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Elastic behavior of confined soap froth

Pierre Guyot,a Andrew M. Kraynik,b Douglas Reineltc and Sylvie Cohen-Addad∗ad

The elastic response of ordered 3D soap froth, in which N layers of cells are confined between
two rigid walls, is analyzed. Surface Evolver simulations are used to compute the equilibrium
structure, which consists of a layer of Fejes-Toth cells at each wall and N−2 core layers of Kelvin
cells. The reference state corresponds to the plate spacing ho that achieves isotropic stress; and
the foam confinement is varied by changing h. The foam is sheared in two orthogonal directions
to determine elastic behavior up to the elastic limit or yield strain, which corresponds to the onset
of topological transitions. The shear moduli in both directions decrease as N increases and slowly
converge to the values of bulk Kelvin foam; the dependence on N is well described by a three-
layer model consisting of Fejes-Toth cells and a core of Kelvin cells that deform like bulk foam.
The influence of foam confinement on the elastic limit is studied. The topological transitions are
compared to those in bulk Kelvin foam.

1 Introduction
Aqueous foams are dense packings of gas bubbles in a surfactant
solution1,2. Despite being solely constituted of fluids, they ex-
hibit remarkable elastic properties arising from the surface energy
stored in the liquid-gas interfaces under mechanical loading. Un-
der small strain, they behave as a linear elastic solid. Large strains
and the corresponding large bubble distortions result in unsta-
ble configurations that violate equilibrium and provoke topologi-
cal transitions. During these transitions bubbles lose contact and
separate from neighbors; this is the fundamental mechanism for
yielding and is essential for flow.

Due to their rheological properties, aqueous foams are sought
for in a variety of applications3. Foams have been extensively
used at large scale as displacing fluids in geological reservoirs in
EOR processes4, as fracturing fluid in drilling operations3, or as
chemical contaminant carriers for aquifer remediation5. Foam
flow in porous media is mimicked in laboratory by model porous
microfluidic systems6–9. Flow in confined geometries is used to
manipulate bubbles in foams or droplets in concentrated emul-
sions for the purpose of building miniaturized labs on a chip10–14.
In these processes where foam deformation is influenced by the
confined geometry, their structure must accommodate the shape
of a narrow channel or a pore of characteristic size of the order
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of a few bubble diameters. This raises the question how confine-
ment impinges on the foam rheological behavior.

The rheological properties of 3D bulk foams have been exten-
sively studied experimentally, numerically and theoretically15,16.
Besides surface tension and bubble size, their static elastic proper-
ties such as shear modulus or yield stress depend on the volume
fraction of the liquid phase and on the structural order. Rheol-
ogy of foams under extreme confinement in pores of size equal to
that of a single soap film has been investigated by numerical and
experimental studies17. The impact of confinement specifically
on the elastic behavior of a 3D foam has not yet been studied.
Here, we consider ideal confined foams in the sense that: i) their
liquid content is vanishingly small (soap froth or so-called dry
foams); ii) they involve monodisperse ordered packings ; iii) they
are confined between two parallel rigid plates separated by a gap
distance of the order of a few bubble diameters.

In this paper, we study numerically the elastic behavior of dry
confined multilayer foams in response to an applied shear. We ad-
dress the following questions: How different is the shear modulus
of a confined foam compared to that of a bulk 3D foam? What
is the impact of the confinement, i.e. the plate spacing, on the
shear modulus and how does it depend on the number N of bub-
ble layers? Then we turn to large deformations and ask how the
shear induced topological transitions, known as T1s, and their on-
set compare to those in a bulk foam. Using the Surface Evolver,
we determine the shear moduli in the linear elastic regime and
the stress-strain relationship up to the onset of T1s. We study the
effect of confinement on yield stress and yield strain as a function
of the layer structure.
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2 Multilayer dry foam structure

2.1 Soap froth multilayer between two rigid walls

The equilibrium structure of an ideal bulk 3D foam (soap froth)
satisfies Plateau’s laws1, where each thin film separating adjacent
bubbles has uniform curvature, the films meet 3 by 3 at equal
angles of 120◦, and the edges at the junctions between films, the
so-called Plateau borders, meet 4 by 4 at vertices located at the
center of regular tetrahedra. The Kelvin foam is the quintessential
perfectly ordered monodisperse soap froth and is encountered in
many real situations2,18–20. However, it cannot accommodate the
geometrical constraint of a rigid wall. At mechanical equilibrium
with a rigid plane wall, the films that do not lie along the wall
must form 90◦ angles with the wall. As first pointed out by Fejes-
Toth21 and later by Weaire2, this surface accommodation can be
accomplished by a layer of Fejes-Toth (FT) cells. In this study, we
consider a thin slab of a multilayer dry 3D foam confined between
two parallel rigid plates. The foam consists of N = 2, 3, ... , 11
ordered layers of monodisperse bubbles with FT cells at each wall
and N - 2 core layers of Kelvin cells in between, as illustrated in
Fig. 1.

2.2 Kelvin structure

Let us recall the structure and the elastic properties of a Kelvin
foam1. The Kelvin cell is a tetrakaidecahedron with 6 flat quadri-
lateral faces and 8 curved regular hexagonal faces (with zero
mean curvature), as shown in fig. 2a. All the edges have the same
length. Its equilibrium structure can be determined by minimiz-
ing surface energy density using the Surface Evolver, a standard
software for discrete surface energy minimizations23. The cell ex-
hibits cubic symmetry, the symmetry axes (xo,yo,zo) pointing from
the bubble center to the center of each square face. The Kelvin
foam is a dense packing of Kelvin cells of identical volume, shape
and orientation, where the bubble centers occupy the sites of a
body-centered cubic lattice (bcc).

The linear elastic behavior of a Kelvin foam has been exten-
sively studied22. The stress σo and strain εo tensors of a structure
with cubic symmetry can be expressed relative to the crystallo-
graphic axes (xo,yo,zo) using three independent elastic constants
c11, c12 and c44 (cf. definition in the appendix 7). We define the
two independent shear moduli:

G1 = c44

G2 = 1
2 (c11− c12)

(1)

Kraynik and Reinelt showed that for the Kelvin foam, G1 =

0.96456 and G2 = 0.57064 in units of T/V 1/3, where T is the liquid-
gas interfacial tension and V is the bubble volume22.

2.3 Fejes-Toth structure

The Fejes-Toth cell is obtained by cutting in two halves a Kelvin
cell so that the resulting polyhedron has a flat hexagonal base,
and by slightly extending it to keep its volume equal to that of
the original Kelvin cell. Two layers of Fejes-Toth (FT) cells can
completely fill the space between two parallel walls. Such a FT
bilayer resembles that of the bee honeycomb structure21.

Figures 2a to c illustrate the scheme followed to build a FT cell.
It is obtained by rotating the Kelvin cell 45◦ about one crystallo-
graphic axis (xo-axis for instance in fig. 2a), cutting the cell in two
halves along the mid-plane (x-y) perpendicular to the square face,
and then stretching it in the z direction such that the new cell has
the same volume V as the initial Kelvin cell. The x,y,z axes define
the reference frame in the following. The resulting Fejes-Toth cell
has tetragonal symmetry, with 11 faces: a (non regular) hexagon
in the x-y plane, 2 regular hexagons, 2 quadrilateral faces, 4 ir-
regular pentagons and 2 rectangular faces as illustrated in fig. 2c-
f). Its equilibrium structure is determined by minimizing surface
energy density using the Surface Evolver. This mechanical relax-
ation produces curved faces required to satisfy Plateaus’ laws.

The equilibrium boundary condition at the wall is matched by
placing the FT cell with its hexagonal base parallel to the x-y plane
so that the films that do not lie along the wall form 90◦ angles
with the wall. A set of two FT cells packed upside down along the
z direction, in the same orientation, allows space filling without
overlapping or voids when it is translated in the x and y directions
as illustrated in fig. 1a. Similarly a set of two external FT cells
with a core of N−2 Kelvin cells in the same orientation fill space
when translated along the x-y plane as shown for N = 3 in fig. 1b.

3 Computation of multilayer structure and
stress response

3.1 Stress derivation

We consider an ordered multilayer foam, confined between two
plates perpendicular to the z direction, separated by a gap dis-
tance h, and infinitely extended in the (x-y) plane (cf. fig. 1). The
structure is described by the three lattice vectors p1, p2, p3 which
set the unit cell:

p1 =
(

px, py,0
)

p2 =
(
−px, py,0

)
p3 = (0,0,h)

(2)

The vectors p1 and p2 join the centers of two neighboring (hexag-
onal) faces at the lower plate. Their length is expressed in units of
V 1/3. An homogeneous deformation, defined by the deformation
gradient tensor F, is applied to the foam slab, by displacing the
initial lattice vectors to get the new lattice vectors p′i such that :

p′i = F . pi (3)

The average macroscopic stress of the foam multilayer is then
evaluated using Batchelor’s general expression of the stress in-
duced by a quasistatic strain in a fluid consisting of two immisci-
ble phases24. Omitting the isotropic term due to the gas pressure
in each bubble, the contribution of the interfacial tension forces
exerted on each individual film is given by25:

σi j =
T
V f

∫
Sint

(
δi j−nin j

)
ds (4)

where Sint is the area of all liquid-gas interfaces in the volume of
foam V f , δi j is the Kronecker delta, ni is a local unit vector normal
to the interface, and ds is the differential area element. Since the
considered foam structures are periodic, the integral Eq. 4 needs
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Fig. 1 Structure of multilayer foams confined between two parallel walls (represented by the rectangular frames) normal to the z direction. The cell
faces in contact with the wall are shown in yellow. a) A bilayer (N = 2) consisting of 2 Fejes-Toth cell layers; b) A trilayer (N = 3) consisting of two
Fejes-Toth cell layer in contact with each wall and a core layer of Kelvin cells. The multilayers have relaxed isotropic structure with lattice parameters
given in table 1 (See text for definition.) corresponding to gap separation ho.

only to be evaluated over the unit cell. In the following, we will
consider the situation where each plate surface is wetted by a
thin liquid film, assuming total wetting of the wall by the liquid
phase. This case is indeed frequently encountered in experimen-
tal or practical situations. As a consequence, Eq. 4 can be written
as:

σi j =
T
Vc

2

 F

∑
k=1

k/∈wall

∫
Sk

(
δi j−nin j

)
ds

+2
∫

Sw

(
δi j−nin j

)
ds


(5)

Here Vc is the volume of the unit cell containing F films, Sk is
the area of a film k shared by two bubbles in the unit cell. The
factor of 2 in the first term of the r.h.s. of Eq. 5 accounts for
the two liquid-gas interfaces of each film in the interior of the
slab. Sw denotes the area of one hexagonal film wetting the wall,
such a film having only one liquid-gas interface. By symmetry, the
bottom wall film (z = 0) and the top film (z = h) have the same
area. Thus the factor of 2 in the second term of the l.h.s. of Eq. 5
stands for the 2 wall films per unit cell.

3.2 Surface Evolver simulations

Applying affine deformations using the lattice transformation
Eq. 3 generates foam structures that violate Plateau’s laws. Equi-
librium relaxed structures are then obtained using the Surface
Evolver. The structure is initially discretized such that each n-
sided face is subdivided into n flat (linear mode) triangular facets.
This initial mesh can be refined, so that the Ri discretized struc-
tures has 4i times many more facets than the initial R one. Ad-
ditionally, the facet can be quadratically interpolated (quadratic
mode) to gain accuracy at the cost of time calculation. In this

study, the surface energy density is minimized with the constraint
of fixed bubble volume. This minimization is performed by suc-
cessive iteration steps using a conjugate gradient algorithm re-
peated until the convergence is reached. A given strain (shear or
stretch) is applied to the structure by applying the deformation
gradient tensor F to each lattice vector pi of the unit cell. This
defines the new lattice vectors and determines the new position
of the vertices in the unit cell. Then the surface is recalculated
and its energy minimized. At each minimization step, the stress
is evaluated using Eq. 5. The criterion for convergence is based
on the stress evaluation as in22. For a precision of n digits on
the stress, we insure that the n+ 1 digit does not vary upon fur-
ther steps. Lengths and stresses are expressed in V 1/3 and T/V 1/3

units respectively.

3.3 Determination of the relaxed lattice parameters

Since the FT structure has a tetragonal symmetry, the plate spac-
ing h and the lattice vector parameters px, py must be indepen-
dently adjusted to achieve isotropic stress. For a given number
N of layers, the values of these three parameters are unique.
They are determined, for each N value, using repeated tension-
compression annealing cycles in the 3 space directions. For in-
stance, uniaxial extension is applied in the z direction. Then the
vertices and edges in contact with the wall are let free to move
as the structure is relaxed using the Evolver (in quadratic R2 re-
finement mode). The extension is repeated with small strain in-
crements until the stress difference σxx −σyy = 0 with 7 signifi-
cant digits. A similar elastic recoil is performed in the x and y
directions until σzz−σyy = 0 and σxx−σxx = 0. This procedure de-
termines with 6 significant digits the relaxed lattice parameters,
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Fig. 2 Structure of Kelvin and Fejes-Toth (FT) bubbles in a dry multilayer. a) A Kelvin cell with its crystallographic axes xo,yo,zo. b) A Kelvin cell rotated
by 45◦ around the xo axis. c) A FT cell obtained by cutting the Kelvin cell in b) along a plane perpendicular to the square face, and stretched along the
z direction such that it has the same volume as the original Kelvin cell. The axes x,y,z refer to the fixed reference frame. d), e), f) give three orthogonal
views of the FT cell. The FT structure matches the boundary condition of 90◦ angles between the films and the x-y plane.

denoted pxo, pyo,ho, in the reference undeformed state for each N
value, as listed in Table 1. Moreover, we deduce from the data for
N = 2, the thickness of one relaxed FT layer: δ = ho/2 = 0.97765.
Figure 3 shows that the total thickness of the relaxed N-multilayer
foam varies linearly with N. In the following, the degree of con-
finement of a N-multilayer in a gap thickness h is characterized
by the confinement ratio defined as:

r = h/ho (6)

Table 1 Lattice parameters (expressed in V 1/3 units) of the N-multilayers
as defined in eq. 2. They are determined by requiring the stress of the
"undeformed" foam to be isotropic. The boundary condition at the wall
corresponds to total wetting by the liquid film

N pxo pyo ho
2 0.56398 0.90682 1.95530
3 0.58148 0.90398 2.85360
5 0.59805 0.90030 4.64310
7 0.60606 0.89823 6.42922
9 0.61085 0.89689 8.21354
11 0.61400 0.89596 9.99706

4 Linear elastic response
4.1 Shear modulus and normal stresses differences compu-

tation.

Since the multilayer structure is anisotropic, we study its elastic
response as it is subjected to simple shear in the x-y plane, along
either the x or the y direction (cf. Fig. 1). For a given confinement
ratio r, we determine the reference relaxed state where the stress
in the x-y plane is isotropic. By mechanical annealing with the
contact line at the wall being free to move, we perform successive
elastic recoils until σxx−σyy = 0. After this step, the stress tensor
components σxy, σyz and σxz are equal to zero with 7 significant
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0 2 4 6 8 10 12

h o
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Fig. 3 Thickness of the relaxed isotropic N-multilayer as a function of
the total number N of layers. The symbols correspond to the data of
Table 1. The line is a linear regression to the data: ho = 1.9553+(0.8940±
0.0003)(N−2).

digits. Then we impose that the edges and vertices in contact
with each wall are fixed and, we apply a simple shear as given by
Eq. 3. This corresponds to the situation where the instantaneous
elastic response is probed without foam slip at the wall. For a real
foam, pinning at the wall is indeed achieved at the instant where
the stress is applied, before any viscous relaxation process in the
wetting liquid films occurs. The structure is further relaxed with
R2 refinement (in quadratic mode) and the stress components
are evaluated using Eq. 5. Stresses and shear moduli are scaled
by T/V 1/3.

For simple shear in the x direction, the deformation gradient
tensor F and the infinitesimal strain tensor ε are:

Fi j =

1 0 γ

0 1 0
0 0 1

 εi j =

 0 0 γ/2
0 0 0

γ/2 0 0

 (7)
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We define the shear modulus Gxz in that direction by:

σxz = Gxzγ (8)

and the shear induced normal stress differences:

N1 = σxx−σzz

N2 = σzz−σyy
(9)

We deduce Gxz from the variations of σxz with γ as the strain is
increased by small increments in the range where the response is
linear. We do similarly for simple shear in the y direction with

Fi j =

1 0 0
0 1 γ

0 0 1

 εi j =

0 0 0
0 0 γ/2
0 γ/2 0

 (10)

and define the shear modulus Gyz as:

σyz = Gyz γ (11)

and the shear induced normal stress differences:

N1 = σyy−σzz

N2 = σzz−σxx
(12)

In the next paragraphs, we study the impact of the confinement
ratio r (eq. 6) on both moduli Gxz and Gyz for N-multilayer as N
is varied between 2 and 11.

4.2 Bilayer shear modulus.

First we study the linear elastic response of a bilayer. Fig. 4 shows
the structure of the periodic cell as the bilayer is squeezed (r < 1)
or stretched (r > 1). We recall that r = 1 corresponds to the
isotropic state (cf. eq. 6). In this range of r, there are no topo-
logical changes of structure. For the non confined bilayer (r = 1),
we represent in figure 5 the variations of the shear stress and both
normal stress differences as a function of the applied strain γ in-
creased by steps of 0.002 up to 0.02. From the shear stress data,
we deduce: Gxz,o = 1.37010±2.10−5 and Gyz,o = 0.77688±3.10−5.
This shows that the elastic behavior is anisotropic. The bilayer is
stiffer when sheared along the x direction compared to the y di-
rection. The shear stress results from the traction that the films in
contact with the wall and perpendicular to it exert on the contact
lines. Since the surface tension acts in the plane tangential to the
film at the contact line, a film contributes to the shear stress as
long as it is not aligned with the shear direction. Thus for the
x-z strain, all 6 films contribute whereas for the y-z strain, only 4
films contribute (cf. fig. 6). Neglecting the exact cell geometry,
this simple argument suggests that Gxz should be about 1.5 times
larger than Gyz which is indeed the case.

By fitting the normal stress difference data to a quadratic
polynomial, we get for x-z shear: N1 = (1.797± 0.001)γ2 and
−N2 = (1.158± 0.001)γ2, and for those induced by a y-z shear:
N1 = (1.982± 0.008)γ2 and −N2 = (1.053± 0.001)γ2. We ob-
serve that the normal stresses induced by shear in the bilayer
are anisotropic. For isotropic materials with shear modulus G,
the general Poynting relationship holds26: N1 = σ12 γ, which re-
duces to N1 = Gγ2 for small γ. This relation is predicted to hold

for Kelvin foams if the stress is averaged over all possible ori-
entations27. For bilayers, the numerical simulations show that
N1/(Gγ)2 is 1.31 or 2.55, which confirms that the elastic behavior
exhibits significant anisotropy.

Then we vary the degree of confinement with respect to the
reference isotropic state. Figure 7a shows the variations of both
shear moduli as a function of the confinement ratio r = h/ho. We
observe that the moduli strongly increase with r. When the bi-
layer is compressed from the reference state, the area Sw of the
hexagonal basis on the wall increases, thus the number of films
per unit surface pulling on the wall decreases. At the same time,
the tension exerted on the films increases since the perimeter L
of the base increases. The results show that the effect of the area
dominates, leading to a global decrease of the modulus as the
compression increases. We plot in Fig. 7b the variations of the
moduli normalized by their value in the reference state (r = 1),
denoted Gxz,o and Gyz,o respectively. The numerical results show
that, to second order in r, the relative variations of the moduli
normalized by their value in the reference state (r = 1), denoted
Gxz,o and Gyz,o respectively, are well described by the polynomial
functions:

Gxz

Gxz,o
= 1+0.909(r−1)−0.27(r−1)2 (13)

Gyz

Gyz,o
= 1+1.107(r−1)−0.11(r−1)2 (14)

4.3 Trilayer shear modulus.

We simulate the shear elastic linear response of a trilayer similarly
to that of a bilayer. We deduce its shear moduli Gxz and Gyz from
the variations of the stress response to applied strain up to 0.02.
In the isotropic state (r = 1), we find : Gxz,oT = 1.22500± 2.10−5

and Gyz,oT = 0.67537± 2.10−5. The results in fig. 7a show the
variations of Gxz and Gyz with the confinement ratio r. The large
difference observed between Gxz and Gyz reflects the anisotropy
of the trilayer structure. On both shear directions the trilayer
foam becomes stiffer as the ratio r increases. The numerical re-
sults show that at second order in r, the variations of the moduli
normalized by their value in the reference state are well described
by the polynomial functions:

Gxz

Gxz,oT
= 1+1.008(r−1)−0.25(r−1)2 (15)

Gyz

Gyz,oT
= 1+0.99(r−1)+0.34(r−1)2 (16)

In the relaxed isotropic reference state (r = 1), our simulations
show that the FT cell has an interfacial energy density, scaled by
T/V 1/3, equal to Eo,FT = 5.525. This value is larger than that of
an undeformed Kelvin cell22: Eo,K = 5.306. The larger value of
Eo,FT compared to Eo,K reflects the supplementary cost of energy
caused by the confining wall. The Kelvin cell in the core of the
trilayer lowers the relative contribution of the FT cells to the total
interfacial energy. Thus we expect the moduli of a trilayer to be
lower than that of a bilayer, which is indeed the case. In the next
section, we study the impact of the number of layers on the shear
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Fig. 4 Visualization of the relaxed periodic cell of a bilayer for different confining ratios r = h/ho, varied between 0.7 and 1.5 as indicated, viewed along
an orthogonal projection: a, b) on the x-z plane ; c, d) on the y-z plane. The cell is confined between two plates (not represented) normal to the z
direction separated by a distance h. The value r = 1 corresponds to the isotropic reference state. See section 3.1. a) and c) show the undeformed
bilayers. b) (resp. d) show the relaxed structure as the bilayer is sheared in the x (resp. y) direction. A large strain γ = 0.1 is applied for the visualization,
but much smaller strains are used to calculate the shear moduli.
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Fig. 5 Variations of the shear stress (�), the first (◦) and second (•)
normal stress differences of a bilayer subjected to a shear strain γ : a) in
the x direction, b) in the y direction. The lines represent a linear fit for the
shear stress and quadratic fits for N1 and N2 (see text). The stresses are
expressed in T/V 1/3 units.

Fig. 6 a) Orthogonal projection of the undeformed FT bilayer showing
the hexagonal basis in contact with the wall. Under a x-z shear, all 6
perpendicular films contribute to the shear stress σxz. Under a y-z shear,
films labeled 2 and 5 remain parallel to the direction of motion. Thus
the surface tension remains perpendicular to the plate and does not con-
tribute to the shear stress σyz. b) Schematic drawing of surface tension
acting on film 2 undergoing a x-z strain (top) or a y-z strain (down).

moduli.

4.4 N-layer shear modulus.
In this section, we consider multilayers in their isotropic unde-
formed reference state corresponding to a confinement ratio r = 1
(cf. Fig. 8) and, we analyze their response to an applied shear
strain in the linear domain. As for the previous bi- and trilayers,
we apply increasing shear strains ranging between 0.002 to 0.02,
in either x or y directions and we deduce the corresponding shear
moduli Gxz and Gyz from linear fits to the stress-strain data.

In Figure 10, we plot both shear moduli as a function of the
number of layers N. As N increases from 2 to 11, we see that Gxz

and Gyz both decrease monotonously. To evaluate the impact of
confinement on the multilayer stiffness, we compare their shear
moduli to those of a bulk Kelvin foam, evaluated in directions
that correspond to similar orientations in the multilayer and in
the Kelvin foam. For instance, let us consider a shear deformation
εxz applied to the N-multilayer along direction x (as defined in
Fig. 1 or 2d-f). In a Kelvin foam, such a deformation would be
equivalent to that obtained after rotating the cell crystallographic
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Fig. 7 Bilayer (N = 2) and trilayer (N = 3) shear moduli. a) Variation of
Gxz and Gyz as a function of the confinement ratio r = h/ho when the foam
is sheared in either x (filled symbols) or y (empty symbols) direction. The
moduli are scaled by T/V 1/3. b) Moduli normalized by their value for r = 1
plotted as a function of r− 1. The continuous lines are quadratic fits to
the data (Eq. 13 and 14). Same symbols as in a).

Fig. 8 Basic cell of the N-multilayer foam structure. It consists of one
Fejes-Toth cell at the bottom, one at the top, and N − 2 Kelvin internal
cells. The basic cell is infinitely repeated in the x and y directions. The
parallel confining plates (not shown) lie in the x-y planes. The repre-
sented structures correspond to the lattice parameter ho (or r = 1) in the
z direction such that the multilayer is in its reference isotropic state.

Fig. 9 Schema of the multilayer foam consisting of 3 independent layers.
An applied shear stress σ induces local displacements in each layer that
add up to build the total displacement ∆u.

axis 45◦ about the xo axis (cf. Fig. 2a), and then shearing the cell
along the x direction. The calculation given in the appendix 7
shows that:

σxz = G1γ (17)

where G1 is defined by Eq. 1. Thus the multilayer shear modu-
lus Gxz can be compared to the shear modulus G1 of a bulk Kelvin
foam. Similarly a simple shear deformation εyz applied to a Kelvin
cell in the reference frame of Fig. 2d-f is equivalent to that ob-
tained after rotating the cell crystallographic axis 45◦ about the
xo axis (cf. Fig. 2a), and then shearing the cell along the y direc-
tion. The calculation given in the appendix 7 shows that:

σyz = G2 γ (18)

with γ = 2εyz. Hence the multilayer shear modulus Gyz can be
compared to the shear modulus G2 of a bulk Kelvin foam. The
data in Fig. 10 show that the shear moduli indeed asymptotically
converge toward both values G1 and G2 expected for a bulk Kelvin
foam.

To model the multilayer elasticity, we consider the structure
to consist of three independent stacked layers (cf. Fig. 9): A core
layer made of a Kelvin foam, with shear modulus GK , sandwiched
between two FT surface layers with modulus GFT . A uniform
shear stress σ applied to such a composite structure induces a
local strain in the core layer:

γK = σ/GK , (19)

and in each FT layer:

γFT = σ/GFT . (20)

The local displacements in each layer add to build up the total
displacement:

∆u = 2δγFT +(ho−2δ )γK , (21)

where ho is the total thickness of the foam and δ is the thickness
of one FT layer. We define the average strain:

γav ≡
∆u
ho

, (22)
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and the effective shear modulus of the composite layer:

Ge f f ≡
σ

γav
. (23)

Combining Eq. 19 to 23 yields the expression:

ho

Ge f f
=

ho−2δ

GK
+

2δ

GFT
. (24)

As shown by the data of Table 1 and by Fig. 3, the total thick-
ness varies linearly with N according to: ho = 2δ + p(N−2) with
δ = 0.97765 and p = dho/dN = 0.8940. Thus the variations of the
effective modulus with the number of layers can be written as:

Ge f f =
2δ + p(N−2)

2δ

GFT
+

p(N−2)
GK

(25)

We expect this relation to hold for both shear directions with the
corresponding FT moduli Gxz,o and Gyz,o found for the the bi-
layer (cf. section 4.2) and with the Kelvin moduli G1 and G2

(cf. section 2). As can be seen in Fig. 10, this prediction cap-
tures remarkably well the softening of the multilayer foam, for
both shear moduli, without any free parameter. The small dif-
ference between the data and the prediction can be attributed to
the fact that the 3 layers are not completely independent and are
not strictly separated at the distance δ from each plate. δ is the
distance between a plate and the top of the pentagonal faces of
the FT cells. A part from it, there is a thin zone where the FT cells
and the Kelvin cells overlap. The local non-affine distortion of the
structure in the overlapping zone is not taken into account in our
model. Furthermore, we deduce from these results the minimum
number of bubble layers an ordered dry foam must have for its
shear moduli to be representative of those of a bulk foam sam-
ple. We see that the relative difference between Gxz and G1 is less
than 5% for N ≥ 14 and that the relative difference between Gyz

and G2 is less than 5% for N ≥ 12. This is important for practi-
cal applications where mechanical properties of a foam confined
in channels or pores must be assessed. As an extension of this
study, it would be interesting to determine the Young modulus of
a N-multilayer in response to a uniaxial stretching or compression
along the z-direction.

5 Large deformations

5.1 Topological transitions.

As in section 4.1, we apply quasistatic deformations to multilayer
foams with confinement in the range 0.7 < r < 1.5 and increase
strain by increments of 0.02. Using the Surface Evolver, the struc-
ture is relaxed with R2 refinement(quadratic mode) after each
strain step, and the stress is evaluated using eq. (5). We observe
the evolution of the structure as faces and edges deform up to
the strain where Plateau’s laws are violated, which provokes irre-
versible topological transitions.

Let us recall the topological transitions that occur in a Kelvin
foam under shear; these T1s cause cells to switch neighbors but
they remain Kelvin. Three types of transitions can be triggered28.
1) A standard T1 occurs when opposite edges of a shrinking
quadrilateral face go to zero length. This leads to a pair of 5-
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Fig. 10 Variation of the shear modulus of the multilayer foam as a func-
tion of the number of layers N. The symbols correspond to the data as
labeled. The equivalent shear moduli for a bulk Kelvin foam are indicated
as G1 and G2 (dotted lines, see text). The continuous full lines repre-
sent the prediction by the layer model (eq. 25) with the bilayer and Kelvin
moduli: GFT = Gxz,o = 1.370 and GK = G1 = 0.965 for the x-z shear and,
GFT = Gyz,o = 0.777 and GK = G2 = 0.571 for the y-z shear. The moduli
are scaled by T/V 1/3.

fold vertices that violate Plateau’s laws and is analogous to the
T1 in 2D soap froth29. 2) A point T1 occurs when a quadrilateral
face shrinks to a point. 3) A triple T1 happens when opposite
long curved edges of a shrinking hexagonal face touch at their
center. Figure 11 shows the evolution of a bilayer and a trilayer,
initially in the isotropic reference state (r = 1) as they are sheared
in the x direction. The areas of a quadrilateral face and a hexag-
onal face diminish as the strain γ increases. Two opposite long
edges of the hexagonal face eventually touch, which produces an
unstable junction and triggers a triple T1. This transition is con-
sistent with triple T1 induced in bulk Kelvin foam. We recall that
the shear stress σxz corresponds to the orientation 1.2 defined in
ref.28. Triple T1s occur for all confinements: 0.7 < r < 1.5 for
bilayers and 0.8 < r < 1.4 for trilayers.

Figure 12 shows the evolution of a bilayer and a trilayer,
sheared in the y direction. As the strain γ increases, a square
face shrinks to a point, triggering a point T1. Again, this transi-
tion is consistent with point T1 induced in bulk Kelvin foam since
the shear stress σyz corresponds to the orientation 1.3 in ref.28.
Point T1s occur for all investigated confinements.

5.2 Yield stress and yield strain of multilayer foams.
Figure 13 shows the variations of the shear stress with the strain,
applied either in the x or y direction, for bilayers and trilayers with
different confinements. The largest strain γy for each curve cor-
responds to the onset of topological transitions, the elastic limit,
and the yield stress σy. Note that the shear stress σyz for the bilay-
ers has a local maximum; consequently the yield stress associated
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Fig. 11 Large shear deformations applied in the x direction, for different strain amplitudes γ = 2εxz as indicated to: a) a bilayer with r = 1; b) a trilayer
with r = 1. The area of the square (in red) and hexagonal (in blue) faces decrease. The two opposite long edges of the hexagonal faces will touch
and trigger a triple T1, as in bulk Kelvin foam; c) a Kelvin cell sheared in the same orientation 28. A triple T1 is triggered at the strain: a) γy = 1.04, b)
γy = 1.16, c) γy,K = 1.47.

Fig. 12 Large shear deformations applied in the y direction, for different strain amplitudes γ = 2εyz as indicated to: a) a bilayer with r = 0.7; b) a trilayer
with r = 1. The square face (in red) contracts to a point and triggers a point T1, as in bulk Kelvin foam; c) a Kelvin cell sheared in the same orientation 28.
A point T1 is triggered at the strain a) γ = 0.40, b) γ = 0.32, c) γy,K = 0.548.
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with the yield strain is lower than the maximum stress. This is an
artifact of the ordered structure. For both shear directions, these
variations are consistent with those observed in a Kelvin foam28.

Finally, we show in figure 14, the variations of the yield strain
of the multilayers as a function of r. Again, the mechanical re-
sponse is anisotropic. γy is larger in the x-z direction than in the y-z
direction. Moreover we observe that the yield strain, thus the on-
set of T1s, appears earlier since the multilayer foam is stretched.
Upon stretching in the z direction, i.e. for increasing ratio r, the
lateral faces become narrow. Thus they vanish for a smaller ap-
plied strain. As a consequence, the yield strain γy decreases as r
increases.

Now we turn to the effect of the number of layers N. In the
reference state with r = 1 where the multilayer can be compared
to a bulk Kelvin foam, we see that the multilayer yields for smaller
strains than the Kelvin foam. For the bilayer, where the foam is
more restricted, γy is decreased by a factor of 0.7 and 0.4 in the
x-z and y-z directions respectively. Figures 13 and 14 clearly show
that the non-linear elastic response of ordered confined foams is
highly orientation dependent. This anisotropic elastic behavior is
also a characteristic of the Kelvin foam.

6 Summary

We have shown that the elastic response of ordered soap froth
confined between two rigid walls is stiffer than bulk foam. The
Surface Evolver was used to calculate the equilibrium structure
and nonlinear elastic behavior of N layers of confined cells. The
increased stiffness is well described by a simple micro-mechanical
model with no free parameter, by assuming that the foam consists
of three independent layers: a layer of Fejes-Toth cells at each
wall and a core of Kelvin cells that deform like a bulk foam. The
nonlinear elastic response was analyzed up to the elastic limit,
which coincides with the onset of topological transitions and de-
termines the yield stress and yield strain. This response is highly
anisotropic, similar to the Kelvin foam; the shape of the stress-
strain curve, yield stress and yield strain are all highly dependent
on foam orientation. The point and triple topological transitions
that occur in the present study are a consequence of the highly
symmetric deformations considered. The standard T1 was not
found, but is by far the most prevalent during shearing flow of
a Kelvin foam. Predicting the elastic behavior of confined soap
froth is relevant to foam rheology in porous media and in the
narrow channel geometries encountered in miniaturized lab-on-
a-chip applications for instance. Further developments should ad-
dress the determination of the tensorial constitutive law in the do-
main of large strains, and the investigation of the elastic behavior
of wet confined foams.

7 Appendix

For a crystal with cubic symmetry, the stress and strain tensor
components expressed in the coordinate axes corresponding to

the crystallographic axes (xoyozo) (cf. fig. 2a) write22,30:

σxx = c11εxx + c12(εyy + εzz),

σyy = c11εyy + c12(εxx + εzz),

σzz = c11εzz + c12(εxx + εyy),

σxy = 2c44εxy,

σyz = 2c44εyz,

σxz = 2c44εxz,

(26)

In the reference frame (xyz) (cf. fig 2d,e,f), a shear strain γ applied
along the x direction in the plane normal to the z direction is
described by the strain tensor:

εi j =

 0 0 γ/2
0 0 0

γ/2 0 0

 (27)

The corresponding strain tensor εo in the crystallographic frame
(xoyozo) is such that:

εo = Qx ε Q−1
x , (28)

where Qx is the rotation matrix that performs counterclockwise
rotation of 45 deg around the x axis. The stress tensor σo in the
crystallographic frame is then given by Eq. 26. Finally the stress
tensor σ in the reference frame is deduced from:

σ = Q−1
x σo Qx , (29)

which reads:
σxx = σyy = σzz = 0 ,

σxy = σyz = 0 ,

σxz = c44 γ ,

(30)

Similarly, a shear strain γ applied along the y direction in the
plane normal to the z direction is described by the strain tensor:

εi j =

0 0 0
0 0 γ/2
0 γ/2 0

 (31)

Calculating the strain and stress tensors in the crystallographic
frame using eq. 28 and 29 gives:

σxx = σyy = σzz = 0 ,

σxy = σxz = 0 ,

σyz = 1
2 (c11− c12) γ ,

(32)
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