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Numerical Analysis Of Degenerate Kolmogorov Equations of

Constrained Stochastic Hamiltonian Systems

Laurent Mertz1 and Olivier Pironneau 2

Abstract

In this work, we propose a method to compute numerical approximations of the invariant
measures and Rice’s formula (frequency of threshold crossings) for a certain type of stochastic
Hamiltonian system constrained by an obstacle and subjected to white or colored noise. As
an alternative to probabilistic Monte-Carlo simulations, our approach relies on solving a class
of degenerate partial differential equations with non-local Dirichlet boundary conditions, as
derived in [Mertz, Stadler, Wylie; 2018]. A functional analysis framework is presented; regu-
larisation and approximation by the finite element method is applied; numerical experiments
on these are performed and show good agreement with probabilistic simulations.

Keywords: Constrained stochastic Hamiltonian system, Rice’s formula, Partial differential
equations, nonlocal boundary conditions.

1. Introduction

The wikipedia page en.wikipedia.org/wiki/Rice%27s formula mentions Rice’s formula
as “one of the most important results in the applications of smooth stochastic processes” for
engineering. Rice’s formula [9] is indeed a very powerful tool to compute the frequency of
threshold crossing for processes in the class of stochastic hamiltonian systems,

Ẏt + F (Xt, Yt)∂yH(Xt, Yt) + ∂xH(Xt, Yt) = Zt, Ẋt = ∂yH(Xt, Yt). (SHS)

Here (X, Y ) ∈ R2, H, the Hamiltonian, and F , are smooth functions in the sense of [11].
We consider two types of noise :1) Zt, white noise where Zt = σẆ with σ ∈ R+ and W is a
real-valued Wiener process and 2) “colored noise”, i.e. an Ornstein-Uhlenbeck process:

Zt = Z0 exp(−αt) + σ

∫ t

0

exp(−α(t− s))dWs where α, σ ∈ R+. (1)

Such problems arise in mechanical engineering in the context of earthquakes [3].
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Rice’s formula asserts that if (X, Y ) has a unique invariant probability density m(x, y) then
the frequency f(s) of X crossing a given threshold s is given by f = f+ + f−, with

f+(s) =

∫ ∞
0

∂yH(s, y)1{∂yH(s,y)≥0}m(s, y)dy, f−(s) =

∫ 0

−∞
|∂yH(s, y)| 1{∂yH(s,y)≤0}m(s, y)dy.

(R)
An extension of Rice’s formula can be established when the stochastic process is also con-
strained by an obstacle located at X = ±Lx in the sense that,

∀t ≥ 0, |Xt| ≤ Lx and whenever |Xt| = Lx then Ẋt+ = −eẊt− . (BC)

Here e ∈ (0, 1] is called a restitution coefficient. In general, there is no closed form expression
for m, except when e = 1. Note that existence and uniqueness of the invariant measure, to-
gether with asymptotic formulae related to the probabilities of threshold-crossing for smooth
approximations of a broad class of mechanical systems under white or colored noise, have
been discussed in [5].

2. Kolmogorov equations

We denote by p(x, y, t; ξ, η, s) the transition probability density for the (SHS)+(BC)-“random
walker” (X, Y ) to move from (x, y) ∈ (− Lx,  Lx) × R at time t to (ξ, η) ∈ (− Lx,  Lx) × R at
a later time s > t. By definition the density of the invariant measure, denoted me on
D = (−1, 1)× R and defined by

E(g(Xt, Yt)) =

∫
D

g(ξ, η)me
2(ξ, η)dξdη,

for all continuous functions g and all time t, is related to p by

lim
s→∞

p(x, y, t; ξ, η, s) = me
2(ξ, η).

2.1. White noise case

Let
B1(x, y) = −[F (x, y)∂yH(x, y) + ∂xH(x, y)] and B2(x, y) = ∂yH(x, y).

From the theory of Markov processes, when the triple (ξ, η, s) is fixed as a parameter, the
backward Kolmogorov equation characterises p as the solution of

∂tp+
σ2

2
∂yyp+B1(x, y)∂yp+B2(x, y)∂xp = 0, ∀(x, y) ∈ (− Lx,  Lx)× R, ∀t < s, (B)

lim
t→s,t<s

p(x, y, t; ξ, η, s) = δ(ξ,η), p( Lx, y, t; ξ, η, s) = p( Lx,−ey, t; ξ, η, s), ∀y > 0, ∀t < s

lim
t→s,t<s

p(x, y, t; ξ, η, s) = δ(ξ,η), p(− Lx, y, t; ξ, η, s) = p(− Lx,−ey, t; ξ, η, s), ∀ − y > 0, ∀t < s.

The last 2 equations are symbolically written as

lim
t→s,t<s

p(x, y, t; ξ, η, s) = δ(ξ,η), p(± Lx, y, t; ξ, η, s) = p(± Lx,−ey, t; ξ, η, s), ∀± y > 0, ∀t < s,

meaning by this that every ± are assigned to + together or − together.
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2.2. Colored noise case (Z is an Ornstein-Uhlenbeck process)

To remain in a markovian framework, the (SHS)+(BC)-“random walker” must be extended
to (X, Y, Z) with (1). The transition probability density for the “random walker” (X, Y, Z)
to move from (x, y, z) ∈ (− Lx,  Lx) × R × R at time t to (ξ, η, ζ) ∈ (− Lx,  Lx) × R × R at a
later time s > t is solution of the backward Kolmogorov equation

∂tp+
σ2

2
∂zzp− αz∂zp+ (z +B1(x, y)) ∂yp+B2(x, y)∂xp = 0, in (− Lx,  Lx)× R× R, (Bc)

lim
t→s,t<s

p(x, y, z, t; ξ, η, ζ, s) = δ(ξ,η,ζ),

p(± Lx, y, z, t; ξ, η, ζ, s) = p(± Lx,−ey, z, t; ξ, η, ζ, s), ∀ ± y > 0, ∀t < s.

2.3. Computation of the Invariant Probability Measure

To compute any quantity of the form∫
D

g(ξ, η)me
2(ξ, η)dξdη

we consider the problem

λuλ − σ2

2
∂yyu

λ −B1(x, y)∂yu
λ −B2(x, y)∂xu

λ = g in D (2)

with the boundary condition

uλ(±1, y) = uλ(±1,−ey), ∀ ± y > 0. (3)

This is motivated by the fact that from ergodic theory

∀(x, y), lim
λ→0

λuλ(x, y) =

∫
D

g(ξ, η)me
2(ξ, η)dξdη.

Such a problem is easier than the time-dependent problem. Thus in order to approach f(s),
in the right-hand side of (2), we will consider gs(x, y) = y±δ(x− s), possibly approximated

by y±√
2πσ

exp
(
− (x−s)2

2σ2

)
, with σ > 0 small. Here, y± = max(0,±y). Such a numerical method

has been used in [2] and [3] for the statistics of an elasto-plastic problem excited by white
noise, an altogether different problem.

3. The Problem

The purpose of this section is to study (2),(3) with F ≡ γ ∈ R+, H(x, y) = 1
2
y2+ k

2
x2, k ∈ R+,

in a domain D = (−1, 1)× R. Thus we consider the problem

λu− σ2

2
∂yyu+ (γy + kx)∂yu− y∂xu = g, (4)

u(1, y) = u(1,−ey) ∀y > 0, u(−1, y) = u(−1,−ey) ∀y < 0. (5)

where g is at least in L2(D).
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Definition 1. We shall say that u is e-symmetric when (5) holds.

Remark 1. Notice that (5) implies also that

u(1, y) = u
(

1,−y
e

)
∀y < 0, u(−1, y) = u

(
−1,−y

e

)
∀y > 0.

In (4),(5) the parameters are the variance, σ > 0, the reflection coefficient e on ±X, the
material properties γ and k, and the source term (x, y) 7→ g(x, y). However by changing
(x, y) → (x̄, ȳ) = ( Lxx,  Lxy), σ̄ = σ

 Lx
, the problem becomes (4),(5) with bars, posed on

(− Lx,  Lx)× R instead of D.

3.1. Asymptotic Behaviour When y →∞
A frequent case in practice is g(x, y) = yn, n ≥ 1; but note that as

−σ
2

2
∂y

(
e
− 1
γσ2

(γy+kx)2
∂yu
)

= e
− 1
γσ2

(γy+kx)2
(
−σ

2

2
∂yyu+ (γy + kx)∂yu

)
,

the PDE can be rewritten as

e
− 1
γσ2

(γy+kx)2
(λu− y∂xu)− σ2

2
∂y

(
e
− 1
γσ2

(γy+kx)2
∂yu
)

= ge
− 1
γσ2

(γy+kx)2
. (6)

Here we see that a polynomial growth in y of g does not endanger existence provided we use
weighted Sobolev spaces with a weight such that g be square-weighted integrable.
Let m be an integer; let

µm(y) =
1

2
(1 + y2)−

m
2 ,

νm(y, e) = µm(y)1y>0 + µm(−ey)1y≤0,

ρm(x, y) = (1− x)νm(y, e) + (1 + x)νm(y,
1

e
). (7)

Denote by H1
m(D) the Sobolev space of order 1 with weight ρm. It has been shown in [1]

that a similar problem with different boundary conditions but the same PDE is well-posed
in that space.
In any case, for simplicity and with the numerical approximation in mind, we begin with
an analysis of the problem localized in the domain of fig.1. Moreover, as the differential
operator is not coercive in x we regularize it with a small second-order term.

3.2. The Regularized Problem in a Finite Domain

Let Ly > 0 be a large number and let D be the parallelogram of vertices (−1,−Ly), (1,−eLy),
(1, Ly), (−1, eLy) (fig.1). Its boundary is denoted by ∂D. The left vertical part is ∂D− and
the right one ∂D+; the union of both is denoted by ∂D±.
The part of ∂D± on which the e-symmetry (5) holds is called Σ:

Σ = (∂D− ∩ {y ≤ 0}) ∪ (∂D+ ∩ {y ≥ 0}).
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Remark 2. Notice that the e-symmetry makes sense only if D is the parallelogram shown
in fig.1 with vertices at (−1,−Ly), (1,−eLy), (1, Ly), (−1, eLy). The slanted sides need not
be straight segments but the vertical sides must have the length ratio of the parallelogram.

Localization in a finite domain requires an additional boundary condition on the border ∂D∞
which approximates infinity. We shall specify a function µ(x, y) and assume that

σ2

2
∂yu+ µ(x, y)u = 0 on ∂D∞. (8)

The simplest case is µ = 0 but to be compatible with a polynomial asymptotic behavior of
the type u ∼ yn for large y, then (8) implies:

σ2

2
∂y(y

n) + µ(x, y)yn = 0 ⇒ µ ∼ −nσ
2

2y
.

Notation: H1
e (D). Consider the linear map u ∈ H1(D) 7→ Lu ∈ H 1

2 (Σ) defined by

Lu(x, y) = u(x, y)− u(x,−ey), ∀(x, y) ∈ Σ. (9)

Let H1
e (D) be the kernel of L, i.e. the set of u ∈ H1(D) such that u(x, y) − u(x,−ey) = 0

for all (x, y) ∈ Σ, i.e. the subset of H1(D) of e-periodic functions.

As the trace operator is continuous from H1(D) to H
1
2 (∂D), the kernel of L is a closed

subspace of H1(D). This makes H1
e (D) a closed linear subspace of H1(D).

3.3. Regularization

Furthermore, consider the regularized PDE

λuε − ε∂xxuε −
σ2

2
∂yyu

ε + (γy + kx)∂yu
ε − y∂xuε = g,

u(1, y) = u(1,−ey) ∀y > 0, u(−1, y) = u(−1,−ey) ∀y < 0. (10)

with e-compatible Neumann boundary conditions on ∂D±, the vertical left and right sides
of D. Here ∂D± = ∂D− ∪ ∂D+. More precisely, uε is the solution in H1

e (D) of the variational
equation (14), below, which contains the e-compatible Neumann conditions (11).

3.4. Interpretation of the e-Compatible Neumann Conditions

In a variational setting, a Neumann condition on ∂D± for (10) with e-symmetry means∫
∂D±

v∂xu
ε = 0 for all v ∈ H1

e (D). (11)

So on ∂D+, for instance,∫ Ly

−eLy
(v∂xu

ε)|x=1 =

∫ 0

−eLy
(v∂xu

ε)|x=1 +

∫ Ly

0

(v∂xu
ε)|x=1

5



=

∫ 0

−eLy
(v(1, y)∂xu

ε(1, y))dy +
1

e

∫ 0

−eLy
v(1, z)∂xu

ε(1, z
−1

e
)dz,(12)

because v(1, y)∂xu
ε(1, y) = v(1,−ey)∂xu

ε(1,−ey−1
e

) when y ≥ 0. This leads to

∂xu
ε(1, y) = −1

e
∂xu

ε(1,−y
e

) ∀y < 0,

and a similar condition on ∂D−. Following remark 1, it implies also

∂xu
ε(1, y) = −e∂xuε(1,−ey) ∀y > 0, ∂xu

ε(−1, y) = −e∂xuε(−1,−ey) ∀y < 0. (13)

which is an e-antisymmetric Neumann condition.

3.5. Variational Formulations

So let us establish variational formulations for problem (10),(13). For clarity we set X = 1.
Multiplying (10) by û and integrating by parts the second-derivatives and using (11) leads
to the first variational formulation: find uε ∈ H1

e (D), such that, ∀û ∈ H1
e (D),∫

D

(
λuεû +

σ2

2
∂yu

ε∂yû+ ε∂xu
ε∂xû

)
+

∫
∂D∞

µnyu
εû

+

∫
D

((γy + kx)∂yu
ε − y∂xuε) û =

∫
D
gû, (14)

where (nx, ny)
T is the outer normal of D and the stabilizing term is ε∂xu

ε∂xû. The rest of
the boundary of D is called ∂D∞.
If the first-order terms are also integrated by parts then∫

D
((γy + kx)∂yu

ε − y∂xuε) û = −
∫
D

(γuεû+ (γy + kx)uε∂yû− yuε∂xû)

+

∫
∂D∞

(γy + kx)nyu
εû−

∫
∂D±

ynxu
εû. (15)

Hence, by using the above multiplied by one half,∫
D

((γy + kx)∂yu
ε − y∂xuε) û =

1

2

∫
D

((γy + kx)∂yu
ε − y∂xuε) û

+
1

2

(
−
∫
D

(γuεû+ (γy + kx)uε∂yû− yuε∂xû) +

∫
∂D∞

(γy + kx)nyu
εû−

∫
∂D±

ynxu
εû
)
.(16)

This leads to a second variational formulation:

3.6. Problem Statement

Assume λ, σ, µ, ε ∈ R+, σ > 0, k, γ ∈ R and g ∈ L2(D). Find uε ∈ H1
e (D), such that,

∀û ∈ H1
e (D),∫

D

(
(λ− γ

2
)uεû +

σ2

2
∂yu

ε∂yû+ ε∂xu
ε∂xû

6



+
1

2
(γy + kx)(û∂yu

ε − uε∂yû) +
y

2
(uε∂xû− û∂xuε)

)
+

∫
∂D∞

(γy + kx+ 2µ)ny
uεû

2
−
∫
∂D±

ynx
uεû

2
=

∫
D
gû. (17)

Of course, the two formulations are equivalent provided uε ∈ H1(D), a condition which
insures that all the integrals exist. Note that the same problem with ε = 0: find u ∈ H1

e (D)
such that,∫

D

(
(λ− γ

2
)uû +

σ2

2
∂yu∂yû+

1

2
(γy + kx)(û∂yu− u∂yû) +

y

2
(u∂xû− û∂xu)

)
+

∫
∂D∞

(γy + kx+ 2µ)ny
uû

2
−
∫
∂D±

ynx
uû

2
=

∫
D
gû. (18)

for all û ∈ H1
e (D), makes sense also, provided g ∈ L2(D).

Σ

Σ
Γ

Γ

y

x0−1 1

D

∂D+

∂D−

∂D∞

∂D∞

Fig. 1: Domain of definition of the PDE local-
ized. The vertices of the parallelogram are (−1,−Ly),
(1,−eLy), (1, Ly), (−1, eLy). Here e < 1.

Σ

Σ
Γ

Γ

y

x0−1 1

C

∂C+

∂C−

∂C∞

∂C∞

Fig. 2: Domain of definition of the PDE localized in
a finite domain. A change of variable maps D (left)
into C (right).

4. Analysis and Discretization

4.1. The Case e ≥ 1

Lemma 1. For any solution uε ∈ H1
e (D) of (17) , the following energy conservation holds∫

D

(
(λ− γ

2
)uε2 +

σ2

2
(∂yu

ε)2 + ε(∂xu
ε)2

)
+

∫
∂D∞

(γy + kx+ 2µ)ny
uε2

2

+
1

2
(1− 1

e2
)

(∫ eLy

0

yuε2(−1, y) +

∫ 0

−eLy
(−y)uε2(1, y)

)
=

∫
D

guε. (19)
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Proof
Let us choose û = uε in (17). Then, assuming the existence of a unique solution uε ∈ H1

e (D),∫
D

((
λ−γ

2

)
uε2 +

σ2

2
(∂yu

ε)2 + ε(∂xu
ε)2

)
+

∫
∂D∞

(γy + kx+ 2µ)ny
uε2

2
−
∫
∂D±

ynx
uε2

2
=

∫
D
guε.

When ynx < 0 the last term on the left is positive, i.e. y > 0 when x = −1 and y < 0 when
x = 1.
To show that the other terms are also positive, we let y′ = y

e
and use the boundary condition

uε(−1, y′) = uε(−1,−ey′) for all y′ < 0 ; so with y′′ = −y = −ey′,∫
y′<0

y′uε(−1, y′)2dy′ = − 1

e2

∫
y′′>0

y′′uε(−1, y′′)2dy′′,

and similarly for the integral on y > 0, x = 1:∫
y>0

yuε(1, y)2dy = − 1

e2

∫
y<0

yuε(1, y)2dy.

Therefore

−
∫
∂D±

ynxu
ε2 = (1− 1

e2
)

(∫ eLy

0

yuε2(−1, y) +

∫ 0

−eLy
(−y)uε2(1, y)

)
. (20)

Q.E.D.

Theorem 1. Assume that e ≥ 1, ε > 0, λ > γ
2

and γ > k+µ
Ly

and g ∈ L2(D). Then Problem

(17) has one and only one solution in H1
e (D).

Proof Denote by aε(·, ·) the bilinear form of the problem

aε(u, û) =

∫
D

(
(λ− γ

2
)uû+

σ2

2
∂yu∂yû+ ε∂xu∂xû

+
1

2
(γy + kx)(û∂yu− u∂yû)− y

2
(û∂xu− u∂xû)

)
−
∫
∂D±

ynx
uû

2
+

∫
∂D∞

(γy + kx+ µ)ny
uû

2
. (21)

By Lemma 1 and the fact that the last integral is always positive when û = uε, the bilinear
form of (4) is coercive and continuous in H1

e (D). So the solution exists and is unique in
H1
e (D) by the Lax-Milgram theorem.

Theorem 2. If g ∈ L∞(D), e ≥ 1, g ≥ 0, ε > 0, λ > max{1, γ
2
}, nyµ ≥ 0 on ∂D∞ and

γ > (k + µ)/Ly, then: 0 ≤ uε ≤ ‖g‖∞/(λ−
γ

2
).
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Proof With standard notations uε = u+ − u− with u± ≥ 0. Let û = −u− in (17); since
u+u− = 0 a.e., we have∫

D

(
(λ− γ

2
)(u−)2 +

σ2

2
(∂yu

−)2 + ε(∂xu
−)2

)
+

1

2

∫
∂D∞

(γy + kx+ µ)(u−)2ny

+
1

2
(1− 1

e2
)

(∫
Γ

|y|(u−)2

)
= −

∫
D
gu−. (22)

As yny > 0 on ∂D∞, everything is positive on the left, hence u− = 0.
Similarly let us derive from (17) a variational equation for um = u − gm with gm =
‖g‖∞/(λ− γ

2
).

Note that um is solution of (4),(5) with g − λgm instead of g and (8) with right-hand side
equal to −µgm; hence um ∈ H1

e (D) and

aε(um, û) =

∫
D
(g − λgm)û−

∫
∂D∞

µnygmû, ∀û ∈ H1
e (D).

By choosing û = u+
m we obtain:∫

D

(
(λ− γ

2
)(u+

m)2 +
σ2

2
(∂yu

+
m)2 + ε(∂xu

+
m)2

)
+

∫
∂D∞

(
(γy + kx+ µ)ny

(u+
m)2

2
+ µnygmu

+
m

)
+

1

2
(1− 1

e2
)

(∫
Γ

|y|(u+
m)2

)
=

∫
D
(g − λgm)u+

m. (23)

The integral on the right is negative while those on the left are positive, so u+
m = 0.

4.2. The limit case ε→ 0

Theorem 3. If g and ∂xg are in L2(D), the unique solution to (17) is bounded in H1(D)
independently of ε and when ε → 0 any H1-weakly converging subsequence satisfies (4),(5)
and (17) with ε = 0. Hence the unique solution, uε, of (17) tends to the unique solution, u,
in H1(D) of (18).

Proof
For clarity the proof is given when D = (−1, 1)× R because the difficulty is on the vertical
boundaries and not on ∂D∞. From (19) in lemma 1 we see that uε, and ∂yu

ε are L2(D)-
bounded independently of ε. It is the solution in H1

e (D) of

λuε − ε∂xxuε −
σ2

2
∂yyu

ε + (γy + kx)∂yu
ε − y∂xuε = g,

9



in the sense of distribution. To find an estimate for |∂xuε|0 uniform in ε we differentiate the
PDE for uε above. It leads to a similar PDE for vε := ∂xu

ε,

λvε − ε∂xxvε −
σ2

2
∂yyv

ε + (γy + kx)∂yv
ε − y∂xvε = ∂xg − k∂yuε

with the e-antisymmetric Neumann condition (13), namely, in terms of vε,

vε(1, y) = −evε(1,−ey) ∀y > 0, vε(−1, y) = −evε(−1,−ey) ∀y < 0.

Let H1
∗e(D) be the space of functions of H1(D) which satisfy the above. Then we seek for

vε ∈ H1
∗e(D) such that ∀v ∈ H1

∗e(D) ,∫
D

(
λvεv̂ +

σ2

2
∂yv

ε∂yv̂ + ε∂xv
ε∂xv̂

)
+

∫
D

((γy + kx)∂yv
ε − y∂xvε) v̂ =

∫
D
(∂xg − k∂yuε)v̂.

An energy estimate for this equation, derived in the same way as (19), is∫
D

(
(λ− γ

2
)vε2 +

σ2

2
(∂yv

ε)2 + ε(∂xv
ε)2

)
=

∫
D

(∂xg − k∂yuε) vε.

The integrals on ∂D± disapear because in (20), (1 − 1
e2

) becomes (1 − e2

e2
) = 0. Now we

apply theorem 1 again; it shows that the solution vε ∈ H1
∗e(D) exists and is unique when

∂xg − k∂yuε ∈ L2(D) and by lemma 1 vε is bounded in L2(D) independently of ε.
Consequently uε is uniformly bounded in H1(D). Hence, weak converging sequences exist
and all terms in (17) pass to their limits. Uniqueness is a consequence of (19).

4.3. Analysis when e < 1

Equation (19) indicates that the operator of the problem is no longer strongly elliptic.
Let us first recall a similar situation in linear algebra: finding x ∈ Rd that solves Ax = b,
for b ∈ Rd, for a singular d × d matrix A, (detA=0) requires a compatibility condition:
b ∈ (KerA)⊥. Hence if A is positive definite, there is a solution to ΛIx−Ax = b for any b if
Λ ∈ R is not in the spectrum of A. Otherwise b must be orthogonal to the eigensubspace.
Here (14) is built from a positive definite operator inside D (see (10)). More precisely
(10),(13) define a compact operator from H1

e (D) to the dual H∗e (D). Hence the Ritz-Schauder
theorem applies, namely there are either a finite number of eigenvalues to the problem or a
countable number clustering near zero (see for example Wloka [12], page 166).
Consequently, let us look at the following eigenvalue problem, built from (17): for all û ∈
H1
e (D),∫

D

(
(λ− γ

2
)uεû +

σ2

2
∂yu

ε∂yû+ ε∂xu
ε∂xû+

1

2
(γy + kx)(û∂yu

ε − uε∂yû) +
y

2
(uε∂xû− û∂xuε)

)
+

∫
∂D∞

(γy + kx+ 2µ)ny
uεû

2
=

Λ

2

∫
Γ
ynxu

εû. (24)
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If Λ, i.e.
1

e2
− 1, is not in the spectrum of the operator, problem (10),(5),(13) has a solution

and the solution is unique. If it is in the spectrum then there will be conditions on g to have
a solution and uniqueness may not hold.
Uniqueness is a straightforward consequence of the linearity of the problem and the definition
of an eigenvalue. Indeed, denote by λI −A the operator defined by (10),(5),(13). Let u1, u2

be two solutions. Then, when Λ is not an eigenvalue,

Λui − Aui = g, i = 1, 2 ⇒ Λ(u1 − u2)− A(u1 − u2) = 0 ⇒ u1 − u2 = 0.

Unfortunately the theoretical study of the spectrum of (24) is hard. On the other hand
numerically, with the finite element method of degree 2, presented in the next section, and
the library ARPACK the results indicate that there is no non-zero solution to this eigenvalue
problem (fig.3).

Fig. 3: Using a mesh with 854 vertices, ARPACK computed 5 real eigenvalues to (24) very close to Λ = 11.
The 5 eigenvectors are shown here. As they are zero almost everywhere except at the corners, we can
tentatively conclude that they exist only for the discrete system and not for the continuous one. The
symmetry line y = 0 and the borders are shown by fat color lines.
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4.4. Discretization

4.4.1. Finite Element Approximation

Consider a standard finite element approximation Uh ⊂ H1(D) with P 1 triangular conforming
elements on a mesh Th; let Th be the discretization of ∂D± made by the boundary edges of Th
on ∂D± ; let qj = (qj1, q

j
2)T , j = 1, ..J be the vertices of Th. We will work with the following

approximation of H1
e (D):

Vh = {vh ∈ Uh : uh(±1, qj) = u(±1,−eqj) ∀j = 1, . . . , J such that ± qj2 > 0}.

The discrete system is:

Find uεh ∈ Vh such that: ∀ûh ∈ Vh , aε(uεh, ûh) =

∫
D
gûh, (25)

where aε(·, ·) is defined in (21).

Theorem 4. Assume that ε > 0, λ >
γ

2
and γ >

k + µ

Ly
, then the solution to (25) exist and

is unique. Furthermore, provided the solution of (17) is in H2(D),

(λ− γ

2
)|uε − uεh|20 +

σ2

2
|∂y(uε − uεh)|20 + ε|∂x(uε − uεh)|20 ≤ Cεh2, (26)

where Cε is a positive constant, dependent on the H2(D) norm of uε.

Proof
As Vh ⊂ H1

e (D), we may subtract (17) from (25) and obtain

aε(uεh − uε, ûh) = 0 ∀ûh ∈ Vh. (27)

Let vh be the function of Vh which is equal to uε at the vertices of Th. Now by lemma 1,

(λ− γ

2
)|uεh − uε|20 +

σ2

2
|∂y(uεh − uε)|20 + ε|∂x(uεh − uε)|20

≤ aε(uεh − uε, uεh − uε) = aε(uεh − uε, uεh − vh) + aε(uεh − uε, vh − uε) (28)

The next to last term is 0 by (27) and the last term is bounded by aε(uεh − uε)
1
2aε(vh − uε)

1
2

where aε(v) := aε(v, v). Finally aε(vh − uε)
1
2 ≤ Ch because, uε ∈ H2(D) implies that

|vh − uε|0 = O(h2), |∇ε(vh − uε)|0 = O(h).
Q.E.D.

4.5. Change of Variable

For large and small values of e the parallelogram D (see fig.1) is very difficult to mesh
properly.
With structured meshes in mind we wish to transform D into C by a change of variable.
Let e ∈ (0, 1) . Let u be the solution of (4),(5) in D of fig.1. Let v(x, z) = u(x, y) with
y = ϕ(x, z)) and

ϕ(x, z) = (
1

e
− 1)|z|x

2
+ (

1

e
+ 1)

z

2
.

Notice that v is defined in C = [−1, 1]× [−Ly, Ly].
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Lemma 2. With v defined as above,

v(±1, z) = v(±1,−z), ∀z ∈ [−Ly, Ly].

Proof There are 4 cases.

z > 0 :

v(−1, z) = u(−1, ϕ(−1, z)) = u(−1, z) = u(−1,
−z
e

) = u(−1, ϕ(−1,−z))
= v(−1,−z),

v(1, z) = u(1, ϕ(1, z)) = u(1,
z

e
) = u(1,−z) = u(1, ϕ(1,−z))

= v(1,−z);
z < 0 :

v(1, z) = u(1, ϕ(1, z)) = u(1, z) = u(1,
−z
e

) = u(1, ϕ(1,−z))
= v(1,−z),

v(−1, z) = u(−1, ϕ(−1, z)) = u(−1,
z

e
) = u(−1,−z) = u(−1, ϕ(−1,−z))

= v(−1,−z).

Q.E.D.

Proposition 1. Problem (4),(5) is equivalent to finding v ∈ H1
1 (C) such that∫

C

(
λ∂zϕvv̂ +

σ2

2∂zϕ
∂zv∂zv̂ +∂zϕ ((γ + ∂xϕ)ϕ+ kx) v̂∂zv − v̂ϕ∂xv

)
=

∫
C
g∂zϕ v̂,∀v̂ ∈ H1

1 (C). (29)

where H1
1 (C) is H1

e (C) with e = 1.

Proof With v as in Lemma 2,

∂zv = ∂yu∂zϕ, ∂xv = ∂xu+ ∂yu∂xϕ ⇒ ∂yu =
∂zv

∂zϕ
, ∂xu = ∂xv − ∂zv

∂xϕ

∂zϕ
.

Consequently (4),(5) written at x, y = ϕ(x, z) becomes

λv − σ2

2∂zϕ
∂z

(
∂zv

∂zϕ

)
+ (γϕ+ kx)

∂zv

∂zϕ
− ϕ

(
∂xv − ∂zv

∂xϕ

∂zϕ

)
= g,

which, multiplied by v̂∂zϕ and integrated over C leads to the variational formulation (29).
Q.E.D.

Notice that

∂zϕ(x, z) = (
1

e
− 1)

x

2
sign(z) +

1

2
(
1

e
+ 1), ∂xϕ(x, z) = (

1

e
− 1)
|z|
2
.

These are bounded and positive in C when e ∈ (0, 1], hence (29) is a problem of type: find
v, 1-symmetric in C, with, for all v̂ ∈ H1

1 (C),∫
C

(
λ̃ vv̂ +

σ̃2

2
∂zv∂zv̂ + c̃v̂∂zv − v̂ϕ∂xv

)
=

∫
C
g̃ v̂, (30)
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where λ̃, σ̃, c̃, are bounded and positive, bounded away from 0. Furthermore |ϕ(x, z)| ≥ |z|
and sign(ϕ(x, z)) =sign(z).
An energy estimate, similar to (19), is derived by letting v̂ = v in (30):∫

C

(
(λ̃ −1

2
∂z c̃+

1

2
∂xϕ) v2 +

σ̃2

2
(∂zv)2

)
+

∫
∂C∞

c̃nz
v2

2
+

1

2

∫
Γ

|ϕ|v2

=
1

2

∫
Σ

|ϕ|v2 +

∫
C
g̃ v. (31)

But the same difficulty remains, because,

1

2

∫
Γ

|ϕ|v2 − 1

2

∫
Σ

|ϕ|v2 = (1− 1

e
)

∫
∂C±
|z|v2.

So we cannot assert semi-ellipticity when e ∈ (0, 1).

5. Numerical Examples

First we reproduce the results obtained in Mertz et al. [6]. We use the P2 Lagrangian finite
element method in C .
So we take g = y2, e = 0.5 in (25). Table 5 shows results for various values of X using D
and using the change of variable in C. We also reproduce table 3 of [6] obtained by a finite
difference method with one million points and a Monte-Carlo simulation; it is compared here
with computations on the finite element meshes shown on fig.4. The other parameters are
Ly = 5, λ = 10−6, γ = 1, k = 1, σ = 1, ε = 0.
In an attempt to study the error we took as reference solution the result of a simulation
with 5500 vertices. Then we computed the error at x = 0, y = 0 for 7 meshes with X = 0.5,
e = 0.5 and e = 1.5. The right side of table 2 shows these errors and fig.5 displays the
convergence. It appears that the convergence is at most linear for e = 0.5 and at least cubic
for e = 1.5.

5.1. Rice’s formula

In the context of the Hamiltonian system studied in this article, Rice’s formula (R) for
s 7→ f+ is obtained by computing the solution of (25) with g = δ(x − s)y+ and then plot
λu(0, 0) versus s. Each point of the plot requires a new solution of the PDE (R). The
singularity of g is not a difficulty because the right-hand side of (R) is∫

D
δ(x− s)y+ûh =

∫
D∩{x=s}

y+uhdy.

Fig.6 shows the numerical result and a comparison with a computation by a Monte-Carlo
method. In the case of white noise, the PDE is two dimensional and the mesh is fine enough
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X FEM/D FEM/C FDM [6] MC [6]
0.1 0.17853 0.17846 0.179 0.179
0.2 0.24925 0.24912 0.250 0.250
0.3 0.29706 0.29691 0.298 0.297
0.4 0.33334 0.33318 0.347 0.334
0.5 0.36245 0.36231 0.364 0.364
0.6 0.38656 0.38644 0.388 0.389
0.7 0.40685 0.40676 0.409 0.408
0.8 0.42405 0.42400 0.426 0.423
0.9 0.43865 0.43864 0.441 0.437
1.0 0.45099 0.45102 0.453 0.450

Table 1: Left: Computations of λu(0, 0) for e = 0.5 and g =
y2, various values of X and various methods. Convergence
as the number of vertices Nf increases, when X = 0.5 using
FEM on D.

Nf e = 0.5 e = 1.5
109 0.361776 32.0478
393 0.362102 37.6635
1389 0.362495 37.7466
5507 0.362596 37.7981
22422 0.362666 37.7975
84440 0.362699 37.79879

Table 2: Left: Computations of λu(0, 0)
when X = 0.5, for e = 0.5 or e = 1.5
and g = y2, with meshes refined roughly
by a factor 2 each time. Convergence as
the number of vertices Nf increases, using
FEM on D. Fig.5 is the same in graphic
form.

Fig. 4: Finite element meshes used for D and C and corresponding results depicting the color map of the
values of u. Notice that for such small values of λ ,u is almost constant.
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Fig. 5: Log of the error versus the log of Nf , the number of vertices in the mesh, when e = 1.5 (top curve)
and e = 0.5 (lower curve). A very fine mesh has been used to compute a reference solution to obtain the
error at the point (0,0). The lowest curve corresponds to e = 0.5 and has slope -1 indicating an error of
order 1. The highest curve has a slope around −4 and has been obtained with e = 1.5.

(8350 vertices). For colored noise the PDE is in R3 (see (33) below) and the mesh has 51686
vertices; we have observed an embarrassing dependence on Ly with the PDE set in D and
not so with the PDE set in C after a change of variable.
For the probabilistic numerical scheme of {(Xt, Yt), t ≥ 0} of (SHS), we use a standard
Monte-Carlo method with time step δt. We consider T = Nδt large enough, tn = nδt and
we construct random variables {(Xn, Yn), 1 ≤ n ≤ Nδt} to approximate (Xtn , Ytn). In fig.6,
we consider g(x, y) = y2 and proceed with the following approximation

Eg(XT , YT ) ≈ 1

M

M∑
m=1

g(Xm
N , Y

m
N ), (32)

where {(Xm, Y m),m = 1, . . . ,M} is an i.i.d. sequence of trajectories produced by the
algorithm.
In fig.6, for each threshold s ∈ [0, L) we read from a sufficiently long numerical trajectory
the frequency of X crossing s with positive velocities.

6. Extension to Three Dimensions

Consider now the colored noise case with D = (−1, 1)× R2 :

λu− σ2

2
∂zzu+ (γy + kx− z)∂yu+ αz∂zu− y∂xu = g, in D,

u(1, y, z) = u(1,−ey, z) ∀y > 0, u(−1, y, z) = u(−1,−ey, z) ∀y < 0, ∀z ∈ R. (33)
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white noise - MC
white noise - FEM
colored noise - MC

colored noise - FEM

Fig. 6: s 7→ f+(s) computed with Rice’s formula (R). Comparison between a finite element solution and a
Monte-Carlo simulation, with n = 104. Left : δt = 10−3, middle : δt = 10−4, right : δt = 10−5.

The symmetrised variational formulation is,∫
D

[
(λ− γ + α

2
)u û+

σ2

2
∂zu∂zû

+
1

2
(γy + kx− z)(û∂yu− u∂yû) +

α

2
z(û∂zu− u∂zû)

−y
2

(û∂xu− u∂xû)
]
−
∫
∂D±

nx
y

2
u û =

∫
D
g û, in D. (34)

Now ∂D± denotes the planes x = ±1.
Everything that was said for the bi-dimensional case can be reproduced for the tri-dimensional
case.
Discretization can be done using quadratic tetrahedral elements. As a test case we chose all
parameters as in the 2D case and α = 1 on a mesh with 64800 elements. The results are
shown on fig.7. The value of λu(0, 0, 0) found is 0.66912; it also agrees to 4 digits with the
mean value of u on D, 0.669124; computing time is 10 seconds on a MacBook Pro Core i7
2.5GHz.

7. The Time-Dependent Case

The time dependent problem (see (35) below) has λu replaced by ∂tu and a zero right-hand
side. Naturally, an initial condition must be given: u(t = 0) = g. Then t → u(0, 0, t)
is asymptotic to λu of the stationary case. Fig.8 illustrates this property. It is computed
with the same parameter as the stationary case on D with an implicit Euler scheme and
δt = 0.0125, X = 1.
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Fig. 7: Finite element solution of the 3D case. Notice that here too u is almost constant.

1 2 3 4 5
0

0.1

0.2

0.3

s

- white noise - MC
- white noise -FEM

Fig. 8: Energy: Finite element solution of the time dependent case showing u(0, 0, t) versus time t. This
curve is to be compared with Figure 4 of [6], reproduced here as (MC).

The variational setting of the problem is as follows.

Theorem 5. If e ≥ 1, nyµ ≥ 0 on ∂D∞, γLy > k + µ, ε > 0, g ∈ L2(D), the following
problem has one and only one solution: find uε ∈ L2(0, T ;H1

e (D)) such that, for all û ∈
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H1
e (D), ∫

D
(∂tu

ε û) + aεt(u
ε, û) = 0, t ∈ (0, T ), u(0) = g (35)

where

aεt(u
ε, û) =

∫
D

(
− γ

2
uεû+

σ2

2
∂yu

ε∂yû+ ε∂xu
ε∂xû

+
1

2
(γy + kx)(û∂yu

ε − uε∂yû)− y

2
(û∂xu

ε − uε∂xû)
)

−
∫
∂D±

ynx
uεû

2
+

∫
∂D∞

(γy + kx+ µ)ny
uεû

2
. (36)

Proof : All the conditions of Theorem 3.2 of [4] are met. G̊arding’s inequality holds due to
the coercivity of at without the term −γ

2
uû, shown in theorem 1.

Remark 3. The time-dependent case with e ≤ 1 is as difficult as the stationary case.
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