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Engineering the propagation of water waves is a crucial challenge for potential applications at oceanic scale. Despite
their apparent complexity, they do not fundamentally differ from any other kind of physical wave. Similarly to recent
approaches in optics or acoustics, we propose to artificially manufacture materials at the sub-wavelength scale to modify
the propagation characteristics at will. We demonstrate that hydroelastic waves allow for straight-forward control of the
medium properties as well as quantitative measurement of the full wave field. We investigate propagation in hydroelastic
metamaterials made from periodic arrays of tunable resonators. We fully characterise the band structures of such
materials, revealing the coexistence of Bragg and hybridisation band gaps. We also introduce a theoretical approach
to model this complex system and predict its band structure. These unprecedented experimental and theoretical results
reveal the possibility to efficiently control water waves at the laboratory scale.

Engineering water waves propagation is a crucial challenge
as the potential applications at oceanic scale are tremendous.
For example, they transport important quantities of energy,
their instantaneous power being typically 40 kW per m of
coast1. As water waves are primarily waves, one can think
of adapting strategies that have been implemented in optics,
acoustics or electromagnetism. The recent development of
metamaterials is thus particularly appealing2, as striking prop-
erties such as negative refractive index3, superlensing4,5 or
cloaking6 can be achieved. Some of these strategies have al-
ready been applied to water waves7–15, but they face practical
constraints that limit both large scale applications and small
scale laboratory studies. As a workaround, we propose to use
a floating elastic membrane added at the air-water interface
that provides a means to control the propagation medium and
suppresses issues with free-surface (fig. 1 (a)). The resulting
so-called hydroelastic waves16–19 are described by the follow-
ing dispersion relation: in the limit of large wavenumber k,
the angular frequency ω follows ω2 = D/ρk5 with D the flex-
ural modulus, ρ the fluid specific gravity (see fig. 1 (c) and
suppl. mat. for a full derivation in the general regime). Such
an approach allows for sub-wavelength focusing of the sur-
face waves20. Here, we investigate experimentally concepts
primarily inspired by solid state physics21 and extended later
to optics and acoustics22 where a periodic modulation of the
medium’s properties prohibits the propagation in certain fre-
quency ranges, called bandgaps. When the modulation is pro-
vided by scaterrers, one obtains Bragg gaps (fig. 1 (d)) whose
frequency is selected by the pitch a of the lattice. On the other
hand, a random lattice of resonant scatterers exhibits a hy-
bridisation band gap centered on the resonance frequency f0,
with a width set by the quality factor Q of the resonators (fig.
1 (e)). Here, we obtain a medium’s modulation by creating a
regular lattice of resonant scaterrers in the membrane, namely
circular holes, as shown in fig. 1 (b). We first study the be-
havior of a single resonator and then put hundreds of these on
a regular square lattice. We measure very accurately the band
structure of the lattice and we show the coexistence of differ-
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ent types of bandgaps, namely Bragg bandgaps and hybridi-
sation bandgaps, due to scattering in the structure and local
resonances, respectively (fig. 1 (f)). We then predict these dis-
persion relations with a theoretical approach combining Fano
resonance and multiple scattering.

FIG. 1. (a) Sketch of the experimental set-up, with a perforated float-
ing membrane and a vibration exciter (see methods for details). (b)
Detail of one of the resonant crystal studied. The diameter of each
perforation is 4 mm and the distance between them is 1 cm. (c)
Dispersion relation of hydro-elastic waves propagating in a floating
membrane (ρ = 970 kg/m3, E = 1.47± 0.09 MPa, h = 300 µm).
(d) Dispersion relation for hydroelastic waves with a square lattice
of scatterers with lattice constant a. The lattice periodicity implies
the existence of a Bragg band gap, here denoted in blue, and whose
size depends on the cross section of each scatterer. (e) Dispersion
relation for hydroelastic waves with resonators randomly distributed
in space. Here the size of the gap, denoted in red, depends on the
quality factor Q of the resonator, while its central frequency is set by
the resonance frequency f0. (f) Dispersion relation for hydroelastic
waves with resonators distributed on a regular lattice. It exhibits both
Bragg and hybridisation band gaps, with frequencies respectively se-
lected by lattice pitch a and the resonance frequency f0.
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The experimental setup we use is similar to what we de-
scribed previously20. We fill a glass tank (80 cm × 40 cm ×
20 cm) with water to a depth of h0 = 16.5 cm. We cover the
water surface with an elastic sheet of thickness e = 300 µm
and dimensions 75 cm × 35 cm. It is made of an optically
transparent silicone rubber, which has a Young’s modulus of
E = 1.47±0.09 MPa, a density of ρs = 970kg/m3 and a Pois-
son’s ratio of ν = 0.5. This elastic film floats freely at the
surface of water so that the mechanical tension T applied to
it reduces to the water surface tension T = σ ' 50 mN/m.
We then structure the elastic sheet by punching circular holes
(from one to up to several hundreds). We typically use perfo-
rations of diameter 3 mm or 4 mm, and the distance between
each perforation is about 1 cm. The waves are generated using
a vibration exciter (Bruel and Kjaerr 4809), driven by a wave-
form generator and a power amplifier. We work with small
amplitudes (ζ � λ and ζ � e) to ensure the waves are in the
linear regime and that the thin membrane limit is valid23. To
characterize the full frequency response of the artificial crys-
tal we generated frequency sweeps between 2 Hz and 150 Hz
at a rate of about 0.3 Hz/sec, which we checked to be small
enough not to bias the measurement.

The wave fields were measured using standard synthetic
Schlieren optical techniques24,25. This consists in measuring
the apparent deformation of a known pattern due to refraction
at the liquid-air surface. We take images of the pattern from
the top, through the tank, the water and the polymer. Using
ray optics, one can calculate the local slope at the interface θ

as a function of the apparent displacement δr :

θ =−δr
h∗

, where
1
h∗

=
1

(1− nair
nwater

).h0
− 1

H
, (1)

and h0 is the water depth, H the distance between the pat-
tern and the camera, nair is the air refractive index and nwater
that of water. After reconstruction, we obtain 2D elevation
fields (255 X 255 points) and we are able to measure ampli-
tudes down to ζ = 1 µm (see Supp. Video 5 (multimedia
view)). We then use Fourier filtering both in time and space
to extract the spectra in the direction of propagation at a given
frequency. We then concatenate this information for each fre-
quency so as to extract the dispersion maps.

To understand how waves propagate in the artificial
medium we have created, we first investigate the frequency
response of a single perforation. We punch one circular hole
with diameter 1 cm in the middle of a homogeneous elastic
sheet and send plane waves towards it, as schematically shown
in figure 2(a). We send plane waves between 5 Hz and 60 Hz
on the perforation, and measure the surface elevation inside
the perforation as well as around it, on a distance of about 5
cm. An example of measured height field is shown in figure
2(b), where we denote the edge of the cavity with a red circle.
We see that the amplitude inside the perforation is larger than
in the sheet, which is expected for a free surface. We then
average the amplitude over the whole cavity surface to ana-
lyze the frequency response and identify possible resonances.
We report in figure 2(c) (top panel) the height fields measured
experimentally for five frequencies (16.6 Hz, 25.9 Hz, 33.4,

FIG. 2. (a) Sketch of the floating membrane with a single perforation
and an incident plane wave. (b) Height field measured experimen-
tally at 45 Hz, showing the edge of the perforation of diameter 1
cm (red circle). (c) Comparison between experimental (upper panel)
and analytical (lower panel) modes in the circular cavity. Results are
normalised by their individual maximum amplitude.

Hz, 40.3 Hz and 47.7 Hz) corresponding to peaks in the av-
eraged frequency response of the hole. We compare them to
the expected modes for a circular cavity with rigid walls and
Dirichlet boundary conditions. The eigenmodes for the wave
equation in a circular cavity are Bessel functions of the first
kind that oscillate at the frequency ω =

vϕ αmn
R , where αmn is

the nth zero of the Bessel function Jm, vϕ is the phase veloc-
ity of the waves and R is the radius of the hole (see Suppl.
Mat.). The dispersion relation valid inside the perforation is
that of gravity capillary waves26. We represent these Bessel
functions in the lower panel of figure 2(c), where we only
show the modes [0,1], [1,1], [2,1], [0,2] and [1,2] (from left
to right). We observe an excellent agreement with the mea-
sured height field, suggesting that the perforations behave as
circular resonant cavities indeed. However, we denote a dis-
crepancy between some of the predicted and the measured
frequencies. This might be due to the fact that the assump-
tion of rigid walls and of fixed boundary conditions is clearly
not met here: the outside membrane is deformed by the in-
coming wave, and the contact line pins at different heights at
the edge of the hole. Despite this disparity, the perforations
in the membrane behave, as we expected, as resonators with
eigenfrequencies tuned by their diameter.

We now study wave propagation in a material made of
10×20 perforations organised on a square lattice with spacing
a as shown schematically in figure 3(a). We excite this artifi-
cial crystal with quasi plane waves between 5 Hz and 140 Hz,
and record the height field for each frequency. We show in
figure 3(b) a typical wave field measured at 60 Hz for a lattice
made of holes of diameter 4 mm and with a lattice constant
a = 1 cm. At this frequency, we observe the coexistence of
two wavelengths in the crystal : one short wavelength (about
1.2 cm), equal to the one in the homogeneous elastic sheet
and which propagates from left to right, and one larger wave-
length (about 4.2 cm), that propagates from right to left (see
Supp. Video 5 (Multimedia view)). To capture the behav-
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FIG. 3. (a) Sketch of the experiment showing 10 × 20 circular per-
forations organised on a square lattice. The grey dashed line denotes
the edge of the crystal. (b) Wave field obtained at 60 Hz. The square
crystal is delimited by the dashed line. Waves propagated from left
to right (see Supp. Video 6 (Multimedia view)). The scale bar is
5 cm. (c) Amplitude measured inside the crystal (averaged over a
large area avoiding the edges) as a function of frequency. (d) Map of
the dispersion relation measured in the crystal (see text for details).
The vertical dashed lines represent the edges of the Brillouin zones
and the horizontal line corresponds to the frequency of the wavefield
represented in (b).

ior of the perforated lattice on the entire frequency range we
tested, we measured the amplitude of the waves averaged over
a large area in the lattice (avoiding the edges). In other words,
we are computing the effective density of states of our system.
We plot in figure 3(c) this average amplitude against the fre-
quency. We see several local minima in the curve, meaning
that for some frequencies (denoted by arrows in figure 3(c)),
the wave amplitude in the lattice decreases significantly.

To better understand the origin of these gaps and of the
counter propagating wave, we perform 2D Fourier transforms
at each frequency to isolate the spatial spectra of the waves
propagating in the lattice. We only keep wavenumbers in the
direction of propagation of the incoming wave27, we can then
build a map of the experimental dispersion relation by ’stack-
ing’ these spatial spectra for all frequencies. This dispersion
relation is presented in figure 3(d), where we draw vertical
dashed lines at the edge of each Brillouin zone. The pixel
color denotes the intensity for the signal, so that we can re-
cover the band structure of the lattice from the lines seen in
the figure. We can only measure curves with positive slopes
as they are the ones corresponding to a positive group veloc-
ity. We attribute the apparent negative slope at low frequency
and negative wavenumber to reflexion on the right wall of the
water tank. The band structure is not continuous : bands with
very low amplitude can be seen around 22 Hz, 42 Hz, 70 Hz
and 110 Hz. When comparing the band structure (fig. 3(d))
to the frequency spectrum (fig. 3(c)), one can see the band-
width of these gaps. The first gap, around 22Hz, has a rela-
tively small bandwidth, and corresponds to the avoided cross-
ing of two bands at the edge of the first Brillouin zone ; it is
a Bragg band gap. The other three gaps at higher frequencies
(42 Hz, 70 Hz and 110 Hz) are markedly different : their band-

width is larger, and the orientation of the bands is opposite to
that of the Bragg bandgaps (the curvature of two branches on
each side of the gap now have the same sign). These are the
hybridisation bandgaps due to the resonances of each cavity.
Last, we can go back to our experimental wavefield (fig. 3(b))
taken at 60 Hz and explain the two wavelengths we observe.
The forward propagating wave corresponds to the band on the
right of the axis k = 0, which has the same wavelength as the
waves in the homogeneous sheet (outside the dashes rectangle
in fig. 3(b)). The backward propagating wave corresponds to
the branch on the left, for which k is negative. Because vϕ = ω

k
is negative (while vg =

dω

dk stays positive) the wave propagates
backwards, here from right to left.

By changing the properties of the lattice (namely the lat-
tice constant and the size of the perforations) we can now de-
sign lattices with tunable bandgaps. We report in figure 4 (left
panels) the dispersion relations measured for three different
lattices. Here we symmetrise the map with respect to the axis
k=0 to highlight the band structure (the band structure in fig-
ure 4(a) is the symmetrised version of the one in figure 3(d)).
We first study the effect of changing the size of the perfora-
tions : we create a lattice with smaller circular holes (diameter
3 mm) with the same spacing a =1 cm. Its measured disper-
sion relation is shown in figure 4(b). As expected the Bragg
bandgap is located at the same frequency, ie. 22 Hz, since it
is set by the lattice constant only. However, the hybridisation
bandgaps open at higher frequencies, here 68 Hz and 100 Hz.

Alternatively, we can change the distance between the per-
forations without varying the size of the holes. To test this
we created a lattice made of perforations of diameter 4 mm
distant of 8.25 mm (fig. 4(c)). It exhibits a Bragg bandgap
at the edge of the first Brillouin zone at about 38 Hz, higher
than the previous value of 22 Hz. However, one would expect
the hydridization bandgaps to appear at the same frequency
whatever the spacing between the perforations, whereas here
we observe the opening of the two hybridisation bandgaps at
higher frequencies (60 Hz and 82 Hz) than the frequencies
measured for a larger lattice constant (42 Hz and 72 Hz, see
fig. 4(a)). Here again, we attribute this difference to near field
coupling between resonators, which shifts their resonance fre-
quencies, a phenomenon already observed in optics28 or with
EM waves29. We are thus able to create materials with several
bandgaps, whose frequency we can tuned at will.

We work with 2D materials but we only probe them in one
direction. We can thus use the framework of 1D materials
to model wave propagation in our system. Inspired by pre-
vious work on acoustics metamaterials22,30,31, we use reso-
nant point scatterers to model the circular perforations in the
floating membrane32, assuming that their typical size is suf-
ficiently small compared to the wavelength. For each res-
onance, their frequency response is described by a Lorentz
function, and each object has several eigenmodes, which leads
to several resonance frequencies. With this we can write the
amplitude and phase of the wave T transmitted downstream of
the resonator. We combine this approach to multiple scatter-
ing theory by using the transfer matrix formalism (see model
in Suppl. Mat. for details). Seeking solutions in the form
of Bloch waves, and including dispersion by introducing the
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FIG. 4. Band structures measured for three different lattices with dif-
ferent lattice constants a and different hole diameters d, as schemati-
cally shown in the sketches above each band structure. The left pan-
els correspond to the experimental measurements, the right panels to
the prediction from eq.2 with the following parameters: (a) a = 1 cm,
d = 4 mm, ω0 = 50 Hz, Q0 = 10, ω1 = 80 Hz and Q1 = 20, (b) a =
1 cm, d = 3 mm, ω0 = 65 Hz, Q0 = 10, ω1 = 100 Hz and Q1 = 10
(c) a = 8.25 mm, d = 4 mm, ω0 = 55 Hz, Q0 = 10, ω1 = 80 Hz and
Q1 = 20.

hydroelastic wave velocity c(ω) obtained from the dispersion
relation20, we can compute the analytical band structure of our
systems :

coska = Re
(

1
T

e− j ω
c a
)
. (2)

We solve this equation numerically and we show in figure
4 (right panels) the resulting band structures, shown in direct
comparison with the measured band structure. One can read-
ily see that our simple model captures well the characteristics
of the dispersion relation : the bandgaps are correctly pre-
dicted, as well as the band curvature on each side of the gap,
confirming the nature of the latter. We can even understand
the propagation of waves in 2D, which we study by exciting
a crystal with a plane wave with a non-zero incidence. We
illustrate this further in the Suppl. Mat., where we separate
different modes to highlight the effect of the periodicity of the
crystal.

In this work, we introduce a macroscopic experimental ap-
proach that allows for direct tuning and measurement of wave
propagation inside artificial resonant crystals. Using hydroe-
lastic waves, we are able to design periodic structures exhibit-
ing both Bragg and hybridisation band gaps. We fully charac-
terize the properties of these artificial structures and propose
a modelling that describes our experimental findings. No-
tably, our system offers promising perspectives in terms of
applications : scaling up this approach of hydroelastic waves
at oceanic scale could offer unprecedented control of water
waves in order to protect coast or concentrate water wave en-
ergy upon harvesting devices.

In addition, our experimental system opens enticing per-
spectives to study wave propagation, to reveal analogies with
solid state physics and more generally to uncover new phe-
nomena. Hydroelastic waves could be used to probe system-
atically the physics of 2D periodic media as well as to design

macroscopic topological materials. In particular, the usual
bottlenecks met when attempting to control electromagnetic
waves (i.e. controlling the medium properties, manufactur-
ing objects at the scale of the wavelength, measuring quanti-
tatively the wave amplitude) are readily circumvented by the
use of macroscopic water waves.

Supplementary material. – See supplementary material for
the complete description of the experimental set-up, the de-
tailed presentation of the theoretical approach we developed
and for an example of a refraction at a square lattice inter-
face with non-zero incidence. Supplementary videos show the
measuring technique used (Supp. Video 5 (multimedia view))
and the propagation of waves in a square lattice for a zero-
angle incidence (Supp. Video 6 (multimedia view)) and for a
non-zero incidence (Supp. Video 7 (multimedia view)) .
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