	are	not	 literally	 true,	 they	can	still	be	useful,	precisely	because	they	transport	
familiar	concepts	to	an	unfamiliar	setting.	When	are	they	useful,	and	when	are	they	pernicious?	To	
take	 advantage	 of	 a	 metaphor	 without	 being	 carried	 away	 by	 it,	 one	 must	 first	 acknowledge	 its	
metaphorical	nature,	and	make	its	assumptions	explicit.	
	
Garson	explains	that	the	coding	metaphor	was	central	in	Adrian’s	work	in	the	early	twentieth	century,	
and	proposes	that	the	metaphor	was	in	fact	necessary	in	order	for	Adrian	to	ask	questions	about	the	
relation	between	sensory	patterns	and	neural	activity	patterns,	and	to	show	for	example	that	spike	
rate	increases	with	stimulus	intensity:	“It	is	hard	to	see	how	one	would	even	formulate	such	questions	
without	using	the	coding	metaphor”.	Yet,	such	questions	are	formulated	without	any	allusion	to	codes	
in	 virtually	 all	 non-biological	 domains	 of	 science	 –	 for	 example	 the	 relation	 between	 atmospheric	
pressure	and	rain.	Garson	correctly	notes	that	the	coding	metaphor	led	Adrian	to	propose	the	doctrine	
of	“rate	coding”.	It	is	worth	noting	that	a	number	of	decades	later,	many	have	concluded	that	Adrian	
has	indeed	been	misled	(Brette,	2015),	including	regarding	the	alleged	paradigmatic	example	of	rate	
coding,	 neural	 control	 of	 muscular	 contraction	 (Sober	 et	 al.,	 2018;	 Tang	 et	 al.,	 2014;	 Zhurov	 and	
Brezina,	2006).	
	
Garson	also	proposes	that	the	coding	metaphor	allowed	Adrian	to	ask	teleological	questions.	This	is	
an	important	remark.	One	cannot	explain	organisms	without	addressing	normativity	–	how	is	it	that	
an	organism	can	behave	appropriately	or	can	live	at	all,	how	is	it	that	behavior	appears	purposeful,	etc.	
Normativity	 is	 rightfully	a	 key	aspect	 of	 both	 the	 computational	program	and	 the	 efficient	 coding	
doctrine.	The	error	 is	 to	believe	 that	normativity	 can	only	be	 thought	of	 in	 terms	of	 codes.	On	 the	
contrary,	the	kind	of	normativity	conveyed	by	the	coding	metaphor	is	highly	problematic,	because	it	is	
based	on	an	external	reference.	Alternative	accounts	of	normativity	exist,	for	example	in	enactivism	
(Maturana	and	Varela,	1973)	and	interactivism	(Bickhard,	2009).	
	
Notably,	Santoro	et	al.	point	out	that	recent	progresses	in	artificial	intelligence	have	generally	ignored	
coding	considerations	:	“the	richest	theoretical	insights,	emerged	from	studying	control,	optimization,	
and	learning	processes	rather	than	the	particularities	of	representations	or	codes”.	Going	further,	they	



observe	that	the	circularity	of	agent	and	environment	makes	it	unproductive	to	think	in	terms	of	codes	
because	there	is	no	predetermined	set	of	stimuli	to	be	encoded.	
	
For	a	communication	metaphor	to	be	useful,	it	should	be	applied	to	a	problem	of	communication.	We	
may	concede	that	sensory	transduction	can	be	framed	in	this	way	(Gallistel	takes	the	example	of	color	
vision):	in	order	for	the	organism	to	be	sensitive	to	electromagnetic	waves,	this	physical	dimension	
must	 be	 translated	 to	 a	 biological	 signal	 such	 as	 ionic	 currents.	 It	 then	 becomes	 legitimate	 to	 ask	
questions	 about	 signal	 to	 noise	 ratio	 and	 redundancy,	 which	 are	 indeed	 questions	 about	 the	
correspondence	between	two	different	domains,	for	which	information	theory	is	relevant	(Laughlin,	
1981).	Beyond	sensory	receptors,	one	may	frame	the	relation	between	the	visual	field	and	the	activity	
of	the	retinal	ganglion	cells	forming	the	optic	nerve	as	a	communication	problem,	by	noting	that	the	
optic	 nerve	 creates	 a	 bottleneck	 in	a	 directional	 flow	 of	 excitation	 (but	note	 that	 there	actually	 is	
anatomical	feedback	to	the	retina	(Gastinger	et	al.,	2006),	although	from	a	limited	number	of	neurons).	
This	was	essentially	Barlow’s	motivation	when	he	proposed	the	efficient	coding	hypothesis	(Barlow,	
1961),	and	presumably	what	Harnad	has	in	mind	when	he	finds	it	“harmless	to	call	the	neural	activity	
along	sensory	input	pathways	a	“neural	code.””.	
	
But	the	use	of	the	metaphor	must	still	be	carefully	circumscribed.	First,	as	Barlow	noted,	viewing	the	
retina	 through	 the	 lens	 of	 coding	 excludes	 other	equally	 relevant	ways	 to	 see	 this	 system	 (e.g.	 as	
participating	 in	 the	organism’s	 reaction	 to	 specific	 relevant	 features	 (Lettvin	et	al.,	 1959)).	Second,	
while	the	communication	metaphor	appears	adequate	when	applied	to	the	transformation	between	
physical	 signals	 of	 two	 different	 kinds,	 it	 becomes	 much	 more	 questionable	 when	 the	 alleged	
transformation	is	between	properties	of	things	in	the	world	(stimulus	parameter	or	object	property)	
and	a	biological	signal.	Do	properties	of	things,	such	as	a	category	of	objects	(“trees”),	exist	as	such	in	
the	world	so	that	they	can	be	communicated	to	the	brain,	or	are	they	abstractions	constructed	by	the	
mind?	If	the	latter	is	more	accurate,	then	using	a	communication	metaphor	is	unproductive.	
	
Even	when	properly	circumscribed,	 the	neural	coding	metaphor	 is	not	without	difficulties.	Efficient	
coding	offers	a	normative	explanation	of	transduction	in	terms	of	the	organism’s	surroundings	(the	
physical	layout	of	sensory	signals),	not	of	its	Umwelt	(what	is	meaningful	for	the	organism).	This	is	not	
a	totally	irrelevant	perspective	since	the	Umwelt	depends	on	the	surroundings,	but	it	has	limitations.	
Gallistel	 claims	 that	 “the	 brain’s	 way	 of	 encoding	 color	 captures	 a	 large	 part	 of	 the	 information	
available	from	the	reflectance	profiles	of	surfaces	in	the	natural	world”.	Leaving	aside	the	issue	that	
this	claim	is	supported	by	behavioral	rather	physiological	evidence,	and	therefore	has	little	to	do	with	
whether	and	how	neurons	encode	color	(a	fallacy	well	described	by	Rahnev),	it	must	be	noted	that	
species	 sharing	 the	 same	 surroundings	 can	 have	 different	 color	 vision	 systems,	 with	 different	
dimensionality,	 which	 discards	 explanations	 based	 exclusively	 on	 the	 statistics	 of	 natural	 scenes	
(Thompson	et	al.,	1992).	
	
Another	difficulty	has	to	do	with	the	dynamic	aspect	of	transduction.	Many	sensory	neurons	adapt,	i.e.,	
their	 firing	 rate	decreases	when	the	 stimulus	 is	held	constant.	Normatively,	 this	 allows	neurons	 to	
remain	sensitive	to	changes	in	the	stimulus.	It	might	be	tempting	to	frame	this	property	as	a	way	to	
increase	(Shannon)	information	transmitted	about	the	stimulus	(Wark	et	al.,	2007).	But	this	raises	the	
observer-organism	confusion	again:	adaptation	 can	only	 increase	the	amount	of	 information	 if	 one	
knows	 that	 and	 how	 the	 code	 changes,	 but	 this	 is	 only	 known	 to	 the	 external	 observer,	 not	 the	
organism	who	sits	at	the	receiving	end.	To	make	such	a	point,	one	would	need	to	demonstrate	that	the	
organism	precisely	 compensates	 for	 the	adaptive	 changes	 in	 the	 code.	 If	 the	 brain	metaphorically	
“decodes”	the	activity	of	sensory	neurons,	then	 it	must	be	explained	how	the	dynamical	and	plastic	
process	of	coding	is	perfectly	matched	to	the	decoding	process	in	the	absence	of	independent	access	
to	the	sensory	signals.	
	
In	summary,	the	neural	coding	metaphor	can	be	occasionally	useful,	if	handled	with	care,	but	only	for	
a	narrow	subset	of	neuroscientific	questions.	Cognition,	 in	particular,	 is	not	 a	 case	of	“world-brain	
communication”	(Gallistel).	
	
R2.	Causality	in	biological	systems	



	
As	Jones	&	Kording	point	out,	a	large	part	of	neuroscience	is	about	understanding	how	the	activity	of	
neurons	 mediate	 behavior,	 that	 is	 to	 say,	 how	 neurons	 are	 involved	 in	 the	 causal	 mechanisms	
underlying	behavior.	Huetz	et	al.	assert	that	there	are	“causal	links	between	neural	code	and	brain	
functions”,	pointing	out	that	electrically	stimulating	the	auditory	nerve	produces	auditory	experience,	
and	electrically	stimulating	the	visual	cortex	biases	visual	perception.	The	issue	at	stake,	however,	is	
not	whether	neural	activity	has	causal	powers	–	again	the	neural	coding	metaphor	is	so	pervasive	that	
“neural	 code”	 is	 identified	 with	 neural	 activity	 –	 but	 whether	 the	 causal	 model	 that	 the	 coding	
metaphor	conveys	is	correct.	Gulli	contends	that	I	exposed	a	trivial	fallacy,	the	confusion	of	correlation	
and	causation:	obviously,	“A	and	B	are	correlated”	does	not	mean	“A	causes	B”.	He	then	proposes	a	
check-list	of	additional	tests	to	establish	causality	(“causal	inferences	must	be	made	on	the	basis	of	
aggregated	evidence”).	However,	my	criticism	is	deeper:	in	many	systems,	the	relation	between	two	
components	A	and	B	is	simply	not	of	the	form	A	causes	B,	in	which	case	checklists	are	irrelevant.	I	will	
now	give	two	examples	to	illustrate	this	point.	
	
R2.1.	The	parking	lot	
	
The	parking	lot	of	an	office	building	has	ten	spaces,	but	there	are	twelve	employees.	A	few	employees	
complain	that	they	often	have	to	spend	time	in	the	morning	looking	for	a	parking	space	in	the	street.	
The	boss	is	annoyed:	only	the	employees	who	arrive	late	have	problems	parking.	He	points	out	that	he	
arrives	very	early	in	the	morning	and	never	has	any	problem	finding	an	empty	space:	they	should	stop	
complaining	and	get	up	earlier.	Indeed,	there	is	a	clear	correlation	between	arrival	time	and	probability	
of	finding	an	empty	space.	In	addition,	if	a	person	decides	to	arrive	earlier	then	she	will	find	an	empty	
space.	Therefore,	observation	and	intervention	lead	us	to	concur	with	the	boss	that	it	is	the	employee’s	
arrival	time	that	causes	its	ability	to	find	a	parking	space.	
	
This	conclusion	is	correct	in	a	narrow	reductionist	sense,	that	is,	the	“all	else	being	equal”	sense	that	is	
relevant	to	the	experimenter’s	Umwelt.	But	this	sense	is	essentially	irrelevant	to	understanding	how	
the	system	works.	Not	only	is	it	irrelevant,	but	it	is	also	misleading:	normatively,	it	leads	the	boss	to	
conclude	that	the	parking	lot	can	be	made	to	work	better	by	making	all	the	employees	arrive	earlier,	
but	this	is	obviously	wrong.	The	parking	lot	is	an	example	of	a	system	of	agents	that	interact	indirectly	
through	the	environment,	by	circular	coupling.	To	understand	the	system,	it	is	not	sufficient	to	study	
the	 relation	 between	 an	agent	and	 some	aspect	 of	 the	environment.	 One	needs	 to	 understand	 the	
general	organization	of	the	system,	the	nature	of	interactions	and	how	they	participate	to	the	global	
function	of	the	system.	In	other	words,	one	needs	a	systems	approach,	not	a	reductionist	(“all	else	being	
equal”)	approach.	
	
Jones	 &	 Kording	 claim	 that	 to	 establish	 causality,	 correlation	 should	 be	 supplemented	 with	
intervention,	and	comment	that	such	experiments	are	“beautiful	[but]	rare”.	However,	aside	from	the	
esthetic	 aspect,	 interventional	 studies	 do	 not	 turn	 an	 overly	 reductionist	 approach	 into	 a	 more	
adequate	systemic	approach	(Gomez-Marin,	2017;	Yoshihara	and	Yoshihara,	2018),	and	neither	does	
collecting	additional	“pieces	of	evidence”	as	Gulli	proposes.	To	understand	a	complex	system	using	a	
disparate	collection	of	measurements,	the	correct	approach	is	not	to	try	to	establish	causal	relations	
between	 measurements,	 but	 to	 conceive	 a	 model	 of	 the	 system	 that	 is	 consistent	 with	 the	
measurements,	focusing	on	the	global	organization	of	the	system	and	its	functional	logic.	As	Jones	&	
Kording	 note:	 “Real	 theory,	 including	 theory	 that	 can	 deal	 with	 recurrent	 systems	 with	 circular	
causality,	is	needed	to	break	our	conceptual	reliance	of	ideas	of	mediation.”	
	
To	 deny	 that	 components	 of	 a	 system	 should	not	be	 studied	as	 isolated	 pieces	 is	 not	 to	 deny	 that	
components	have	a	role	in	the	system.	Aranyosi	asserts:	“If	the	reafference	and	the	continuous	circular	
causal	 loop	of	organism-environment	 interaction	 is	 truly	the	ultimate	unit	of	analysis,	 then	there	 is	
nothing	special	about	the	receptors	to	consider,	or	about	any	other	part	of	the	nervous	system	for	that	
matter.”	In	a	systems	approach,	the	“ultimate	unit	of	analysis”	is	the	organization	of	the	system,	the	
relations	between	components.	Therefore	the	components	are	important,	but	the	emphasis	is	on	the	
way	they	interact.		
	



R2.2.	Systems	of	gears	
	
The	 brain	 and	 environment	 exhibit	 circular	 causality	 but	 the	 coding	 narrative	 promotes	 linear	
causality.	Barack	&	Jaegle	object	that	“linear	encoding-decoding	relationships	between	each	pair	of	
elements	is	consistent	with	an	overall	picture	of	a	circular,	coupled	causal	system.”.	First,	the	coding	
metaphor	is	not	normally	applied	to	each	pair	of	elements	(one	neuron	encodes	another	neuron?)	but	
to	a	relation	between	an	external	feature	and	an	element	(or	group	of	elements).	Second,	the	relation	
between	any	two	elements	might	well	be	linear	“all	else	being	equal”	(by	construction),	but	studying	
local	interactions	in	total	abstraction	of	the	rest	is	not	a	proper	way	of	understanding	a	system.	I	will	
give	a	second	example	to	illustrate	this	point.	
	

	
Figure	1.	Two	systems	of	gears	with	different	functionality.	
	
Consider	the	system	of	three	gears	in	Figure	1A.	This	system	had	a	moment	of	glory	on	the	internet	
when	the	public	transport	for	Greater	Manchester	decided	to	put	it	on	an	ad	with	the	slogan	“Making	
the	city	work	together”.	It	takes	a	moment	of	thought	to	realize	that	gears	cannot	turn	when	they	are	
arranged	in	this	way,	despite	the	fact	that	any	two	of	them	fit	together	and	would	work	in	isolation.	To	
understand	the	difference	between	a	functional	(Fig.	1B)	and	a	dysfunctional	(Fig.	1A)	system	of	gears,	
one	must	go	beyond	linear	interactions	between	two	elements	and	consider	the	logic	of	the	system.	
Mathematically,	a	functional	gear	system	has	a	planar	bi-partite	(or	two-colorable)	graph	of	contacts	
(Gordon,	1994).	B	is	two-colorable	but	A	is	not.	If	B	is	a	healthy	brain	and	A	is	a	diseased	brain,	can	the	
coding	paradigm	help	understand	why?	The	argument	of	approximation	offered	by	Barack	&	Jaegle,	
that	“equivalences	exist	between	dynamical	systems	with	circular	causality	and	approximators	with	
iterated	linear	causality”,	misses	this	point.	
	
R2.3.	The	bureaucratic	model	of	the	brain	
	
What	kind	of	causal	model	does	the	coding	metaphor	promote?	In	the	target	article,	I	argued	that	the	
causal	structure	 implied	by	the	coding	metaphor	 is	sequential	(A	causes	B,	rather	than	A	and	B	are	
coupled),	atemporal	(timing	relations	are	ignored)	and	forbids	autonomy	(B	can	only	result	from	an	
external	event),	three	characteristics	at	odds	with	the	causal	structure	of	biological	systems.	These	are	
the	 characteristic	 features	 of	 an	 algorithm	 that	 transforms	 an	 input	 representation	 into	an	 output	
representation,	 by	 a	 series	 of	 manipulations	 of	 intermediate	 representations.	 Indeed	 several	
commentators	have	noted	the	tight	relation	between	the	coding	metaphor	and	the	computer	metaphor	
(Reeke;	 Frezza	 &	 Zoccolotti).	 Gallistel	 uses	 it	 extensively	 to	 support	 the	 coding	 metaphor:	 “A	
computing	 machine	 like	 the	 brain	 has	 […]	 the	 machinery	 for	 executing	 operations	 on	 symbols”.	
Gauthier	et	al.	explicitly	consider	“brains	as	representational	and	computational	devices”.	
	
There	is	a	case	for	the	algorithmic	model	as	the	underlying	causal	model	of	the	coding	metaphor.	This	
appears	in	David	Marr’s	influential	three	levels	of	analysis	of	“information	processing	systems”	(Marr,	
1982,	 Fig.	 1-4	 p25).	 In	 the	 “representation	 and	 algorithm”	 level,	 one	 should	 ask	 “what	 is	 the	
representation	for	the	input	and	output,	and	what	is	the	algorithm	for	the	transformation?”.	Then	in	
the	“hardware	implementation”	level,	one	should	ask	“how	can	the	representation	and	algorithm	be	
realized	physically”.	Marr’s	view	generally	fits	the	computational	theory	of	mind,	according	to	which	
cognition	 is	 the	manipulation	 of	 symbols	 by	algorithms.	 The	 significant	 leap	 of	 faith	 of	 the	 neural	
coding	metaphor	 is	 that	“neural	 codes”	provide	the	physical	basis	(“hardware	 implementation”)	of	



those	representations	or	symbols.	But	neural	codes	do	not	have	the	quality	of	symbols:	they	have	a	
context-dependent	meaning	 and	 they	 are	 abstracted	 from	 transient	 events	 (spikes),	 therefore	 not	
something	that	can	be	manipulated.	
	
However,	analyzing	the	coding	metaphor	in	terms	of	algorithms	makes	it	difficult	to	grasp	some	of	the	
key	 issues.	 The	 fact	 that	 different	 people	 seem	 to	 mean	 different	 things	 about	 “computer”	 and	
“computation”	may	lead	to	confusion	(Wood	C.	C.,	2019).	Others	might	not	see	what	could	possibly	be	
wrong	 with	 the	 computer	 metaphor,	 since	 a	 computer	 or	 an	 algorithm	 can	 simulate	 anything	
interesting	(Barack	&	Jaegle	;	Gauthier	et	al.).	And	finally,	Garson	observes	that	the	coding	metaphor	
was	used	by	Adrian	in	the	early	twentieth	century,	well	before	computers	were	part	of	our	daily	life.	
Therefore,	I	suggest	that	the	neural	coding	metaphor	reveals	a	way	to	think	about	causality	in	complex	
systems	 that	goes	well	beyond	computer	 concepts.	The	 coding	metaphor	 sees	 the	brain	as	a	 set	of	
agents	that	communicate	information	encapsulated	in	forms	along	a	chain	of	command.	In	essence,	it	
is	a	bureaucratic	model	of	the	brain.	
	
A	bureaucrat	 takes	an	 input,	and	then	fills	a	 form.	For	example	 it	 takes	an	 image	and	fills	 the	 form	
“orientation”.	Then	it	passes	the	form	to	the	next	bureaucrat.	The	bureaucrat	will	read	the	forms,	apply	
some	rules	and	fill	some	other	form,	for	example	the	Jennifer	Anniston	likeness	form.	A	key	feature	is	
that	the	act	of	reading	has	no	impact	on	the	form	being	read	(no	coupling).	Unlike	a	dynamical	system,	
its	activity	exists	out	of	time.	There	are	no	fixed	temporal	relations	between	the	different	form-filling	
activities.	The	bureaucrat	outputs	a	form,	the	form	ends	up	on	the	desk	of	another	bureaucrat,	who	
will	then	process	it	at	some	undetermined	point.	This	makes	it	virtually	impossible	to	explain	behavior	
where	 a	 system	must	 interact	 in	 real	 time	with	 its	 environment.	 This	 issue	 is	 well	 described	 by	
Vickhoff	 in	 the	 context	 of	 music	 perception.	 Electrophysiological	 events	 are	 often	 interpreted	 as	
encoding	sound	features,	without	consideration	for	the	timing	of	these	events.	But	without	time	and	
without	temporal	coordination,	without	binding	between	melody,	harmony	and	rhythm,	there	can	be	
no	music	at	all.	This	is	true	of	all	perception	but	particularly	obvious	for	auditory	perception:	percepts	
are	processes	that	unroll,	not	forms	floating	in	the	brain,	waiting	to	be	read.	
	
In	the	bureaucratic	model,	the	causal	structure	is	essentially	sequential,	but	there	can	be	parallel	paths.	
There	can	also	be	feedback:	higher	executives	can	change	the	forms.	Barack	&	Jaegle	point	out	that	
linear	causality	between	any	two	elements	is	not	incompatible	with	circular	causality	of	the	overall	
system.	Consider	the	way	the	context-dependence	of	neural	codes	is	molded	into	the	coding	narrative.	
Tuning	curves	in	the	primary	visual	cortex	(V1)	depend	on	the	task	being	done	by	the	animal	(Gilbert	
and	Li,	2013);	specifically,	V1	neurons	are	sensitive	to	features	important	for	the	task.	This	effect	is	
described	as	 a	 “top-down	 influence”,	where	 “top”	 and	 “down”	 refer	 to	 the	position	 in	 the	 chain	 of	
command.	The	authors	 correctly	note	 that	 it	 raises	 an	 issue	 if	we	are	 to	 think	of	 the	activity	of	V1	
neurons	as	a	code	for	stimulus	features,	since	the	meaning	of	the	code	would	then	depend	on	what	the	
animal	is	doing.	The	solution	is	clear:	“The	answer	lies	in	the	fact	that	the	higher-order	areas	sent	the	
instruction	for	these	neurons	to	perform	a	particular	calculation,	so	the	return	signal	is	‘interpreted’	
by	these	areas	as	the	result	of	that	calculation	and	is	not	confused	with	other	operations	those	neurons	
perform”.	In	the	bureaucratic	model,	feedback	must	be	conceptualized	as	“top-down”	instructions	for	
changing	the	forms.	But	this	bureaucratic	concept	raises	a	number	of	questions:	what	if	the	neuron	
receives	feedback	from	several	“higher-order”	neurons?	Would	it	not	get	conflicting	instructions?	If	
not,	 how	 do	 the	 higher-order	 neurons	 coordinate	 themselves?	 If	 not	 by	 coupling,	 then	who	 gives	
instructions	to	the	higher-order	neurons?	
	
One	 flaw	 often	 attributed	 to	 bureaucracies	 is	 that	 they	 are	 hopelessly	 rigid.	 A	 bureaucrat	 has	 no	
autonomy:	it	fills	a	rigid	form	instructed	from	“the	top”.	If	the	bureaucrat	decided	to	change	the	form,	
the	result	would	be	disastrous	because	the	rest	of	the	chain	applies	formal	procedures,	which	would	
fail.	 Spontaneous	 activity	 is	noise,	not	 autonomy.	 But	what	 should	 the	 bureaucrat	 do	when	she	 is	
supposed	to	fill	the	bar	orientation	form	but	there	is	no	oriented	bar?	or	when	she	is	supposed	to	fill	
the	sound	location	form	but	there	are	two	sounds,	or	the	sound	of	wind?	In	a	real	bureaucracy,	the	
stimulus	is	typically	sent	back	home,	or	off	to	some	other	bureaucrat,	but	there	is	no	such	option	for	
the	brain.	
	



Interestingly,	while	“bureaucracy”	tends	to	evoke	an	overly	rigid	and	generally	dysfunctional	mode	of	
organization,	there	was	a	time	when	bureaucracies	were	seen	as	efficient	ways	of	organizing	work.	In	
the	early	twentieth	century,	Max	Weber,	one	of	 the	 founders	of	sociology,	was	the	 first	 to	 formally	
study	bureaucracies	(public	or	private),	and	considered	that	it	was	the	most	rational	way	of	organizing	
work	(Weber,	1978).	All	resources	are	efficiently	encoded	and	processes	are	designed	rationally:	what	
could	possibly	go	wrong?	
	
Coding	narratives	tend	to	make	extensive	use	of	computational	 terminology,	because	the	computer	
metaphor	evokes	something	efficient	and	powerful.	But	when	we	propose	that	properties	are	encoded	
in	neural	responses,	which	are	then	sent	to	other	areas	for	further	processing,	the	causal	model	we	
have	 in	mind	 is	 the	bureaucratic	model	of	 the	brain.	This	model	 is	hard	to	reconcile	with	empirical	
knowledge	 about	 the	 anatomy	 and	 physiology	 of	 the	 brain.	 Garson	 points	 out	 that	 the	 coding	
metaphor	 is	 used	 to	 reason	 normatively	 about	 the	 brain	 (what	 the	 brain	 should	 do	 to	 function	
efficiently).	But	the	situation	seems	even	worse	normatively	than	empirically:	who	would	think	that	
bureaucracies	are	a	good	idealized	model	of	the	brain?	
	
R3.	Representations	
	
R3.1.	Mental	representations	vs.	neural	encodings	
	
As	many	commentators	have	noted,	the	neural	coding	metaphor	revolves	around	a	central	concept	in	
philosophy	of	mind:	representation	(de-Wit	et	al.;	Aranyosi;	Huetz	et	al.;	Lehky	&	Sereno;	Mirski	
&	Bickhard;	Cisek;	Keijzer;	Gauthier	et	al.;	Deacon	&	Rączaszek-Leonardi;	Cao	&	Rathkopf;	Jones	
&	Kording;	Birch).	In	fact,	only	four	commentators	did	not	mention	it.	What	are	representations	and	
why	do	many	think	that	they	are	necessary	for	cognition	(Clark	and	Toribio,	1994)?	As	Chemero	puts	
it,	 representations	 are	 the	 “dark	matter”	 of	 the	 brain	 (Chemero,	 2011,	 p50):	 they	 are	 theoretical	
constructs	 considered	 necessary	 to	 explain	 some	 features	 of	 cognition.	 One	 of	 these	 features	 is	
anticipation:	the	ability	to	act	as	a	function	of	what	might	happen,	conditionally	on	one’s	actions.	In	
particular,	behavior	can	be	directed	towards	objects	that	are	not	present.	This	 is	presumably	what	
makes	the	appeal	of	predictive	coding	theory	(Baltieri	&	Buckley),	despite	the	fact	that	it	refers	to	a	
very	narrow	notion	of	anticipation,	as	I	and	others	have	noted	(Anderson	and	Chemero,	2013).	
	
More	broadly,	animals	act	not	only	in	reaction	to	proximal	stimuli	but	also	as	a	function	of	abstract	
features	attributed	to	sensory	signals;	these	abstract	constructions	are	called	internal	representations.	
To	take	an	example	from	the	target	article,	we	could	imagine	that	sound	sources	can	be	localized	by	a	
simple	feedback	process:	turn	the	head	until	the	sounds	picked	up	at	both	ears	are	equally	loud.	But	
that	is	not	what	animals	generally	do,	or	at	least	not	only.	A	cat	can	hear	a	100	µs	click	and	then	direct	
its	eyes	towards	the	sound	source	(Populin	and	Yin,	1998),	and	perceived	horizontal	sound	location	is	
remarkably	 invariant	across	 large	changes	 in	the	acoustical	signals	(Hofman	and	Van	Opstal,	1998;	
Sabin	 et	 al.,	 2005;	 Yost	 and	 Zhong,	 2014).	 Even	 binaural	 acoustical	 cues	 such	 as	 interaural	 time	
differences	 vary	 substantially	 with	 the	 sound’s	 spectrum	 (Benichoux	 et	 al.,	 2016),	 but	 somehow	
animals	behave	essentially	as	a	function	of	an	abstract	property	of	the	signals,	their	source’s	position,	
and	 do	 so	while	 the	 signals	 are	 not	present	any	more.	 Anti-representationalist	 views	 centered	 on	
feedback	control	(Brooks,	1991;	Gelder,	1998;	Powers,	1973)	do	not	seem	to	properly	address	this	
issue.	
	
This	explains	why	a	popular	approach	to	understanding	cognition,	advocated	by	Gauthier	et	al.,	starts	
with	analyzing	how	these	abstract	representations	could	possibly	be	extracted	from	sensory	signals	
(Marr’s	algorithmic	level)	and	then	tries	to	map	this	algorithmic	process	to	experimental	observables.	
It	is	known	for	example	that	humans	and	many	mammals	use	mostly	intensity	differences	between	the	
two	ears	(IID)	to	localize	high	frequency	sounds	in	the	horizontal	plane	(Marr’s	computational	level).	
Therefore	 it	 is	 thought	 that,	 at	 the	algorithmic	 level,	 the	auditory	 system	computes	 IIDs	and	 infers	
sound	location	from	this	intermediate	calculation.	As	Gauthier	at	al.	propose,	“internal	representations	
[of	the	computational	models]	can	be	used	to	guide	the	search	for	neural	codes”,	and	indeed	neurons	
have	been	identified	in	the	lateral	superior	olive	(LSO)	whose	firing	rate	varies	monotonically	with	the	
IID	of	an	experimental	stimulus	and	therefore	“encodes”	it.	This	has	formed	the	consensual	view	of	



representation	 and	 computation	 of	 high-frequency	 sound	 localization	 for	 several	 decades:	 LSO	
neurons	encode	IID	by	subtracting	the	intensity	of	the	two	monaural	signals.	A	few	authors	noted	that	
those	neurons	are	also	sensitive	to	ITD	(Joris	and	Yin,	1995),	level	and	spectrum	(Tsai	et	al.,	2010),	but	
the	 neural	 coding	 narrative	 was	 compelling.	 Recently	 it	 was	 found	 that	 experimenters	 had	 been	
mistakenly	recording	interneurons	instead	of	the	principal	neurons	projecting	to	other	areas,	which	
were	missed	because	they	fire	only	transiently	to	lateralized	sounds	(Franken	et	al.,	2018).	As	it	turned	
out,	 the	 standard	 computational	model	 of	 IID	processing	was	 supported	 by	 a	 fiction	 fueled	 by	 the	
coding	narrative,	as	Bénichoux	&	Tollin	(Benichoux	and	Tollin,	2018)	comment:	“The	study	by	Franken	
et	al.	is	a	good	example	of	how	prior	expectations	can	involuntarily	mislead	scientific	endeavor.”.	
	
Gauthier	et	al.	note	correctly	that	the	neural	coding	metaphor	guides	the	search	for	representations,	
by	helping	focus	on	the	“right”	candidate	representations.	But	is	it	a	good	thing?	A	critical	flaw	in	the	
methodology	is	to	implicitly	identify	mental	representations	defined	at	the	abstract	algorithmic	level	
with	neural	representations	conceptualized	as	encodings.	Rahnev	clearly	explains	the	fallacy	in	the	
context	of	 the	Bayesian	brain.	Arguments	supporting	the	Bayesian	brain	are	based	on	the	allegedly	
optimal	way	in	which	humans	behave.	Therefore,	they	support	the	“as	if”	view	of	the	theory:	people	
behave	as	 if	 the	 brain	was	performing	 the	 computations	 of	 Bayesian	 theory.	 But	when	 calling	 the	
theory	Bayesian	brain,	one	commits	not	just	to	the	“as	if”	view	(which	is	not	about	the	brain)	but	to	the	
“realist”	view,	the	notion	that	the	brain	literally	encodes	the	variables	of	Bayesian	theory	and	calculates	
likelihoods.	The	problem	is	no	argument	supports	the	direct	view,	only	the	“as	if”	view.	This	realist	
view	is	readily	endorsed	by	Gauthier	et	al.:	“neural	codes	must	implement	the	empirically	validated	
representations	of	computational	models”.	But	“empirically	validated”	refers	to	the	“as	 if”	view	and	
therefore	the	assertion	 is	not	 justified.	 Similarly,	Gallistel	 gives	 the	example	of	 animal	navigation:	
“their	brain	must	subtract	the	current	solar	azimuth	from	the	desired	compass	course	to	obtain	the	
current	solar	bearing	of	the	source,	the	angle	at	which	they	must	hold	the	sun’s	image	while	flying	to	
their	 destination”,	 but	 arguments	 are	 exclusively	 based	 on	 behavior	 and	 therefore	 no	 specific	
conclusion	 about	 the	 brain	 can	 be	 taken.	 The	 neural	 coding	 metaphor	 implicitly	 commits	 to	 the	
“realist”	view,	which	is	incoherent,	while	evidence	is	provided	for	the	“as	if”	view,	which	is	not	about	
the	brain.	
	
This	 confusion	 explains	 why	 several	 commentators	 have	 categorized	 my	 position	 as	 anti-
representationalist,	despite	the	fact	that	one	of	the	main	flaws	I	attributed	to	neural	codes	is	their	lack	
of	representational	quality	(Huetz	et	al.;	Gauthier	et	al.;	Birch).	Arguments	developed	in	the	target	
article	are	aimed	 at	 the	 direct	 view	 of	 representations	as	neural	 encodings,	 rather	 than	at	mental	
representations,	which	are	only	supported	by	arguments	placed	at	the	level	of	behavior	or	cognition.	
For	example,	when	Clark	&	Toribio	(1994)	argue	that	some	problems	are	“representation-hungry”,	the	
argument	is	based	exclusively	on	behavior	and	does	not	rely	on	any	form	of	encoding.	Others	regretted	
my	commitment	to	representations	(Keijzer;	Aranyosi;	Harnad),	but	this	is	because		representations	
are	 identified	 with	 encodings	 and	 encodings	 are	 (correctly)	 seen	 as	 incoherent	 or	 unnecessary	
(Brooks,	1991;	Chemero,	2011;	van	Gelder,	1995).	
	
Therefore,	the	debate	on	representations	seems	to	rely	on	an	implicit	identification	between	mental	
representations	and	encodings,	promoted	by	the	neural	coding	metaphor.	It	can	be	argued	whether	
“representation”	is	a	good	word	to	designate	the	fact	that	cognition	and	behavior	depend	on	abstract	
and	anticipatory	properties	of	situations.	Perhaps	it	is	misleading.	The	concept,	however,	is	important.	
Arguably,	 and	 although	 this	might	 sound	 provocative,	 Gibson’s	 affordances	 (Gibson,	 1979)	 are	 an	
example	of	representations	in	this	“as	if”	sense.	In	one	of	my	son’s	child	books,	a	group	of	different	
animals	stumble	on	a	potty.	The	frog	says:	“a	bathtub!”;	 the	dog	says:	“a	bowl!”;	 the	mouse	says:	“a	
slide!”.	Animals	perceive	affordances,	anticipatory	properties	of	interaction	that	depend	on	their	own	
Umwelt	and	not	just	on	the	physical	environment.	
	
Is	rejecting	encodingism	“throwing	out	the	baby	with	the	bathwater”?	(Birch)	No,	because	there	are	
ways	to	conceive	these	important	aspects	of	representation	without	neural	codes.	
	
R3.2.	A	short	excursion	on	consciousness	
	



In	the	target	article,	I	avoided	discussing	consciousness	because	it	raises	many	other	difficult	issues.	
As	Harnad	correctly	points	out,	strictly	speaking,	perception	refers	to	conscious	experience	and	it	is	
notoriously	hard	to	explain	“how	and	why	organisms	feel	rather	than	just	do”.	When	I	used	the	words	
perception	and	percept,	I	only	meant	them	in	the	loser	sense	that	is	customary	in	neuroscience,	that	
is,	to	refer	to	certain	types	of	tasks	(e.g.	localizing	a	sound	source).	
	
Nevertheless,	 our	 own	 conscious	 experience	 is	 undoubtedly	 a	 chief	 source	 of	 intuition	 about	
representations.	We	believe	there	are	mental	representations	because	at	any	given	moment,	it	seems	
that	we	have	access	to	a	sort	of	subjective	“snapshot”	of	the	world,	something	that	is	not	the	physical	
world	but	depends	on	it,	in	other	words	a	“representation”	of	the	world.	
	
If	 conscious	 experience	 is	produced	 by	 the	 brain,	 then	 it	would	 seem	 that	 there	must	 be	a	 lawful	
relation	between	the	state	of	the	brain	at	a	given	time	and	the	percept	that	the	person	is	experiencing,	
in	other	words	an	encoding.	I	will	try	to	show	with	a	simple	thought	experiment	that	this	intuition	is	
misleading.	
	
In	the	TV	series	Bewitched,	Samantha	the	housewife	twitches	her	nose	and	everyone	freezes	except	
her.	Then	she	twitches	her	nose	and	everyone	unfreezes,	without	noticing	that	anything	happened.	For	
them,	time	has	effectively	stopped.	Was	anyone	experiencing	anything	during	that	time?	According	to	
the	encoding	view	of	conscious	experience,	yes:	one	experiences	the	same	percept	during	the	entire	
time,	determined	by	the	unchanging	state	of	the	brain.	But	 this	seems	wrong,	and	 indeed	 in	the	TV	
series	the	characters	behave	as	if	there	had	been	no	experience	at	all	during	that	time.	The	encoding	
view	of	conscious	experience	is	wrong	because	experiencing	or	perceiving	is	an	activity,	not	some	thing	
to	be	looked	at	(“by	whom?”,	Harnad	asks).	Therefore,	if	we	are	to	keep	the	concept	of	representation,	
it	has	to	be	conceived	not	as	an	encoding	but	as	a	process.	
	
R3.3.	Beyond	representations	as	encodings	
	
As	 Bickhard	 (2009)	 argues,	 the	 belief	 in	 encodingism	 is	 rooted	 in	 substance	metaphysics,	 which	
describes	 reality	 in	 terms	 of	 things	 of	 different	 kinds	 (e.g.	 atoms).	 For	 example,	 the	neural	 coding	
metaphor	 sees	 neural	 activity	 as	 a	 thing	 that	 can	 be	 read	 or	 manipulated.	 In	 contrast,	 process	
metaphysics	describes	reality	in	terms	of	processes:	“processes	have	their	causal	powers	in	virtue	of	
their	 organization”	 (Bickhard,	 2009,	 p	 553).	 Bickhard	 points	 out	 that	 historically,	 science	 has	
progressed	by	shifting	from	a	substance	view	to	a	process	view	of	phenomena.	For	example,	fire	is	no	
longer	considered	caused	by	phlogiston	but	by	the	process	of	combustion.	
	
When	the	firing	rate	of	a	neuron	is	called	a	“neural	representation”,	the	neuron’s	activity	is	assimilated	
to	a	thing	that	can	be	manipulated	and	observed,	as	if	it	were	a	sculpture	or	a	painting.	But	the	neuron’s	
activity	 is	not	 a	 thing,	as	 the	 term	 indicates:	 it	 is	a	process.	An	action	potential	 is	 an	event,	which	
appears	and	disappears	immediately	and	has	definite	effects	on	the	system.	Any	biologically	relevant	
concept	of	representation	must	respect	this	dynamical	nature.	
	
Of	 course,	 not	 any	 dynamical	 system	 is	 a	 good	model	 of	 the	 brain,	 as	 pointed	 out	 by	Deacon	 &	
Rączaszek-Leonardi.	Garson	observes	that	the	coding	metaphor	allows	teleological	reasoning,	which	
a	dynamical	system	might	not	include.	But	as	Arsiwalla	et	al.	point	out,	teleology	figures	prominently	
in	at	least	one	major	branch	of	dynamical	systems	theory:	control	theory.	The	Watt	governor,	chosen	
by	 van	Gelder	 (1995)	 as	an	 example	 of	 an	elementary	 cognitive	 process	 that	 is	not	 computational	
(meant	in	the	conventional	sense	of	manipulating	representations	in	a	series	of	steps),	is	a	feedback	
control	system.	Perceptual	control	theory	(Powers,	1973)	sees	behavior	as	the	“closed-loop	control	of	
what	the	animal	senses”	(Arsiwalla	et	al.).	
	
Control	theory	is	an	interesting	perspective	on	behavior,	because	it	respects	the	dynamical	nature	of	
the	organism	and	the	circular	relation	between	organism	and	environment,	and	also	connects	with	an	
important	physiological	concept,	homeostasis.	However,	it	is	not	without	difficulties	either,	for	several	
reasons.	First,	the	physiological	concept	of	homeostasis	has	some	limitations:	the	organism	actively	
maintains	various	quantities	within	certain	viable	bounds,	but	it	does	not	necessarily	keep	them	at	a	



fixed	value.	On	the	contrary,	it	adapts	them	to	the	dynamic	needs	of	the	organism,	so	that	the	concept	
of	 “allostasis”	 has	 been	 proposed	 instead	 (Sterling,	 2012).	 An	 obvious	 correction	 is	 to	 allow	 for	
dynamic	rather	than	static	desired	states,	but	this	leads	to	the	second	issue:	control	typically	relies	on	
the	paradigm	of	command,	with	a	controller	trying	to	match	a	desired	state	expressed	by	an	external	
agent,	which	is	not	modeled.	Therefore,	it	leaves	untouched	the	question	of	autonomy.	Third,	control	
is	classically	(but	perhaps	not	necessarily)	also	entrenched	 in	the	coding	paradigm,	with	a	variable	
representing	 the	 state	 of	 the	 controlled	 system	and	a	 variable	 representing	 the	 desired	 state.	 It	 is	
tempting	 to	 then	 postulate	 that	 a	 neuron	 encodes	 the	 sensory	 variable	 and	 some	 other	 neuron	
compares	 it	 to	 the	 target	 variable	 (possibly	 encoded	 by	 another	 neuron)	 and	 issues	 a	 command	
accordingly.	But	again	this	is	an	anthropomorphic	projection	of	our	own	perspective.	
	
Typically,	an	engineer	would	design	a	sensor	in	charge	of	doing	a	measurement.	By	this,	we	mean	that	
the	sensor	produces	a	quantity	(e.g.	an	electrical	voltage)	that	is	in	reliable,	invariant	correspondence	
with	the	physical	quantity	of	 interest,	 in	other	words	an	encoding.	But	biological	organisms	do	not	
perform	measurements	in	this	sense.	First,	neurons	typically	produce	spike	trains,	that	is,	signals	that	
are	highly	variable	when	the	stimulus	is	constant	or	even	absent	(as	retinal	ganglion	cells	in	the	dark).	
Therefore	neurons	map	static	physical	quantities	to	dynamic	processes,	so	that	a	neuron’s	output	at	a	
given	 time	cannot	be	used	as	a	measure.	Only	 some	abstract	 construction	 such	as	 the	“firing	 rate”,	
which	is	not	manipulated	as	such	by	neurons	(which	react	to	individual	spikes),	might	be	more	stable.	
But	in	general,	this	is	not	the	case	either	because	many	sensory	neurons	adapt	to	stimuli.	The	relation	
between	 physical	 quantities	 and	 sensory	 neuron	 activity	 is	 not	 one	 of	measurement	 but	 simply	 of	
coupling.	There	is	no	physiological	signal	to	be	maintained	constant	or	close	to	a	desired	state,	only	
dynamic	processes:	constancy	is	to	be	found	at	the	behavioral	level,	not	at	the	physiological	level.	
	
Consider	for	example	a	simple	feedback	loop	such	as	the	stretch	reflex:	a	sensory	neuron	fires	action	
potentials	in	response	to	muscle	stretch	and	excites	a	motoneuron,	which	then	triggers	contractions	
of	the	muscle.	This	acts	as	a	negative	feedback	loop.	To	understand	this,	it	is	not	necessary	to	look	for	
a	 neural	 code	 of	 stretch	 in	 the	 sensory	 neuron	 and	 to	 look	 for	 a	 subtraction	 performed	 by	 the	
motoneuron.	It	is	sufficient	to	consider	the	(spiking)	dynamical	system	formed	by	the	neural	circuit	
together	with	the	muscle,	and	show	that	it	has	a	stable	fixed	point,	with	dynamical	properties	that	are	
more	desirable	when	the	circuit	is	connected	to	the	muscle.	
	
The	free	energy	principle	(discussed	by	Baltieri	&	Buckley)	makes	the	same	problematic	commitment	
to	 encodings,	 because	 free	 energy	 is	 defined	 as	 an	 information-theoretic	 function	 of	 ungrounded	
abstract	variables,	not	of	physiological	processes	–	note	that	this	is	different	from	the	physical	concept	
free	energy,	which	applies	to	equilibrium	thermodynamics,	not	living	systems	(Martyushev,	2018).	
	
It	 is	 possible	 to	 conceive	 organism-environment	 coupling	and	 homeostasis	 (considered	 in	a	 broad	
sense)	 in	 terms	of	processes	 rather	 than	encodings.	One	 such	 conceptual	 framework	 in	 theoretical	
biology	is	autopoiesis	(Maturana	and	Varela,	1973;	Varela	et	al.,	1974):	a	property	of	an	organization	
of	processes	that	actively	maintain	the	organization	despite	continuous	change	of	the	substance	that	
composes	them	(e.g.	protein	turn-over).	Beyond	homeostasis,	several	commentators	have	expressed	
the	idea	that	representations	should	be	conceived	not	as	encodings	but	in	terms	of	processes	(Cisek;	
Deacon	&	Rączaszek-Leonardi;	Mirski	&	Bickhard).	Specifically,	they	develop	a	pragmatic	concept	
of	 representation,	 oriented	 on	 the	 effects	 of	 spikes	 rather	 than	 on	 their	 correlation	with	 external	
features	(Deacon	&	Rączaszek-Leonardi	refer	to	Peirce).	Cisek	describes	pragmatic	representations	as	
follows:	“Since	spikes	are	a	means	of	directing	that	flow,	their	activity	perforce	corresponds	to	aspects	
of	the	world	but	also	to	the	organism’s	needs	and	its	policies	for	meeting	those	needs.	We	could	call	
these	 “pragmatic	 representations”	 –	 activity	 that	 doesn’t	 describe	 the	world	 but	 instead	mediates	
interaction	with	it.”	
	
At	this	point,	it	is	important	to	recall	that	arguments	in	favor	of	the	central	role	of	representations	in	
cognition	are	all	about	what	representations	allow	(the	“as	if”	view).	Therefore	they	chiefly	support	
the	pragmatic	view	of	representation.	But	what	is	representational	about	pragmatic	representations?	
Mirski	&	Bickhard	focus	on	the	property	of	anticipation:	“the	brain	establishes	modes	of	functioning	
that	 implicitly	 anticipate	 the	 upcoming	 interaction”.	 In	 the	 interactivist	 model	 of	 representation	



(Bickhard,	2009),	representations	are	anticipations	of	potential	interactions	and	their	expected	impact	
on	the	 future	course	of	processes	of	 the	system.	Perhaps	 it	might	be	more	productive	to	talk	about	
representational	processes	than	representations.	
	
Arguably,	this	alternative	process-based	view	of	representation	and	cognition	opens	more	questions	
and	conceptual	challenges	than	it	solves.	These	challenges	are	hidden,	not	solved,	by	the	neural	coding	
metaphor.	
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