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 2018]. A functional analysis framework is presented; regularisation and approximation by the finite element method is applied; numerical experiments on these are performed and show good agreement with probabilistic simulations.

Introduction

The wikipedia page en.wikipedia.org/wiki/Rice%27s formula mentions Rice's formula as "one of the most important results in the applications of smooth stochastic processes" for engineering. Rice's formula [START_REF] Rice | Mathematical analysis of random noise[END_REF] is indeed a very powerful tool to compute the frequency of threshold crossing for processes in the class of stochastic hamiltonian systems,

Ẏt + F (X t , Y t )∂ y H(X t , Y t ) + ∂ x H(X t , Y t ) = Z t , Ẋt = ∂ y H(X t , Y t ). (SHS)
Here (X, Y ) ∈ R 2 , H, the Hamiltonian, and F , are smooth functions in the sense of [START_REF] Talay | Stochastic Hamiltonian Systems[END_REF].

We consider two types of noise :1) Z t , white noise where Z t = σ Ẇ with σ ∈ R + and W is a real-valued Wiener process and 2) "colored noise", i.e. an Ornstein-Uhlenbeck process:

Z t = Z 0 exp(-αt) + σ t 0 exp(-α(t -s))dW s where α, σ ∈ R + . (1) 
Such problems arise in mechanical engineering in the context of earthquakes [START_REF] Feau | An empirical study on plastic deformations of an elasto-plastic problem with noise[END_REF].
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Rice's formula asserts that if (X, Y ) has a unique invariant probability density m(x, y) then the frequency f (s) of X crossing a given threshold s is given by f = f + + f -, with

f + (s) = ∞ 0
∂ y H(s, y)1 {∂yH(s,y)≥0} m(s, y)dy, f

-(s) = 0 -∞
|∂ y H(s, y)| 1 {∂yH(s,y)≤0} m(s, y)dy.

(R) An extension of Rice's formula can be established when the stochastic process is also constrained by an obstacle located at X = ±L x in the sense that, ∀t ≥ 0, |X t | ≤ L x and whenever |X t | = L x then Ẋt + = -e Ẋt -.

(BC)

Here e ∈ (0, 1] is called a restitution coefficient. In general, there is no closed form expression for m, except when e = 1. Note that existence and uniqueness of the invariant measure, together with asymptotic formulae related to the probabilities of threshold-crossing for smooth approximations of a broad class of mechanical systems under white or colored noise, have been discussed in [START_REF] Laurière | Penalization of non-smooth dynamical systems with noise: ergodicity and asymptotic formulae for threshold crossings probabilities[END_REF].

Kolmogorov equations

We denote by p(x, y, t; ξ, η, s) the transition probability density for the (SHS)+(BC)-"random walker" (X, Y ) to move from (x, y) ∈ (-L x , L x ) × R at time t to (ξ, η) ∈ (-L x , L x ) × R at a later time s > t. By definition the density of the invariant measure, denoted m e on D = (-1, 1) × R and defined by E(g(X t , Y t )) = D g(ξ, η)m e 2 (ξ, η)dξdη, for all continuous functions g and all time t, is related to p by lim s→∞ p(x, y, t; ξ, η, s) = m e 2 (ξ, η).

White noise case

Let B 1 (x, y) = -[F (x, y)∂ y H(x, y) + ∂ x H(x, y)] and B 2 (x, y) = ∂ y H(x, y).
From the theory of Markov processes, when the triple (ξ, η, s) is fixed as a parameter, the backward Kolmogorov equation characterises p as the solution of

∂ t p + σ 2 2 ∂ yy p + B 1 (x, y)∂ y p + B 2 (x, y)∂ x p = 0, ∀(x, y) ∈ (-L x , L x ) × R, ∀t < s, (B)
lim t→s,t<s p(x, y, t; ξ, η, s) = δ (ξ,η) , p( L x , y, t; ξ, η, s) = p( L x , -ey, t; ξ, η, s), ∀y > 0, ∀t < s lim t→s,t<s p(x, y, t; ξ, η, s) = δ (ξ,η) , p(-L x , y, t; ξ, η, s) = p(-L x , -ey, t; ξ, η, s), ∀ -y > 0, ∀t < s.

The last 2 equations are symbolically written as lim t→s,t<s p(x, y, t; ξ, η, s) = δ (ξ,η) , p(± L x , y, t; ξ, η, s) = p(± L x , -ey, t; ξ, η, s), ∀ ± y > 0, ∀t < s, meaning by this that every ± are assigned to + together or -together.

Colored noise case (Z is an Ornstein-Uhlenbeck process)

To remain in a markovian framework, the (SHS)+(BC)-"random walker" must be extended to (X, Y, Z) with (1). The transition probability density for the "random walker" (X, Y, Z) to move from (x, y, z)

∈ (-L x , L x ) × R × R at time t to (ξ, η, ζ) ∈ (-L x , L x ) × R × R at a later time s > t is solution of the backward Kolmogorov equation ∂ t p + σ 2 2 ∂ zz p -αz∂ z p + (z + B 1 (x, y)) ∂ y p + B 2 (x, y)∂ x p = 0, in (-L x , L x ) × R × R, (B c ) lim t→s,t<s p(x, y, z, t; ξ, η, ζ, s) = δ (ξ,η,ζ) , p(± L x , y, z, t; ξ, η, ζ, s) = p(± L x , -ey, z, t; ξ, η, ζ, s), ∀ ± y > 0, ∀t < s.

Computation of the Invariant Probability Measure

To compute any quantity of the form

D g(ξ, η)m e 2 (ξ, η)dξdη
we consider the problem

λu λ - σ 2 2 ∂ yy u λ -B 1 (x, y)∂ y u λ -B 2 (x, y)∂ x u λ = g in D (2) 
with the boundary condition

u λ (±1, y) = u λ (±1, -ey), ∀ ± y > 0. ( 3 
)
This is motivated by the fact that from ergodic theory

∀(x, y), lim λ→0 λu λ (x, y) = D g(ξ, η)m e 2 (ξ, η)dξdη.
Such a problem is easier than the time-dependent problem. Thus in order to approach f (s), in the right-hand side of (2), we will consider g s (x, y) = y ± δ(x -s), possibly approximated by

y ± √ 2πσ exp -(x-s) 2 2σ 2
, with σ > 0 small. Here, y ± = max(0, ±y). Such a numerical method has been used in [START_REF] Bensoussan | An Ultra Weak Finite Element Method as an Alternative to a Monte Carlo Method for an Elasto-Plastic Problem with Noise[END_REF] and [START_REF] Feau | An empirical study on plastic deformations of an elasto-plastic problem with noise[END_REF] for the statistics of an elasto-plastic problem excited by white noise, an altogether different problem.

The Problem

The purpose of this section is to study (2), [START_REF] Feau | An empirical study on plastic deformations of an elasto-plastic problem with noise[END_REF] with

F ≡ γ ∈ R + , H(x, y) = 1 2 y 2 + k 2 x 2 , k ∈ R + , in a domain D = (-1, 1) × R. Thus we consider the problem λu - σ 2 2 ∂ yy u + (γy + kx)∂ y u -y∂ x u = g, (4) 
u(1, y) = u(1, -ey) ∀y > 0, u(-1, y) = u(-1, -ey) ∀y < 0.

(

) 5 
where g is at least in L 2 (D).

Definition 1. We shall say that u is e-symmetric when (5) holds.

Remark 1. Notice that (5) implies also that u(1, y) = u 1, -y e ∀y < 0, u(-1, y) = u -1, -y e ∀y > 0.

In (4), [START_REF] Laurière | Penalization of non-smooth dynamical systems with noise: ergodicity and asymptotic formulae for threshold crossings probabilities[END_REF] the parameters are the variance, σ > 0, the reflection coefficient e on ±X, the material properties γ and k, and the source term (x, y) → g(x, y). However by changing (x, y) → (x, ȳ) = ( L x x, L x y), σ = σ L x , the problem becomes (4),( 5) with bars, posed on (-L x , L x ) × R instead of D.

Asymptotic Behaviour When y → ∞

A frequent case in practice is g(x, y) = y n , n ≥ 1; but note that as

- σ 2 2 ∂ y e -1 γσ 2 (γy+kx) 2 ∂ y u = e -1 γσ 2 (γy+kx) 2 - σ 2 2 ∂ yy u + (γy + kx)∂ y u ,
the PDE can be rewritten as e

-1 γσ 2 (γy+kx) 2 (λu -y∂ x u) - σ 2 2 ∂ y e -1 γσ 2 (γy+kx) 2 ∂ y u = ge -1 γσ 2 (γy+kx) 2 . ( 6 
)
Here we see that a polynomial growth in y of g does not endanger existence provided we use weighted Sobolev spaces with a weight such that g be square-weighted integrable.

Let m be an integer; let

µ m (y) = 1 2 (1 + y 2 ) -m 2 , ν m (y, e) = µ m (y)1 y>0 + µ m (-ey)1 y≤0 , ρ m (x, y) = (1 -x)ν m (y, e) + (1 + x)ν m (y, 1 e ). (7) 
Denote by H 1 m (D) the Sobolev space of order 1 with weight ρ m . It has been shown in [START_REF] Bensoussan | Nonlocal Boundary Value Problems Of A Stochastic Variational Inequality Modeling An Elasto-Plastic Oscillator Excited By A Filtered Noise[END_REF] that a similar problem with different boundary conditions but the same PDE is well-posed in that space. In any case, for simplicity and with the numerical approximation in mind, we begin with an analysis of the problem localized in the domain of fig. 1. Moreover, as the differential operator is not coercive in x we regularize it with a small second-order term.

The Regularized Problem in a Finite Domain

Let L y > 0 be a large number and let D be the parallelogram of vertices (-1, -L y ), (1, -eL y ), (1, L y ), (-1, eL y ) (fig. 1). Its boundary is denoted by ∂D. The left vertical part is ∂D -and the right one ∂D + ; the union of both is denoted by ∂D ± . The part of ∂D ± on which the e-symmetry (5) holds is called Σ:

Σ = (∂D -∩ {y ≤ 0}) ∪ (∂D + ∩ {y ≥ 0}).
Remark 2. Notice that the e-symmetry makes sense only if D is the parallelogram shown in fig. 1 with vertices at (-1, -L y ), (1, -eL y ), (1, L y ), (-1, eL y ). The slanted sides need not be straight segments but the vertical sides must have the length ratio of the parallelogram.

Localization in a finite domain requires an additional boundary condition on the border ∂D ∞ which approximates infinity. We shall specify a function µ(x, y) and assume that

σ 2 2 ∂ y u + µ(x, y)u = 0 on ∂D ∞ . ( 8 
)
The simplest case is µ = 0 but to be compatible with a polynomial asymptotic behavior of the type u ∼ y n for large y, then (8) implies:

σ 2 2 ∂ y (y n ) + µ(x, y)y n = 0 ⇒ µ ∼ - nσ 2 2y . Notation: H 1 e (D). Consider the linear map u ∈ H 1 (D) → Lu ∈ H 1 2 (Σ) defined by Lu(x, y) = u(x, y) -u(x, -ey), ∀(x, y) ∈ Σ. (9) 
Let H 1 e (D) be the kernel of L, i.e. the set of u ∈ H 1 (D) such that u(x, y) -u(x, -ey) = 0 for all (x, y) ∈ Σ, i.e. the subset of H 1 (D) of e-periodic functions. As the trace operator is continuous from H 1 (D) to H 1 2 (∂D), the kernel of L is a closed subspace of H 1 (D). This makes H 1 e (D) a closed linear subspace of H 1 (D).

Regularization

Furthermore, consider the regularized PDE

λu ε -ε∂ xx u ε - σ 2 2 ∂ yy u ε + (γy + kx)∂ y u ε -y∂ x u ε = g, u(1, y) = u(1, -ey) ∀y > 0, u(-1, y) = u(-1, -ey) ∀y < 0. ( 10 
)
with e-compatible Neumann boundary conditions on ∂D ± , the vertical left and right sides of D. Here ∂D ± = ∂D -∪ ∂D + . More precisely, u is the solution in H 1 e (D) of the variational equation ( 14), below, which contains the e-compatible Neumann conditions [START_REF] Talay | Stochastic Hamiltonian Systems[END_REF].

Interpretation of the e-Compatible Neumann Conditions

In a variational setting, a Neumann condition on ∂D ± for ( 10) with e-symmetry means

∂D ± v∂ x u ε = 0 for all v ∈ H 1 e (D). (11) 
So on ∂D + , for instance,

Ly

-eLy

(v∂ x u ε ) | x=1 = 0 -eLy (v∂ x u ε ) | x=1 + Ly 0 (v∂ x u ε ) | x=1 = 0 -eLy (v(1, y)∂ x u ε (1, y))dy + 1 e 0 -eLy v(1, z)∂ x u ε (1, z -1 e )dz,(12) because v(1, y)∂ x u ε (1, y) = v(1, -ey)∂ x u ε (1, -ey -1
e ) when y ≥ 0. This leads to

∂ x u ε (1, y) = - 1 e ∂ x u ε (1, - y e ) ∀y < 0,
and a similar condition on ∂D -. Following remark 1, it implies also

∂ x u ε (1, y) = -e∂ x u ε (1, -ey) ∀y > 0, ∂ x u ε (-1, y) = -e∂ x u ε (-1, -ey) ∀y < 0. ( 13 
)
which is an e-antisymmetric Neumann condition.

Variational Formulations

So let us establish variational formulations for problem [START_REF] Pavliotis | Stochastic Processes and Applications : Diffusion Processes, the Fokker Planck and Langevin Equation[END_REF],(13). For clarity we set X = 1. Multiplying ( 10) by û and integrating by parts the second-derivatives and using [START_REF] Talay | Stochastic Hamiltonian Systems[END_REF] leads to the first variational formulation:

find u ∈ H 1 e (D), such that, ∀û ∈ H 1 e (D), D λu û + σ 2 2 ∂ y u ∂ y û + ∂ x u ∂ x û + ∂D ∞ µn y u û + D ((γy + kx)∂ y u -y∂ x u ) û = D gû, (14) 
where (n x , n y ) T is the outer normal of D and the stabilizing term is

∂ x u ∂ x û. The rest of the boundary of D is called ∂D ∞ .
If the first-order terms are also integrated by parts then

D ((γy + kx)∂ y u -y∂ x u ) û = - D (γu û + (γy + kx)u ∂ y û -yu ∂ x û) + ∂D ∞ (γy + kx)n y u û - ∂D ± yn x u û. ( 15 
)
Hence, by using the above multiplied by one half,

D ((γy + kx)∂ y u -y∂ x u ) û = 1 2 D ((γy + kx)∂ y u -y∂ x u ) û + 1 2 - D (γu û + (γy + kx)u ∂ y û -yu ∂ x û) + ∂D ∞ (γy + kx)n y u û - ∂D ± yn x u û .( 16 
)
This leads to a second variational formulation:

3.6. Problem Statement Assume λ, σ, µ, ∈ R + , σ > 0, k, γ ∈ R and g ∈ L 2 (D). Find u ∈ H 1 e (D), such that, ∀û ∈ H 1 e (D), D (λ - γ 2 )u û + σ 2 2 ∂ y u ∂ y û + ∂ x u ∂ x û + 1 2 (γy + kx)(û∂ y u -u ∂ y û) + y 2 (u ∂ x û -û∂ x u ) + ∂D ∞ (γy + kx + 2µ)n y u û 2 - ∂D ± yn x u û 2 = D gû. ( 17 
)
Of course, the two formulations are equivalent provided u ∈ H 1 (D), a condition which insures that all the integrals exist. Note that the same problem with = 0: find u ∈ H 1 e (D) such that,

D (λ - γ 2 )uû + σ 2 2 ∂ y u∂ y û + 1 2 (γy + kx)(û∂ y u -u∂ y û) + y 2 (u∂ x û -û∂ x u) + ∂D ∞ (γy + kx + 2µ)n y uû 2 - ∂D ± yn x uû 2 = D gû. ( 18 
)
for all û ∈ H 1 e (D), makes sense also, provided g ∈ L 2 (D). 

Σ Σ Γ Γ y x 0 -1 1 D ∂D + ∂D - ∂D ∞ ∂D ∞

Analysis and Discretization

4.1. The Case e ≥ 1 Lemma 1. For any solution u ∈ H 1 e (D) of (17) , the following energy conservation holds

D (λ - γ 2 )u 2 + σ 2 2 (∂ y u ) 2 + (∂ x u ) 2 + ∂D ∞ (γy + kx + 2µ)n y u 2 2 + 1 2 (1 - 1 e 2 ) eLy 0 yu 2 (-1, y) + 0 -eLy (-y)u 2 (1, y) = D gu . (19) 

Proof

Let us choose û = u in (17). Then, assuming the existence of a unique solution u ∈ H 1 e (D),

D λ- γ 2 u 2 + σ 2 2 (∂ y u ) 2 + (∂ x u ) 2 + ∂D ∞ (γy + kx + 2µ)n y u 2 2 - ∂D ± yn x u 2 2 = D gu .
When yn x < 0 the last term on the left is positive, i.e. y > 0 when x = -1 and y < 0 when x = 1.

To show that the other terms are also positive, we let y = y e and use the boundary condition u (-1, y ) = u (-1, -ey ) for all y < 0 ; so with y = -y = -ey , Proof Denote by a (•, •) the bilinear form of the problem

a (u, û) = D (λ - γ 2 )uû + σ 2 2 ∂ y u∂ y û + ∂ x u∂ x û + 1 2 (γy + kx)(û∂ y u -u∂ y û) - y 2 (û∂ x u -u∂ x û) - ∂D ± yn x uû 2 + ∂D ∞ (γy + kx + µ)n y uû 2 . ( 21 
)
By Lemma 1 and the fact that the last integral is always positive when û = u , the bilinear form of ( 4) is coercive and continuous in H 1 e (D). So the solution exists and is unique in H 1 e (D) by the Lax-Milgram theorem.

Theorem 2. If g ∈ L ∞ (D), e ≥ 1, g ≥ 0, > 0, λ > max{1, γ 2 }, n y µ ≥ 0 on ∂D ∞ and γ > (k + µ)/L y , then: 0 ≤ u ≤ g ∞ /(λ - γ 2 ).
Proof With standard notations u = u + -u -with u ± ≥ 0. Let û = -u -in (17); since u + u -= 0 a.e., we have

D (λ - γ 2 )(u -) 2 + σ 2 2 (∂ y u -) 2 + (∂ x u -) 2 + 1 2 ∂D ∞ (γy + kx + µ)(u -) 2 n y + 1 2 (1 - 1 e 2 ) Γ |y|(u -) 2 = - D gu -. (22) 
As yn y > 0 on ∂D ∞ , everything is positive on the left, hence u -= 0. Similarly let us derive from (17) a variational equation for

u m = u -g m with g m = g ∞ /(λ -γ 2 
). Note that u m is solution of ( 4),( 5) with g -λg m instead of g and ( 8) with right-hand side equal to -µg m ; hence u m ∈ H 1 e (D) and

a (u m , û) = D (g -λg m )û - ∂D ∞ µn y g m û, ∀û ∈ H 1 e (D)
.

By choosing û = u + m we obtain:

D (λ - γ 2 )(u + m ) 2 + σ 2 2 (∂ y u + m ) 2 + (∂ x u + m ) 2 + ∂D ∞ (γy + kx + µ)n y (u + m ) 2 2 + µn y g m u + m + 1 2 (1 - 1 e 2 ) Γ |y|(u + m ) 2 = D (g -λg m )u + m . (23) 
The integral on the right is negative while those on the left are positive, so u + m = 0. 4.2. The limit case → 0 Theorem 3. If g and ∂ x g are in L 2 (D), the unique solution to (17) is bounded in H 1 (D) independently of and when → 0 any H 1 -weakly converging subsequence satisfies (4),( 5) and ( 17) with = 0. Hence the unique solution, u , of (17) tends to the unique solution, u, in H 1 (D) of (18).

Proof

For clarity the proof is given when D = (- 

v := ∂ x u , λv -∂ xx v - σ 2 2 ∂ yy v + (γy + kx)∂ y v -y∂ x v = ∂ x g -k∂ y u
with the e-antisymmetric Neumann condition (13), namely, in terms of v ,

v ε (1, y) = -ev ε (1, -ey) ∀y > 0, v ε (-1, y) = -ev ε (-1, -ey) ∀y < 0.
Let H 1 * e (D) be the space of functions of H 1 (D) which satisfy the above. Then we seek for

v ε ∈ H 1 * e (D) such that ∀v ∈ H 1 * e (D) , D λv v + σ 2 2 ∂ y v ∂ y v + ∂ x v ∂ x v + D ((γy + kx)∂ y v -y∂ x v ) v = D (∂ x g -k∂ y u )v.
An energy estimate for this equation, derived in the same way as (19), is

D (λ - γ 2 )v 2 + σ 2 2 (∂ y v ) 2 + (∂ x v ) 2 = D (∂ x g -k∂ y u ) v .
The integrals on ∂D ± disapear because in (20), (1 -1 e 2 ) becomes (1 -e 2 e 2 ) = 0. Now we apply theorem 1 again; it shows that the solution v ∈ H 1 * e (D) exists and is unique when ∂ x g -k∂ y u ∈ L 2 (D) and by lemma 1 v is bounded in L 2 (D) independently of . Consequently u is uniformly bounded in H 1 (D). Hence, weak converging sequences exist and all terms in (17) pass to their limits. Uniqueness is a consequence of (19).

Analysis when e < 1 Equation (19) indicates that the operator of the problem is no longer strongly elliptic.

Let us first recall a similar situation in linear algebra: finding x ∈ R d that solves Ax = b, for b ∈ R d , for a singular d × d matrix A, (detA=0) requires a compatibility condition: b ∈ (KerA) ⊥ . Hence if A is positive definite, there is a solution to ΛIx -Ax = b for any b if Λ ∈ R is not in the spectrum of A. Otherwise b must be orthogonal to the eigensubspace. Here ( 14) is built from a positive definite operator inside D (see [START_REF] Pavliotis | Stochastic Processes and Applications : Diffusion Processes, the Fokker Planck and Langevin Equation[END_REF]). More precisely [START_REF] Pavliotis | Stochastic Processes and Applications : Diffusion Processes, the Fokker Planck and Langevin Equation[END_REF],(13) define a compact operator from H 1 e (D) to the dual H * e (D). Hence the Ritz-Schauder theorem applies, namely there are either a finite number of eigenvalues to the problem or a countable number clustering near zero (see for example Wloka [START_REF] Wloka | Partial Differential Equations[END_REF], page 166). Consequently, let us look at the following eigenvalue problem, built from (17): for all û ∈ H 1 e (D),

D (λ - γ 2 )u û + σ 2 2 ∂ y u ∂ y û + ∂ x u ∂ x û + 1 2 (γy + kx)(û∂ y u -u ∂ y û) + y 2 (u ∂ x û -û∂ x u ) + ∂D ∞ (γy + kx + 2µ)n y u û 2 = Λ 2 Γ yn x u û. ( 24 
)
If Λ, i.e. 1 e 2 -1, is not in the spectrum of the operator, problem ( 10),( 5),(13) has a solution and the solution is unique. If it is in the spectrum then there will be conditions on g to have a solution and uniqueness may not hold. Uniqueness is a straightforward consequence of the linearity of the problem and the definition of an eigenvalue. Indeed, denote by λI -A the operator defined by ( 10),( 5),(13). Let u 1 , u 2 be two solutions. Then, when Λ is not an eigenvalue,

Λu i -Au i = g, i = 1, 2 ⇒ Λ(u 1 -u 2 ) -A(u 1 -u 2 ) = 0 ⇒ u 1 -u 2 = 0.
Unfortunately the theoretical study of the spectrum of ( 24) is hard. On the other hand numerically, with the finite element method of degree 2, presented in the next section, and the library ARPACK the results indicate that there is no non-zero solution to this eigenvalue problem (fig. 3). 

. Finite Element Approximation

Consider a standard finite element approximation U h ⊂ H 1 (D) with P 1 triangular conforming elements on a mesh T h ; let T h be the discretization of ∂D ± made by the boundary edges of T h on ∂D ± ; let q j = (q j 1 , q j 2 ) T , j = 1, ..J be the vertices of T h . We will work with the following approximation of H 1 e (D): V h = {v h ∈ U h : u h (±1, q j ) = u(±1, -eq j ) ∀j = 1, . . . , J such that ± q j 2 > 0}. The discrete system is:

Find u h ∈ V h such that: ∀û h ∈ V h , a (u h , ûh ) = D gû h , ( 25 
)
where a (•, •) is defined in (21).

Theorem 4. Assume that > 0, λ > γ 2 and γ > k + µ L y , then the solution to (25) exist and is unique. Furthermore, provided the solution of (17

) is in H 2 (D), (λ - γ 2 )|u -u h | 2 0 + σ 2 2 |∂ y (u -u h )| 2 0 + |∂ x (u -u h )| 2 0 ≤ C h 2 , ( 26 
)
where C is a positive constant, dependent on the H 2 (D) norm of u .

Proof

As V h ⊂ H 1 e (D), we may subtract (17) from ( 25) and obtain

a (u h -u , ûh ) = 0 ∀û h ∈ V h . (27) 
Let v h be the function of V h which is equal to u at the vertices of T h . Now by lemma 1,

(λ - γ 2 )|u h -u | 2 0 + σ 2 2 |∂ y (u h -u )| 2 0 + |∂ x (u h -u )| 2 0 ≤ a (u h -u , u h -u ) = a (u h -u , u h -v h ) + a (u h -u , v h -u ) (28) 
The next to last term is 0 by (27) and the last term is bounded by a (u h -u )

1 2 a (v h -u ) 1 2
where a (v

) := a (v, v). Finally a (v h -u ) 1 2 ≤ Ch because, u ∈ H 2 (D) implies that |v h -u | 0 = O(h 2 ), |∇ (v h -u )| 0 = O(h).
Q.E.D.

Change of Variable

For large and small values of e the parallelogram D (see fig. 1) is very difficult to mesh properly.

With structured meshes in mind we wish to transform D into C by a change of variable. Let e ∈ (0, 1) . Let u be the solution of ( 4), [START_REF] Laurière | Penalization of non-smooth dynamical systems with noise: ergodicity and asymptotic formulae for threshold crossings probabilities[END_REF] in

D of fig.1. Let v(x, z) = u(x, y) with y = ϕ(x, z)) and ϕ(x, z) = ( 1 e -1)|z| x 2 + ( 1 e + 1) z 2 . Notice that v is defined in C = [-1, 1] × [-L y , L y ].
Lemma 2. With v defined as above,

v(±1, z) = v(±1, -z), ∀z ∈ [-L y , L y ].
Proof There are 4 cases.

z > 0 : v(-1, z) = u(-1, ϕ(-1, z)) = u(-1, z) = u(-1, -z e ) = u(-1, ϕ(-1, -z)) = v(-1, -z), v(1, z) = u(1, ϕ(1, z)) = u(1, z e ) = u(1, -z) = u(1, ϕ(1, -z)) = v(1, -z); z < 0 : v(1, z) = u(1, ϕ(1, z)) = u(1, z) = u(1, -z e ) = u(1, ϕ(1, -z)) = v(1, -z), v(-1, z) = u(-1, ϕ(-1, z)) = u(-1, z e ) = u(-1, -z) = u(-1, ϕ(-1, -z)) = v(-1, -z). Q.E.D. Proposition 1. Problem (4),(5) is equivalent to finding v ∈ H 1 1 (C) such that C λ∂ z ϕ vv + σ 2 2∂ z ϕ ∂ z v∂ z v +∂ z ϕ ((γ + ∂ x ϕ) ϕ + kx) v∂ z v -vϕ∂ x v = C g∂ z ϕ v, ∀v ∈ H 1 1 (C). ( 29 
)
where

H 1 1 (C) is H 1 e (C) with e = 1. Proof With v as in Lemma 2, ∂ z v = ∂ y u∂ z ϕ, ∂ x v = ∂ x u + ∂ y u∂ x ϕ ⇒ ∂ y u = ∂ z v ∂ z ϕ , ∂ x u = ∂ x v -∂ z v ∂ x ϕ ∂ z ϕ .
Consequently (4),(5) written at x, y = ϕ(x, z) becomes

λv - σ 2 2∂ z ϕ ∂ z ∂ z v ∂ z ϕ + (γϕ + kx) ∂ z v ∂ z ϕ -ϕ ∂ x v -∂ z v ∂ x ϕ ∂ z ϕ = g,
which, multiplied by v∂ z ϕ and integrated over C leads to the variational formulation (29). Q.E.D. Notice that

∂ z ϕ(x, z) = ( 1 e -1) x 2 sign(z) + 1 2 ( 1 e + 1), ∂ x ϕ(x, z) = ( 1 e -1) |z| 2 .
These are bounded and positive in C when e ∈ (0, 1], hence (29) is a problem of type: find v, 1-symmetric in C, with, for all v ∈ H 1 1 (C),

C λ vv + σ2 2 ∂ z v∂ z v + cv∂ z v -vϕ∂ x v = C g v, (30) 
where λ, σ, c, are bounded and positive, bounded away from 0. Furthermore |ϕ(x, z)| ≥ |z| and sign(ϕ(x, z)) =sign(z).

An energy estimate, similar to (19), is derived by letting v = v in (30):

C ( λ - 1 2 ∂ z c + 1 2 ∂ x ϕ) v 2 + σ2 2 (∂ z v) 2 + ∂C ∞ cn z v 2 2 + 1 2 Γ |ϕ|v 2 = 1 2 Σ |ϕ|v 2 + C g v. (31) 
But the same difficulty remains, because,

1 2 Γ |ϕ|v 2 - 1 2 Σ |ϕ|v 2 = (1 - 1 e ) ∂C ± |z|v 2 .
So we cannot assert semi-ellipticity when e ∈ (0, 1).

Numerical Examples

First we reproduce the results obtained in Mertz et al. [START_REF] Mertz | A Backward Kolmogorov Equation Approach To Compute Means, Moments And Correlations Of Non-Smooth Stochastic Dynamical Systems[END_REF]. We use the P 2 Lagrangian finite element method in C . So we take g = y 2 , e = 0.5 in (25). Table 5 shows results for various values of X using D and using the change of variable in C. We also reproduce table 3 of [START_REF] Mertz | A Backward Kolmogorov Equation Approach To Compute Means, Moments And Correlations Of Non-Smooth Stochastic Dynamical Systems[END_REF] obtained by a finite difference method with one million points and a Monte-Carlo simulation; it is compared here with computations on the finite element meshes shown on fig. 4. The other parameters are L y = 5, λ = 10 -6 , γ = 1, k = 1, σ = 1, = 0.

In an attempt to study the error we took as reference solution the result of a simulation with 5500 vertices. Then we computed the error at x = 0, y = 0 for 7 meshes with X = 0.5, e = 0.5 and e = 1.5. The right side of table 2 shows these errors and fig. 5 displays the convergence. It appears that the convergence is at most linear for e = 0.5 and at least cubic for e = 1.5.

Rice's formula

In the context of the Hamiltonian system studied in this article, Rice's formula (R) for s → f + is obtained by computing the solution of (25) with g = δ(x -s)y + and then plot λu(0, 0) versus s. Each point of the plot requires a new solution of the PDE (R). The singularity of g is not a difficulty because the right-hand side of (R) is

D δ(x -s)y + ûh = D∩{x=s} y + u h dy.
Fig. 6 shows the numerical result and a comparison with a computation by a Monte-Carlo method. In the case of white noise, the PDE is two dimensional and the mesh is fine enough (8350 vertices). For colored noise the PDE is in R 3 (see (33) below) and the mesh has 51686 vertices; we have observed an embarrassing dependence on L y with the PDE set in D and not so with the PDE set in C after a change of variable. For the probabilistic numerical scheme of {(X t , Y t ), t ≥ 0} of (SHS), we use a standard Monte-Carlo method with time step δt. We consider T = N δt large enough, t n = nδt and we construct random variables {(X n , Y n ), 1 ≤ n ≤ N δt } to approximate (X tn , Y tn ). In fig. 6, we consider g(x, y) = y 2 and proceed with the following approximation

Eg(X T , Y T ) ≈ 1 M M m=1 g(X m N , Y m N ), (32) 
where {(X m , Y m ), m = 1, . . . , M } is an i.i.d. sequence of trajectories produced by the algorithm.

In fig. 6, for each threshold s ∈ [0, L) we read from a sufficiently long numerical trajectory the frequency of X crossing s with positive velocities. 

Now ∂D ± denotes the planes x = ±1.

Everything that was said for the bi-dimensional case can be reproduced for the tri-dimensional case.

Discretization can be done using quadratic tetrahedral elements. As a test case we chose all parameters as in the 2D case and α = 1 on a mesh with 64800 elements. The results are shown on fig. 7. The value of λu(0, 0, 0) found is 0.66912; it also agrees to 4 digits with the mean value of u on D, 0.669124; computing time is 10 seconds on a MacBook Pro Core i7 2.5GHz.

The Time-Dependent Case

The time dependent problem (see (35) below) has λu replaced by ∂ t u and a zero right-hand side. Naturally, an initial condition must be given: u(t = 0) = g. Then t → u(0, 0, t) is asymptotic to λu of the stationary case. Fig. 8 illustrates this property. It is computed with the same parameter as the stationary case on D with an implicit Euler scheme and δt = 0.0125, X = 1. 8: Energy: Finite element solution of the time dependent case showing u(0, 0, t) versus time t. This curve is to be compared with Figure 4 of [START_REF] Mertz | A Backward Kolmogorov Equation Approach To Compute Means, Moments And Correlations Of Non-Smooth Stochastic Dynamical Systems[END_REF], reproduced here as (MC).

The variational setting of the problem is as follows.

Theorem 5. If e ≥ 1, n y µ ≥ 0 on ∂D ∞ , γL y > k + µ, ε > 0, g ∈ L 2 (D), the following problem has one and only one solution: find u ∈ L 2 (0, T ; H 1 e (D)) such that, for all û ∈

Fig. 1 :Fig. 2 :

 12 Fig. 1: Domain of definition of the PDE localized. The vertices of the parallelogram are (-1, -L y ), (1, -eL y ), (1, L y ), (-1, eL y ). Here e < 1.

Theorem 1 .

 1 y <0 y u (-1, y ) 2 dy = -1 e 2 y >0 y u (-1, y ) 2 dy , and similarly for the integral on y > 0, x = 1: y>0 yu (1, y) 2 dy = -Assume that e ≥ 1, > 0, λ > γ 2 and γ > k+µ Ly and g ∈ L 2 (D). Then Problem (17) has one and only one solution in H 1 e (D).

Fig. 3 :

 3 Fig. 3: Using a mesh with 854 vertices, ARPACK computed 5 real eigenvalues to (24) very close to Λ = 11. The 5 eigenvectors are shown here. they are zero almost everywhere except at the corners, we can tentatively conclude that they exist only for the discrete system and not for the continuous one. The symmetry line y = 0 and the borders are shown by fat color lines.

Table 2 :Fig. 4 :

 24 Fig. 4: Finite element meshes used for D and C and corresponding results depicting the color map of the values of u. Notice that for such small values of λ ,u is almost constant.

Fig. 5 :

 5 Fig.5: Log of the error versus the log of N f , the number of vertices in the mesh, when e = 1.5 (top curve) and e = 0.5 (lower curve). A very fine mesh has been used to compute a reference solution to obtain the error at the point (0,0). The lowest curve corresponds to e = 0.5 and has slope -1 indicating an error of order 1. The highest curve has a slope around -4 and has been obtained with e = 1.5.

6 . 2 ∂Fig. 6 : 2 (

 6262 Fig. 6: s → f + (s) computed with Rice's formula (R). Comparison between a finite element solution and a Monte-Carlo simulation, with n = 10 4 . Left : δt = 10 -3 , middle : δt = 10 -4 , right : δt = 10 -5 .

Fig. 7 :

 7 Fig. 7: Finite element solution of the 3D case. Notice that here too u is almost constant.

Fig.

  Fig.8: Energy: Finite element solution of the time dependent case showing u(0, 0, t) versus time t. This curve is to be compared with Figure4of[START_REF] Mertz | A Backward Kolmogorov Equation Approach To Compute Means, Moments And Correlations Of Non-Smooth Stochastic Dynamical Systems[END_REF], reproduced here as (MC).

  1, 1) × R because the difficulty is on the vertical boundaries and not on ∂D ∞ . From (19) in lemma 1 we see that u , and ∂ y u are L in the sense of distribution. To find an estimate for |∂ x u | 0 uniform in we differentiate the PDE for u above. It leads to a similar PDE for

2 (D)bounded independently of . It is the solution in H 1 e (D) of λu -∂ xx u -σ 2 2 ∂ yy u + (γy + kx)∂ y u -y∂ x u = g,

Table 1 :

 1 

	X FEM/D FEM/C FDM [6] MC [6]	
	0.1 0.17853 0.17846	0.179	0.179	
	0.2 0.24925 0.24912 0.3 0.29706 0.29691 0.4 0.33334 0.33318 0.5 0.36245 0.36231 0.6 0.38656 0.38644 0.7 0.40685 0.40676 0.8 0.42405 0.42400 0.9 0.43865 0.43864	0.250 0.298 0.347 0.364 0.388 0.409 0.426 0.441	0.250 0.297 0.334 0.364 0.389 0.408 0.423 0.437	N f 109 0.361776 32.0478 e = 0.5 e = 1.5 393 0.362102 37.6635 1389 0.362495 37.7466 5507 0.362596 37.7981 22422 0.362666 37.7975 84440 0.362699 37.79879
	1.0 0.45099 0.45102	0.453	0.450	

Left: Computations of λu(0, 0) for e = 0.5 and g = y 2 , various values of X and various methods. Convergence as the number of vertices N f increases, when X = 0.5 using FEM on D.
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H 1 e (D),

where

Proof : All the conditions of Theorem 3.2 of [START_REF] Jovanović | Analysis of Finite Difference Schemes[END_REF] are met. Gårding's inequality holds due to the coercivity of a t without the term -γ 2 uû, shown in theorem 1.

Remark 3. The time-dependent case with e ≤ 1 is as difficult as the stationary case.