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Turing-like patterns in an asymmetric dynamic Ising model

Mélody Merle,∗ Laura Messio,† and Julien Mozziconacci‡

Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
(Dated: July 31, 2019)

To investigate novel aspects of pattern formation in spin systems, we use a mapping between
reactive concentrations in a reaction-diffusion system and spin orientations in a dynamic multiple-
spin Ising model. While pattern formation in Ising models always rely on infinite-range interactions,
this mapping allows us to design an finite-range interactions Ising model that can produce patterns
observed in reaction diffusion systems including Turing patterns with a tunable typical length scale.
This model has asymmetric interactions and several spin types coexisting at a site. While we use
the example of genetic regulation during embryo-genesis to build our model, it can be used to study
the behavior of other complex systems of interacting agents.

I. INTRODUCTION

The mechanisms underlying global pattern formation
from local interactions are studied in many fields of
physics, chemistry and biology [1–3]. Reaction diffu-
sion is among possibly the most widespread patterning
model. It uses continuous variables such as the con-
centrations of chemical species that can form complex
patterns: e.g. stripes, propagating fronts and oscilla-
tory waves [4]. Another class of pattern formation mod-
els are Ising models. Ising variables are two-states (up
and down) discrete spins interacting on a lattice. One
can distinguish two types of interactions: infinite and
finite-range. Infinite-range are more commonly referred
to as long-range interactions, i.e. decreasing with the dis-
tance as a power law 1/rα with α larger or equal to the
spatial dimension. Infinite and finite-range interactions
show differences in terms of behavior and are investi-
gated using specific computational methods [5]. In terms
of patterning, finite-range interactions mostly lead to fer-
romagnetic (all spins up or down) or anti-ferromagnetic
(alternating up and down spins) states. In the presence
of frustration, one-site width stripes can also occur [6].
On the other hand, infinite-range interactions can lead
to the formation of more complex patterns. The com-
bination of ferromagnetic nearest neighbor interactions
with anti-ferromagnetic infinite-range interactions found
for instance in ultra-thin magnetic films [7, 8] is known to
produce patterns such as mazes or bubbles. Up to now,
infinite-range interactions were considered as a necessary
condition for the formation of patterns with a typical
width of several lattice constants. Our goal in the present
paper is to derive a variant of the Ising model which pro-
duces such patterns without infinite-range interactions.

Reaction-diffusion and Ising models are both well-
adapted to describe emergent collective behaviors from
individual evolution rules. Yet, they have been con-
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fronted in few restricted cases. An example is the rig-
orous proof of the existence of travelling fronts in a fer-
romagnetic Ising model under Glauber dynamics using
a mapping of the magnetization evolution equation with
the reaction diffusion Allan-Cahn equation [9, 10].

In this paper, we build upon the similarities between
reaction-diffusion and Ising models to construct a dy-
namic finite-range Ising model giving rise to complex
patterns. We introduce in Sec. III a Stochastic Reac-
tion Diffusion Automaton (SRDA) on a lattice, inspired
by embryogenesis (Sec. II). Then we construct in Sec. IV
our Asymmetric Dynamic Ising Model (ADIM) and es-
tablish a mapping between the ADIM and the SRDA in
Sec. V. From this mapping we show in Sec. VI that the
ADIM can reproduce the variety of patterns observed in
reaction-diffusion systems even if it only relies on finite-
range interactions.

II. AN ASIDE ON EMBRYOGENESIS

One of the most emblematic example of pattern forma-
tion is embryogenesis, which motivated Turing to develop
his well known reaction-diffusion model in 1952 [4]. The
major question in this field is to understand how initially
identical cells can express different genes to form various
tissues and organs at the proper time and location during
the development of the embryo.

Turing proposed that interactions between diffusing
gene products (called here after species) could lead to
the spatial organization of gene expression. In the case
of the so-called Turing patterns, two species (an activator
a and an inhibitor b) can self-organize in stripes, dots, or
maze-like patterns. This is driven by three main ingredi-
ents: an auto-catalysis of a, an asymmetry in reciprocal
interactions (i.e. a enhances the formation of b while
b penalizes the formation of a), and a quantitative dif-
ference in their diffusion coefficients. Besides these self-
organized patterns [11–13] suggested by Turing, embryo-
genesis provides examples of externally-driven patterns
that are pre-formed at large scales, for instance by chem-
ical gradients in the case of the Drosophila’s fertilized egg
[14, 15]. These gradients activate specific genes in differ-
ent locations of the embryo and the products of these
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FIG. 1. The SRDA recapitulates different patterning mecha-
nisms, illustrated here on a 1D lattice. (i) Externally-driven
pattern by a linear external gradient g. (ii) Self-organized
pattern, here Turing stripes. (iii) Hybrid pattern which is
a combination of both mechanisms. Corresponding interac-
tion networks are shown with → and a symbols representing
respectively activation and inhibition.

genes subsequently act on other genes in a combinato-
rial manner. In the current view, the spatial regulation
of gene expression in developing embryos is explained by
combinations of these two different and complementary
classes of scenarios [16].

Various models implementing these two classes have
been proposed, either based on differential equations or
on cellular automata [17]. Recently, an Ising model [18]
has also been developed to model gene patterning dur-
ing embryo-genesis. Each spin corresponds to a gene
that can be in one of the two states: active or inactive.
Each site represent a nucleus and can contain several
spins/genes. The spatial proximity between nuclei de-
fines the interaction lattice (non zero couplings), while
coupling values defines the interaction network between
spin/genes. These couplings are a simplification of the
molecular mechanisms at work: gene transcription in
RNA, RNA translation in proteins and protein diffusion
to neighboring nuclei where they can modify the tran-
scription rate of other genes. While being different from
more detailed reaction-diffusion models, this Ising model
features the most important ingredient: short range in-
teractions between spins/genes [18]. Based on this simi-
larity, we also placed ourselves in this context to build an
extended variant of the Ising model, implementing asym-
metric interactions between spin types, that could lead
to Turing patterns. To achieve this goal, we start by con-
structing a reference reaction diffusion model in the next
section.

III. STOCHASTIC REACTION DIFFUSION
AUTOMATON (SRDA)

Reaction diffusion models describe the evolution in
time and space of the concentrations c = (ca, cb, . . . )
of ns chemical species a, b,. . . undergoing two processes:

diffusion, associated to diffusion coefficients Da, Db, . . . ,
and local reactions Ra(c, g), Rb(c, g), . . . resulting in the
creation of units of a, b, . . . per time unit, where g is a
possible external gradient forcing the system. The con-
tinuous space and time equations are for each specie a of
the form:

∂tca = Da∇2ca +Ra(c, g) (1)

As a discrete space and time model of reaction-
diffusion, we use here a probabilistic automaton on a 1D
lattice. The vector ci(t) = (cia(t), cib(t), . . . ) contains
the concentrations of the ns considered species on each
lattice site i at discrete time t. The external gradient g is
a prescribed time-independent additional specie of con-
centration gi on site i. Each time step is divided in three
sub-steps. The first one (t→ t′) is the production event:
each concentration is incremented by 1 with probability:

P prod
ia =

1

1 + e−ua(Ci,gi)
(2)

It is a common usage to model gene regulation by
sigmoidal functions. This exact form has been used
for Drosophila development modeling[19]. We choose
ua(ci, gi) of the form:

ua(ci, gi) =
∑
b

(φbacib) + κagi − θ0 (3)

where the φba are the reaction constants between species
(the sum is over all species, including a itself), κa repre-
sents the effects of the gradient g on specie a and θ0 is
an activation threshold common to all species.

The second event (t′ → t′′) is diffusion, approximated
by a Gaussian kernel Gσa of standard deviation σa and
mean value 0:

cia(t′′) =
∑

|j−i|<2σa

Gσa(|j − i|)cja(t′) (4)

The third event (t′′ → t + 1) is degradation, assumed
to occur at the same rate ε for all species:

cia(t+ 1) = εcia(t′′) (5)

where 0 < ε < 1.
To represent the steady states, concentrations are nor-

malized by cmax = ε
1−ε , so c∗ = c

cmax
is comprised be-

tween 0 and 1.
As described in Sc. II, two classes of patterns can

emerge from our model : gradient-induced patterning
(Fig 1-i) and Turing instabilities (Fig 1-ii). The two types
of mechanisms can be combined (Fig 1-iii) leading to the
appearance of hybrid patterns [16].

IV. ASYMMETRIC DYNAMIC ISING MODEL
(ADIM)

The classical Ising model has been created in 1920 [20]
as a toy model describing ferromagnetism. The spins



3

FIG. 2. Comparison of models for ns = 1, i.e. interaction networks as represented as insets in (a,d) with 2 parameters:
self-regulation φaa/Jaa and external gradient effect κa/ka. Other parameters are fixed θ0 = h0 = 1, σa = ra = 1, ε = 0.5 and
T = 1. (a) Mean concentration and (d) magnetization in the parameters space (φaa, κa) for the SRDA and (Jaa, ka) for the
ADIM. (b) and (c) Spatial patterns obtained in both models for 4 parameters sets representing the possible types of patterns
(N:fully activated, �:gradient-like, H:fully inhibited, �:sharp boundary). (d) Spatial parameters (diffusion coefficient σa and
interaction range ra) effect on the sharpness of the �-pattern.

are bivalued (usually Si = ±1, but here, we equivalently
choose Si = 0, 1). They are placed on a lattice and in-
teract with their nearest neighbors with an interaction
constant J > 0 that tends to align them. In the presence
of a space-dependent magnetic field hi, the energy of the
system is:

E = −J
∑
i

∑
j∈∂i

Si · Sj −
∑
i

hiSi, (6)

where ∂i contains the nearest neighbors of site i.
The first step to map our reaction-diffusion automaton

is to design a multiple-spin Ising model, similarly to [18].
To each site i of the lattice, we associate ns spin types cor-
responding to the different species a, b, . . . . Si becomes
a vector Si = (sia, sib, . . . ) of components 0 or 1. The
concentration of the SRDA now corresponds to the aver-
age value of the spin, named magnetization. Each spin
type interacts with all other spin types including itself.
We thus rewrite J as a matrix J̄ whose coefficient Jab
represents the interactions between a-spins and b-spins.
To mimic the gradient effect on the different genes, hi is
supposed to be coupled differently to each spin-type and
we introduce a coupling vector K = (ka, kb, . . . ), where
ka represents the effect of hi on the a-spins. Eq (6) be-
comes:

E = −
∑
i

∑
j∈∂i

Sj
tJ̄Si −

∑
i

hiKSi (7)

To get patterns typical of reaction-diffusion, we also
introduce spin type dependent interaction range ra. An
a-spin now acts on its neighboring sites up to a distance
ra, including itself. We denote by ∂ia this set of spins (e.g.
∂ia = [i − ra : i + ra] on a 1D chain). The interaction
parameters are re-scaled using the volume V∂ia , which is
the number of sites in ∂ia (e.g. V∂ia = 2ra + 1 in 1D).

We notice that only the average values Jab+Jba
2 are

important in the determination of the equilibrium state
of Eq (7), obtained at finite temperature T 6= 0 using
e.g. the Metropolis algorithm [21]. However, the matrix

J̄ needs to be effectively asymmetric to reproduce the
asymmetry of the reaction constants φab leading to the
formation of interesting patterns. We thus take a step
further from [18] by implementing parallel dynamics in
our model, similarly to kinetic asymmetric Ising models
[22, 23], making it a non-equilibrium model.

At each time step t, we calculate an effective field
heff
ia (t) influencing the sia spin:

heff
ia (t) =

∑
b

 Jba
V∂ib

∑
j∈∂ib

sjb(t)

+ kahi − h0. (8)

where we introduce h0 an homogeneous external gradi-
ent.

All spins are then updated to give the configuration at
time t + 1 according to the following probability distri-
bution:

P (sia(t+ 1)) =
e−βh

eff
ia (t)sia(t+1)

2 cosh(βheff
ia (t))

, (9)

where β = 1/T . The temperature T accounts for the
noisiness of the system.

V. MODEL COMPARISON

The SRDA and ADIM are both governed by Marko-
vian dynamics and share important features: asymmetry
of the coupling matrices and locality of the interactions
(see App. A for the detailed numerical implementation).
In the ADIM however, local reactions and transport are
merged in nearest neighbors interactions. Still, many pa-
rameters appear to have similar roles: J̄ and Φ, k and κ,
h0 and θ0, and r and σ, as presented Table I. Two pa-
rameters are nevertheless model specific: the degradation
rate ε and the temperature T .

We wish to investigate the similarity in patterns that
can be obtained by confronting the two models. We study
the case ns = 1, which corresponds to a classical Ising
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TABLE I. Correspondence between parameters

SRDA ADIM

Diffusion constant σ r Interaction range

Reaction constant φ̄ J̄ Interaction strength

Reaction constant
with gradient

κ k
Coupling with linear

field

Activation threshold θ0 h0
Homogeneous
external field

Degradation ε = 0.5

Noise T=1 Temperature

model under a space-dependent external field. We fix
T = 1 in the ADIM since this temperature gives the
most direct equivalence with Eq (2) (see App. B.). For
the sake of simplicity, we fix ra = σa = 1 so that only
between nearest neighbors interact and we choose the
space-dependent external field to be linear. In this con-
ditions, we show by a calculation using the homogeneous
solutions in mean-field approximation (see App. B) that
the degradation rate that gives the best mapping between
interaction parameters in both models is εopt = 0.5.

Fig 2-a-d presents the mean concentration 〈c∗〉 and
the magnetization M of the patterns obtained by the
SRDA and ADIM in the planes (φaa, κa) and (Jaa, ka)
with h0 = θ0 = 1. They represent the fraction of time
during which a is being produced or spins sa are up,
averaged over each positions. For all probed regions of
the parameter space, very similar patterns are observed
for both the ADIM and the SRDA. Two broad zones of
〈c∗〉 = M = 1 and 〈c∗〉 = M = 0 correspond to full acti-
vation (Fig 2-N) and full inhibition (Fig 2-H). Transition
between theses two states can be done either through the
formation and displacement of a sharp boundary (Fig 2-
�), corresponding to strong inhibition by the external
gradient and auto-activation, or by the appearance and
intensification of a smooth gradient-like pattern (Fig 2-
�), corresponding to a gradient activation balanced by a
null or very low auto-inhibition.

Yet, the sharpness of the �-pattern is different in both
models. Intuitively this sharpness depends on the corre-
lation length of the system. The difference in patterns
thus reflects a quantitative difference between the roles of
the diffusion coefficient and the interaction range. Fig 2-
e represents the evolution of the �-pattern in SRDA and
ADIM as a function of respectively on σa and ra. The
maps confirm that σa and ra are the spatial parameters
that control the boundary sharpness. In both models,
increasing these parameters causes an increase in the cor-
relation lengths and thus a decrease of the border sharp-
ness. It is therefore possible to choose a value for ra for
which the slope exactly matches the slope obtained for
any given value of σa (see App. C for more discussion on
this matter).

FIG. 3. 2D ADIM simulations on 128x128 periodic square
lattice with h0 = 1, ra = 1, rb = 5, Jaa = 13, Jbb = 0,
Jab and Jba varying, and T = 1. Dark red corresponds to
sa = 1 and pink to sa = 0. A variety of Turing-like patterns
is observed including ”maze” F and ”bubbles” •.

VI. TURING PATTERNS IN THE ADIM

In light of these similarities between SRDA and ADIM
in the case ns = 1, we now look at the case ns = 2 with
no external gradient and try to reproduce Turing pat-
terns. To investigate a richer variety of Turing patterns,
we also switch to 2D with periodic boundary conditions.
A main feature enabling Turing instabilities in reaction
diffusion models is the difference of diffusion coefficients
for both species. Likewise, the ratio rb/ra, where a is
the activator spin-type and b is the inhibitor spin-type,
needs to be large enough to form patterns of different
spin orientations. 2D patterns as a function of the inter-
actions Jab > 0 and Jba < 0 are presented in Fig 3-a for
ra = 1 and rb = 5, on a 128×128 square lattice. A subtle
trade-off between the values of the interactions gives rise
to different types of patterns, including ”maze” F and
”bubbles” •. These two patterns are used for further
analysis in the next part.

To quantitatively study the 2D patterns obtained with
our ADIM, we compute the discrete 2D Fourier Trans-
form (FT) of sa on our periodic square lattice of linear
size n:

s̃a(qx, qy) =

n−1∑
x=0

n−1∑
y=0

e−
2iπ
n (xqx+yqy)sa(x, y) (10)

These patterns have one characteristic length resulting
in a circular distribution in the reciprocal space (Fig 4a).
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FIG. 4. (a): (i) 128×128 zoomed snapshots of the ”maze” pattern obtained in simulations on 512×512 periodic square lattices
with ra = 1 and rb = 1, 5, 10, 20 (Dark red corresponds to sa = 1 and pink to sa = 0). (ii) The corresponding 2D Fourier
Transforms averaged over n = 20 independent simulations. (b) The value of the typical length LΛ/ra of the patterns as a
function of the ratio rb/ra for different values of ra.

The FT gives two quantities: the pseudo order parameter
Λ and the characteristic length LΛ. We average s̃a over
circles of radius q to get the mean intensity λ(q) and
define the order parameter Λ = λ(qpeak) as the peak value
of these curves. The corresponding characteristic length
in the direct space is LΛ = 1

qpeak
. For illustration, Fig S2

shows the λ(q) curves at different temperatures for both
”maze” and ”bubbles” patterns.

We first investigate the role of rb in the emergence of
patterns for a fixed ra = 1. Fig 4a shows the ”maze”
pattern and its FT for different values of rb. While there
is no pattern for small values of rb, maze patterns appear
for higher values. Computing LΛ/ra for rb ranging from
1 to 25 we conclude that the maze pattern appears for
rb ≥ 3 (Fig 4b). The characteristic length of the pattern
increases linearly with rb with a coefficient close to 1.
For higher values of ra, LΛ/ra increases linearly with the
ratio rb/ra with the same coefficient. We conclude that
if one takes ra as a unit length, the behavior of adimen-
sional quantities LΛ/ra and rb/ra is independent of the
lattice spacing. When the lattice spacing becomes small
compared to the characteristic length ra we can refine
the value of the ratio rb/ra for which patterns appear.
In this case we find that this value tends towards 2.

We next investigate the effect of temperature on the
stability of these patterns using the pseudo order param-
eter Λ defined above. In infinite-range interacting Ising
models at equilibrium, phase transitions between smec-
tic, nematic or liquid phases can occur when T varies
[24]. Here, the various patterns do not break any sym-
metry and no such phase transition can occur. Fig 5
shows Λ for different system sizes and different tempera-
tures. A dynamic crossover occurs between a patterned
and a disordered phase for both patterns, albeit at differ-
ent temperatures. The crossovers do not depend on the

lattice size, thus excluding potential finite size effects.
In the Ising model, the temperature reflects thermal

noise, whereas in a reaction diffusion system, noise is
related to the number of molecules: a lower number leads
to larger relative fluctuations in the local concentrations.
Molecular dynamics studies point out the importance of
fluctuations for the emergence of Turing patterns [25].
Our results on the stability of patterns with temperature
suggest on the other hand that if the number of molecules
becomes too small (corresponding to high temperatures,
hence high fluctuations) the patterns could disappear.

VII. CONCLUSION

To summarize, using a embryo-genesis-inspired map-
ping between an Ising model and a reaction-diffusion au-
tomata, we have constructed the ADIM, a finite-range
out-of-equilibrium Ising model that can give rise to Tur-
ing patterns with a typical length scale of several lat-
tice spacings. Such Turing patterns had previously only
been observed in infinite-range Ising models. It is worth
noticing that our variant of the Ising model can be seen
as a cellular automata featuring rules similar to the ones
which can be derived from reaction-diffusion equations
(see for instance [26]). Our approach shows that a dis-
crete toy model with different ranges of interaction and
an asymmetry in the interaction coupling between species
is sufficient to produce Turing-like patterns.

Appendix A: Numerical methods

ADIM— The system is composed of NS sites. On
each site is associated ns spin types. Parallel dynamics



6

FIG. 5. (a) Pseudo order parameter Λ as a function of temperature for ”maze” (F) and ”bubbles (•) patterns issued from
Fig 3. (b) Snapshots at different temperatures of the corresponding patterns.

is implemented as follows.
We initialize the system at t = 0 by randomly attribut-

ing a value 0 or 1 at each of the ns ×NS spins. At each
time step t we calculate the effective field heff

ia (t) for each
a-type spin on each site i:

heff
ia (t) =

∑
b

 Jba
V∂ib

∑
j∈∂ib

sjb(t)

+ kahi − h0, (S1)

where Jba is the action of b-spins on a-spins, hi the value
of the space dependent external magnetic field at site
i, ka the coupling between h and a-type spins and h0 a
global external field. ∂ib designates the nearest neighbors
of spin sib, defined by the interaction range rb for b-spin
type such as ∂ib = {j, |j− i| < rb} and V∂ib = Card(∂ib).

We calculate the corresponding Boltzmann probabili-
ties:

P (sia(t+ 1) = 1) =
eβh

eff
ia (t)

2 cosh(βheff
ia (t))

(S2)

where β = T−1 is the inverse temperature.
In 1D, the simulation runs at a fixed temperature T .

In 2D, the stationary state is calculated using a simulated
annealing (SA) to avoid freezing in configurations with
long relaxation times.Cooling strategy is exponential:

TSA(t) = T0 × at (S3)

with 0 < a < 1.
The spins at time t + 1 are simultaneously chosen ac-

cording to these probabilities. The operation is repeated
during nt time steps, and in case of SA, a is chosen so

that TSA(nt) = T , ie a =
(
T
T0

)n−1
t . Then the simulation

is pursued and recorded for nrec time steps. Finally 〈sia〉

is obtained by averaging over the nrec recorded configu-
rations. Typically, nt = 250 and nrec = 50.
SRDA— The system is composed of NS sites at which

is associated ns specie concentrations ca. Each concen-
tration is randomly chosen at t = 0 between 0 and 1.
Each time step is subdivided in 3 events as presented in
the main text.

This is repeated for nt time steps to reach the station-
ary state. Then each concentration is normalized by cmax

to obtain 0 < c∗ia < 1. Typically, nt = 200.
In both models, the boundary conditions are set to

reflecting in the case 1D to have gradient-dependent pat-
terns. In the 2D ADIM, we choose periodic boundary
conditions.

Appendix B: Determination of εopt using
homogeneous stationary solutions

We use here the homogeneous steady state solutions in
mean-field approximation for both models to establish a
relationship between parameters in the case of one specie
a (ns = 1), and more specifically to find the optimal value
εopt for which both model lead to the same patterns for
equal network parameters.
ADIM— The mean-field approximation for the ADIM

is (see Eq.(9)):

〈sia〉 =
1

1 + eβ〈h
eff
ia 〉

(S1)

For only one spin type a (ns = 1):

〈sia〉 =
1

1 + e
β
[
Jaa
V∂ia

∑
j∈∂ia

〈sja〉+kahi−h0

] (S2)
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FIG. S1. Correspondence between ra using the sharp-boundary pattern introduced in main text (see Fig 2). (a) Increasing
the spatial parameters σa and ra decreases the boundary sharpness. (b) Quantitative evaluation of the sharpness by fitting
the boundary interface by an aff ine function. (c) σa and ra as a function of the measured sharpness are fitted by power laws
y = a

xb
. For any given sharpness, σfit

a and rfit
a can be calculated using these fits. (d) rfit

a as a function of σfit
a .

Since we consider a homogeneous state and we are in 1D,∑
j∈∂ia〈sja〉 = (2ra + 1)〈sia〉 and V∂ia = 2ra + 1, leading

to:

〈sia〉 =
1

1 + eβ
[
Jaa〈sia〉+kahi−h0

] (S3)

SRDA— In the mean-field approximation for the
SRDA model, we average over several realizations of time
evolution for each time step. Thus, we replace the prob-
abilistic increment of the production step (Eq (2)) by a
deterministic one:

cia(t′) = cia(t) +
1

1 + e−ua(ci,gi)
. (S4)

By combining this new equation to the two other events
(diffusion (Eq (4)) and degradation (Eq (5)) ), we get:

cia(t+1) = ε

[ ∑
|j−i|<2σa

Gσa(|j−i|)[cja(t)+
1

1 + e−ua(cj)
]

]
(S5)

In the classical PDE reaction-diffusion approach as de-
fined in Eq (1), searching for an homogeneous steady
state equates to look for the solution of Ra(c, g) = 0
since ∂tca = 0 (steady state) and ∇2ca = 0 (homoge-
neous). In our SRDA, the homogeneity translates in ∀j
cja(t) = cia(t), and using the fact that

∑
r<2σ Gσ(r) = 1,

we obtain:

∑
|j−i|<2σa

Gσa(|j − i|)[cja(t) +
1

1 + e−ua(cj)
] = cia(t′)

(S6)
which leads to a simplification of Eq (S5) :

cia(t+ 1) = ε

[
cia(t) +

1

1 + e−ua(ci,gi)

]
(S7)

Being at steady-state cia(t + 1) = cia(t), and using
cmax = ε

1−ε , we retrieve c∗ :

c∗ia =
1

1 + e−ua(Ci)
(S8)

For ns = 1:

c∗ia =
1

1 + e

[
φaa

c∗
ia

(1−ε)
ε +κagi−θ0

] (S9)

Optimal mapping value of ε— Eq (S9) and Eq (S1) are
combined to search for the solution of 〈sia〉 = c∗ia, leading
to:

β
[
Jaa〈sja〉+ kahi − h0

]
=
φaaε

1− ε
c∗ia + κagi − θ0. (S10)

For β = T−1 = 1, identical network parameters (Jaa =
φaa, ka = κa and h0 = θ0) and under the same external
gradient (hi = gi), we get:

〈sia〉 =
ε

1− ε
c∗ia. (S11)

Finally, we obtain the optimal degradation parameter
ε for which both models gives equivalent homogeneous
steady-state for equivalent parameters, as presented in
the results of the main content of this letter Fig 2 :

ε = 0.5 (S12)

Appendix C: Equivalence between σa and ra

To evaluate the correspondence between σa in the
SRDA and ra in the ADIM we use the sharp bound-
ary pattern presented in the main text for ns = 1 under
a linear external gradient. This pattern appear when
the spin/gene activates itself but is repressed by the gra-
dient (Jaa = 7 and ka = −5). As seen in the main
text and shown again in Fig S1-a, as σa or ra increases,
the sharpness of the boundary decreases. We first mea-
sure this sharpness by fitting the boundary interface
(0.2 < c∗a, 〈sa〉 < 0.8 ) by a affine function of the po-
sition (Fig S1-b). The slope defines the sharpness of the
boundary. Both the diffusion constant σa and the inter-
action range ra as a function of sharpness are fitted by
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FIG. S2. (a), (c): (i) Snapshots of patterns in 128 × 128 periodic square boxes for T = 0.5, 1, 2, 3 for respectively ”maze”
and ”bubbles” patterns introduced in main text (Dark red corresponds to sa = 1 and pink to sa = 0) and (ii) 2D Fourier
transforms of theses patterns averaged on n = 100 independent simulations. (b), (d): Mean value λ(q) of the FT over circles
of radius q over different temperatures between 0 and 3. The peak value of this distribution gives us the order parameter Λ.
The corresponding length in direct space LΛ is the characteristic length of the pattern.

power laws y = a
xb

(Fig S1-c). From these fits we cal-

culated σfit
a and rfit

a for any given sharpness and plotting

rfit
a as a function of σfit

a gives us a equivalence between
ra and σa (Fig S1-d).
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