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I. Introduction. When the nuclear charge grows, 
the appropriate treatment of molecular systems 
needs to perform relativistic calculations based 
on the exact Hamiltonian. However, the 
relativistic effective core potential (RECP)[1], and 
especially the pseudopotential (PP)[2], has 
gained popularity as an approximate 
quasirelativistic method. The intent is to 
drastically reduc the computational cost by 
avoiding the expensive explicit treatment of the 
chemically inert core electrons of the heavy 
atoms. Owing to a significant reduction in the 
number of basis functions and a straightforward 
form of the Hamiltonian employed, the 
approach makes it possible to deal with large 
sized systems while retaining a high degree of 
reliability for the all-electron calculations.[3,4]   
However, some troubles in the scalar field of 
the electron density appear within inner regions 

where electrons are explicitly replaced by PPs 
and also in the border regions where the 
pseudopotential and the all-electron 
wavefunction coincides.[5-7] For instance, it may 
lead to either the absence of a bond critical 
point (CPs) or to the presence of numerous 
spurious CPs leading to the appearance of non-
nuclear maxima and also to unreasonable 
electronic properties even outside of the core 
regions. Similar pathologies in the electron 
localization function (ELF)[8] field can be also 
observed. Hence, it makes quantum chemical 
topology analysis very difficult without a 
recovery of core regions. Amongst other things, 
it was shown that the interatomic flux null 
surfaces of the quantum theory of atoms in 
molecules (QTAIM)[9,10] can become very wrong. 
Thus, substantial numerical errors are made 
when integrating the core regions of heavy 
atoms and erroneous energetic contributions 
are obtained in the context of the interacting 
quantum atoms (IQA)[11,12] method. As is 
generally known, these failures can be cured by 
augmenting the valence density with electron 
density functions of atomic core electrons.[5,13-

15]  
In the scientific literature,  there are 

several ways for correcting the coreless 
densities[5,11,13-16], but typically, the additional 
atomic density is generated from new core 
orbitals obtained from additional ab initio 
calculations, the latter being orthogonalized to 
the valence ones. Several implementations have 
been proposed and data libraries are also 
available.[17] However, this process produces 
new orbitals generated from a different level of 
theory and, the method presents also some 
compatibility issues with the relativistic 
wavefunction where spinors are used instead of 
molecular orbitals. Spinors are typically two- or 
four-component complex functions produced 
by relativistic calculations.  
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It has been reported in the literature[16] 
that it may be possible to use a crude core 
density by considering only a tight normalized 
frozen s-type Gaussian function, 

          
             

    
               

which integrates to the number of ECP-modeled 
core electrons   

     for the atom A. In the case 
of heavy elements where small-core ECPs are 
used, the performance of this function to 
restore the core density remains impressive 
compared to more realistic methods previously 
discussed. However, for large-core ECPs or 
lighter elements, the performance appears 
clearly less accurate.[16]  

In this work, we explore how  
parametrized single s-type functions could be 
used to efficiently fulfill the coreless electron 
density for all atoms of the periodic table, 
whether small-core or large-core ECPs, at any 
level of theory, including quasirelativistic ECP. 
The methodology needs also to be tailored to a 
crude analysis of three-dimensional grids where 
the electron density has been only calculated 
for each grid point. In addition, attention has 
also been focused on restoring the inner shells 
of the electron localization function (ELF).  

II. Sketch of Quantum Chemical Topology. 
In this article, we assume that the reader is 
familiar with the quantum chemical topology 
(QCT) of scalar fields because numerous 
presentations of the method and many 
applications have already been published in the 
literature. [18-24] Briefly, the purpose is to answer 
general questions about the chemical bonding 
in molecules or solids, and predict or explain 
the chemical reactivity trends. In a QCT analysis, 
a partitioning of the molecular space into 
subsystems (basins) is achieved by applying the 
theory of dynamical gradient systems to the 
properties of the scalar function. The basins are 
localized around the maxima of the function 
and are separated by the zero flux surfaces. In 
the quantum theory of atoms in molecules the 
function considered is the one electron density 

and these basins are associated with each of 
the atoms in the molecule. The topology of the 
gradient field is characterized by its critical 
points (CP), where the gradient of the electron 
density is zero, and by their connectivity. CP can 
be either maxima (3,-3), minima (3, 3) or saddle 
points. Among the saddle points, the termed 
bond critical point (3, -1) (BCP) has a crucial role 
because it connects two maxima by only a 
trajectory of the gradient field (the bond path). 
Further insights into the chemical bond can be 
gained by means of topological descriptors 
calculated at the BCP. More elaborate scalar 
fields can be used such as the electronic 
localization function of Becke and 
Edgecombe[8,25] which is typically interpreted as 
a signature of the electronic-pair distribution.[26] 
 
III. Theory. Overall, the coreless electronic 
density ρ(r)val arising from a pseudopotential 
calculation can be augmented by adding all-
electron core atomic density ρ(r)core as follows: 

where, 

                    
    

 

 

and 

               
    

 

   

 

 

and ni is the occupation of the molecular orbital 

i(r). In a quasirelativistic context, molecular 
orbitals are replaced by two-component 
complex single-particle functions known as 

spinors, i(r) the expansion coefficients ci being 
complex and typically determined within the 
SCF procedure.[27,28] The electron density needs 
to be computed as follows: 

          
 
 

   

 

    
 
    

Note that the knowledge of molecular orbitals 
or molecular spinors is not mandatory in order 
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to perform a QCT analysis because ρ(r)val can 
only be known through a three dimensional grid 
directly produced by the quantum chemistry 
program. 

Preserving the constraint to integrate 
core electrons   

     in the whole molecular 
space, the core density can be defined through 
a 1s- type tight Gaussian function as follows: 

where ρ   is the value of the core density at the 
nuclear location RA of an atom A and α is a 
positive exponent somehow related to the 
width of the core electron function in the 

vicinity of the nucleus. Then,     
  
 

  
     

 

 

 
 

     

and   
 

      
 the standard deviation. For the 

simplistic case previously discussed in the 
literature[16],   

 
 was frozen to 8   

     which gives 

α=2 and   
 

      
. The core density function 

goes to zero in the valence regions which 
means that the total augmented density ρ(r) 
tends to coincide with the coreless valence 
density ρ(r)val. Hence, the spatial extension of 
the core electron density depends on  

 
 . When 

ECPs are used (small- or large-core), finding a 
suitable value of  

 
  for each atom of a molecule 

remains a challenge. In addition, the integrated 
core density over the full atomic QTAIM volume 
needs also to be constrained to   

     for each 
atom A.  

As discussed above, ρ(r)val exhibits 
numerous spurious critical points because its 
gradient can accidentally become almost zero in 
the border core/valence regions. The number of 
these points shows a tendency to increase with 
the size of the ECP core. Thus, the gradient of 
the augmented density field needs to be 
corrected for its discrepancies. Interestingly, as 
illustrated on Figure 1 for the GeH4 molecule 
(Td) using a ECP large-core, the spurious critical 
points of ρ(r)val appear roughly confined within 
a so-called β-sphere of radius   =0.29 bohr 

centered on the Ge nucleus.[11,29]  

 

Figure 1: Electron density plot ρ(r)val (e.bohr-3) depicted in 
the xz plane of the GeH4 molecule (Td) optimized at the 
Hartree-Fock level of theory using a CRENBL ECP (large- 
core)  and its respective basis set for Ge atom and the 6-

311G(d, p) basis set for H. Core parameters:    
    

 = 18 e, 

  = 0.290 bohr. ρβ= 7.36 e.bohr
-3

. 

As a reminder, a β-sphere is a spherical volume 
that is fully enclosed within the topological 
QTAIM basin volume at whose nucleus it is 
centered.[30,31] Most of the time, the β-sphere is 
defined as the largest sphere that is fully 
contained within the atomic basin. Thus, its 
radius is enough large, around 90% of the 
distance between the nucleus and the nearest 
bond critical point. In the beginning[29], th  β-
sphere was mainly used to easily assign the 
gradient paths evolving within the space of the 
topological atom. Later, since the electron 
density exhibits very high values in the vicinity 
of the nucleus, it was shown[31] that it remains 
numerically advantageous to keep the sphere as 
the most suitable object for fully numerical or 
analytical integrations. 
 

As noted earlier[11], whatever the PP used for a 
given atom, a β-sphere enclosing the spurious 
points can be always found. When the distance 
from the nucleus is more than   , the topology 

of the valence density is rather consistent with 
the corresponding all-electron calculation. As 
shown on Figure 1, the electron density on the 
β-sphere remains almost unchanged around an 
average value termed here as ρβ. Hence, a 
suitable value for  

 
  can be found if the width 

of the atomic Gaussian function is lined up with 

          
          

 
   -        -    

 

   (1)  
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  . In other words, the following equation has 
to be verified for a given   : 

Because the function involved in the equation 
(2) has a typical transcendental form[32], it needs 
to be numerically solved. As shown in Figure 2, 
the function     

 
   reaches a maxima for a 

given   
   

 
       such as: 

When  
 
  goes to large values, the core density 

goes to zero. 
 

 
Figure 2. Plot of     

  
   according t  ρ0

Ge for GeH4 

molecule optimized at the Hartree-Fock level of theory. 
The CRENBL ECP (large-core) and its respective basis set 
have been employed for Ge while the 6-311G(d,p) basis 
set has been used for H.  

Core parameters for Ge:    
    

 = 18 e,    = 0.290 bohr, 

    =7.36 e.bohr-3 and    
             e.bohr-3. 

 
There is always a suitable value where  

 
 = ρβ 

can be easily found beyond the maxima when 
the function monotonically decreases. Scheme 
1 displays the algorithm that gives a suitable 
value of  

 
  larger than   

      : 

 

 

 

Scheme 1: Algorithm given the suitable value  
 
  

 
The step needs to be as small as possible. 
Practically, a value of 0.001 e.bohr-3 has been 
used in this work. Once, ρ0

A is found, the core 
density function is fully defined. For instance as 
illustrated in Figure 3 for the Au(2S) atom (Z=79, 
   
    

 = 60 electrons), the augmented density ρ(r) 
does not show any spurious points and fits very 
well with both ρ(r)val in the valence regions and 
with ρ(r)core in the inner regions. Some tests for 
various free atoms and molecules are presented 
in the next section. Effects of small- and large-
core ECPs have been evaluated. 

 
Figure 3: Core, valence and augmented electron densities 
plots along the z axis (bohr) obtained for the Au(2S) atom 
calculated at the B3LYP/ aug-cc-pVTZ-PP level of theory.  

Color code: black: (r)val, blue: (r)core
 and red: augmented 

density (r) = (r)
core

 + (r)
val

. Core parameters:    
    

 = 60 

e,   = 0.806 bohr and ρ = 1.723 e.bohr
-3

. 

 
Finally, the core population   

 
 can be computed 

over the volume of any β-sphere having a radius 
  . This β-sphere is enclosed in the basin 

volume ΩA centered on an atom A. 

Note that because the exponential function 
quickly goes to zero when Rβ

A increases,   
  

quickly reachs   
    . 

The Gradient of the electron density. In 
addition to the lack of maxima at nuclear 
positions when electrons are replaced by PPs, 
the gradient vectors of the electron density 

    
 
      

 
   

    
  
 

  
     

 
 

   
 

    
 
 

(2) 

  
         

 

 
 

 

    
 
  

    

   
     

  
 
                 

      
       

   

  

                      
                                    

 
  

(3) 
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ρ(r)val becomes accidentaly close to zero in the 
vicinity of nuclear cores entailing the presence 
of some spurious saddle points. This feature is a 
serious problem because gradient vectors are 
represented through the trajectories (also 
referred as gradient paths) characterizing the 
topological properties of the gradient field. The 
addition of core density cures these pathologies 
and the augmented gradient vector becomes 
defined as, 

where  
           

                         
              

 

As expected, when           
       ρβ (regions 

where spurious points are located),              
becomes close to zero and therefore, 
 
                    -        

 
    

 

The Laplacian of the electron density. The 
Laplacian plays also a key role in quantum 
chemical topology because it is directly related 
to the virial theorem.[33,34] Indeed, the Laplacian 
vanishes when it is integrated over the whole 
space or over the whole atomic basin. This 
property ensures that the total kinetic energy 
and the atomic kinetic energy are unambiguous 
defined. Moreover, the Laplacian of the density 
is a powerful descriptor of the chemical bond 
because a large negative value at the BCP 
indicates a local concentration of charge which 
reveals a typical shared-shell interaction.[35]  The 
augmented Laplacian is expressed as: 

 

where 
 
            

                      
                     

       
      

The integrated core laplacian over the volume 
of any β-sphere of radius    enclosed in a basin 

volume ΩA centred on an atom A is then 
defined as follows: 

  

 
                   

        

     

   

 

                             
        

 
      

    
 

 
 

As expected, this quantity goes quickly to zero 
when    increases.  
 

The Kinetic positive energy density (KED). The 
augmented local positive definite KED G(r) can 
be also defined from valence and core 
contributions. G(r) can be trivially separated 
into two parts as follows: 

 

                          
 
where 

             
 
   

    

 

       

 

In this w  k, τ(r)valcorresponds to the KED 
computed at the Hartree-Fock level or whether 
for a Kohn-Sham fictitious non interacting 
system,    being molecular orbitals or complex 
spinors defined in a quasirelativistic context. 
However, if orbitals or spinors are unknown, 
the KED can be extracted from the ELF 
functional form regardless of the quantum 
chemistry program (DFT calculation) used to 
generate the grid points. Thus, the valence 
kinetic energy density τ(r)val is defined from 
ELF[25] in its functional form for each point of 
the grid as follows: 

 

with    
 

  
      

   
.  

 
For the special case where   

      , 

                    
  

 

  
            

      

            
    

 

 

[36] is the von Weizsäcker kinetic energy core 
density, i.e. the kinetic energy of a density 

                            

                         
    

 

                 

                                

                           
    

 

                      

 

 

            
 

         
   

   

        
        

 

 

          
 

       
 

    
(6) 
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model system in which the antisymmetry is 
switched off.  

When   
      , the functional form 

proposed by Kirzhnits and its coworkers[37,38] 
and latter revivified by Ayers and coworkers[39] 
can be used to restore the KED in the inner 
regions: 
 

                    
    

 

 

 

with 
 

          
                         

                  

 

              
           

 
 
            

    

 
            

 

where          
                   

          is the 
corresponding kinetic energy core density for a 
homogeneous electron gas and 
 

             
-        

   -        

     
 

 

  
 
is a weight function close to one in the vicinity 
of nuclei and goes to zero elsewhere. 
 

Electron Localization Function. During the last 
twenty five years, the ELF topological analysis 
[26] has been used for studying of the bonding 
schemes in molecules and solids, or for 
rationalizing chemical reactivity.[40] In its original 
formulation[8] ELF relies on the Laplacian of the 
conditional same spin pair probability scaled by 
the homogeneous electron gas kinetic energy 
density, ELF being typically interpreted as a 
signature of the electron-pair distribution. From 
1992, this formulation has been extended in a 
functional form, and rationalized in terms of the 
local excess kinetic energy due to Pauli 
repulsion.[25] However, by analogy to the spin-
density functional theory, a decomposition in 
terms of spin densities (spin-polarized ELF) was 
also proposed.[41] In a similar manner, various 
orbital decompositions have also been 

proposed such as ELF/ or ELFcore/valence 

respectively conducted from /π or 

core/valence groups of molecular orbitals.[42,43] In 

this latter form, the augmented ELF kernel is 
defined from both core and valence KED as well  

as from both core and valence electron 
densities as follows: 

 

       

             
 
 

            

        
           

 
 

          
 

       
 

        
             

   
 

 

and     
 

       
     (8) 

 
The augmented ELF kernel can be also extracted 
from both ELFval(r) and electron density ρ(r)val 
grid points as: 
 

       
             

 
 

            

        
  

 

         
   

   

        
        

        
             

   
 

 

Hence, as illustrated in Figure 4, it can 
be noticed that the augmented ELF plots 
calculated along the z axis for C (3P) and Br (2S) 
atoms using the aug-cc-pVTZ-PP basis set (ECP 
small-core,   

     = 10 e) and the aug-cc-pVTZ 
basis set display very similar profiles, appearing 
almost isotopological in the valence regions 
since the location and properties of critical 
points (local minima and maxima) are almost 
the same.  
 

 
 
Figure 4: Augmented ELF plots of C(3P), Br(2S) and Fe(5D)  
atoms along the z axis computed at the B3LYP level of 
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theory. The aug-cc-pVQZ-PP (small-core) basis sets have 
been employed for Br while the CRENBS ECP (large-core) 
and its respective basis set have been employed for the C 
and the Fe atoms. All-electron basis set aug-cc-pVQZ is 
also displayed for comparison only. C(3P) parameters: 

  
    

 = 2 electrons,   = 0.63 bohr ,  
 
  = 9.29 e.bohr-3;  

Br(2S) small-core parameters:    
    

 = 10 electrons,   = 

0.29 bohr,  
  
  = 399.71 e.bohr-3; Fe(5D) large-core 

parameters: :    
    

 = 18 electrons,   = 0.38 bohr,  
  
  = 

860.61 e.bohr-3. 

 

 
Figure 5. The ELF radius (Bohr) of the M shell calculated at 
the B3LYP level of theory.   Color code: Blue: 6-311+G(3df) 
basis set. Black: LanL2TZ(f)  and its respective basis set. 

 
In any case, the ELF topology is partially 

restored within the core regions, notably for the 
maxima located on the nuclear location (ELF=1). 
In addition, all the minima associated with radii 
of inner shells (K and L minima)[41] are well 
restored, whether the small-core ECP (C, Br) or 
the large-core ECP (Fe). In the valence regions, 
the augmented ELF plot obtained for both 
small- and large-core ECP coincides with the 
ELFval(r) plot for which the core is not rebuilt. As 
observed in Figure 4, even for two different 
basis sets (aug-cc-pVQZ and CRENBS), the 
location of ELF minima of the Fe atom (5D) are 
almost unchanged whether they are inner 
atomic regions or the valence regions. For 
example, the minima associated with L-shell 
calculated at the B3LYP/CRENBS level of theory 
was found at 0.426 bohr from the nuclear 
location while the same minima calculated at 
the B3LYP/aug-cc-pVQZ level of theory was 
found at 0.427 bohr from the nuclear location. 
The calculated radius of the M shell, when Z is 
restricted between 19 and 36, appears rather 

reasonable by comparison with similar 
calculations obtained using the 6-311+G(3df) 
basis (see Figure 5). Note that a typical peak of 
the M shell radius observed for both Cr and Cu 
atoms is in agreement with previous 
calculations.[41]  

Some calculations of ELF radii have also 
been reported in Table S1 and displayed in 
Figures S1 and S2. We note that K, L, and M 
shells are adequately reproduced until Z=36. 
For heavier atoms (Z>36), the tight Gaussian 
function approximation becomes probably too 
crude to recover all inner shells and only 
minima are observed for the K-shell and the 
most outer shell (see Figure S2). 

Some tests for various free atoms and 
molecules are presented in the next section. 
Effects of small- and large-core ECPs are also 
discussed. 

 
Integrated basin populations. When the 
electron density  is a well defined quantity, the 
basin population is just the integral of the 
density over the basin volume. In this case, the 
sum of all basin populations has to recover the 
total number of electrons. The total basin NΩ 
population  can be separated into two parts: 

Where  Ω
     n   Ω

     are respectively the total 

valence and core basins populations.  Ω
    can be 

accurately calculated from the sum of 
elementary overlap integrals over all 
parallelepipedic  cells centered on the grid 
points belonging to the given basin.[44] As well, 
for a rectangular cartesian parallelepipedic grid, 
the elementary core Score population can be 
calculated at given grid point ro center of a 
elementary cell of edges ∆r1, ∆r2 and ∆r3: 

     
    

   
   

     

  
 

           
   

 
   

    
             

   

 
   

    
      

 

   

 

(10) 

Where Ri
A are the cartesian coordinates of an 

atom A and rio the cartesian coordinates of the 
grid point ro. The total core basin population 

 Ω   Ω
      Ω

              

Ω

               

Ω
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     is calculated as the sum of elementary 

core integrals Score over all the cells centered on 
the grid points belonging to the given basin Ώ: 
 

 Ω
    

            

Ω

            
    

 

   Ω

  

 
Within the QTAIM partition, the atomic charge 
qΩ of a topological atom can be then easily 
computed by: 

IV. Computational details. The B3LYP hybrid 
functional level with the Gaussian 2009 

software[45] was used for all calculations. 
Extended Hückel calculations[46,47] have been 
performed with the Gaussian program. The 
energy-consistent ECPnMDF ECPs were used to 
replace the n inner-core electrons of the copper 
(n=10), bromine (n=10), krypton (n=10), iodine 
(n=28) and gold (n=60) atoms. Their remaining 
valence electrons were dealt with the triple-
zeta quality aug-cc-pVTZ-PP basis set. The 
relativistic effective small-core potential (RECP) 
of the Stuttgart/Köln group was also tested for 
the Fe (n=10) and U (n=60) atoms. [48-50] Their 
remaining valence electrons were dealt with 
Dunning/Huzinaga full double zeta. The CRENBS 
and CRENBL basis sets with shape consistent 
E P’s have been also used.[51,52] In this latter 
case, large-core RECP were used to mimic the 
role of the n inner-core electrons of selected 
atoms: copper (n=18), iron (n=18), iodine 
(n=36), gold (n=68) and uranium (n=78) atoms. 
For the lighter atoms, H, C, or O the standard 
all-electron aug-cc-pVTZ or 6-311+G(d, p) basis 
sets were used. The TopChem2 package[53] was 
used for all QCT analyses presented in the 
paper. The electron density isosurfaces were 
displayed by means of the Molekel v4.3 
software.[54] 

 

V. Results and Discussion. We review here 
typical examples where the applicability of the 
methodology is illustrated for a panel of 

molecular systems selected through the 
periodic table. The implementation was tested 
for CuCO (Cs)

[55], Ferrocene FeCp2 (D5d)[56], IF3 

(C2v)
[57], AuKrBr (C∞v)

[58] and for the uranyl cation 
UO2

2+ (D∞h)[59] compound. The robustness of the 
approach for various small-core as well as large-
core ECPs was investigated. Table 1 reports the 
parameters obtained for the core density (α, 
  ) of core tight functions ρ(r)coreas well as the 

QCT results obtained from the augmented 
electron density ρ(r)  = ρ(r)core + ρ(r)val at bond 
critical points.  

 

Insert Table 1 near here 

 

The core population of the atom A Nβ
A has been 

computed over the volume of a β-sphere of 
radius 1.5 bohr and the total basin NA 
populations are also reported. Numerous 
different critical points can be identified in the 
valence or outer-shell regions but only the 
values of selected topological descriptors 
located at the nearest BCP of the A atoms are 
reported, as displayed in Figure 6. The main 
goal of this section is to assess whether the 
topology of core regions is suitably restored by 
the parametrized tight functions applied to the 
selected systems. The influence of the 
augmented electron density on the valence has 
to be analyzed; this effect should be as small as 
possible. Using parameters of the core density 
obtained from small-core Stuttgart/Köln ECP, 
some tests have also been performed for semi-
empirical extended Hückel calculations where 
the core electrons are disregarded. These 
results are presented in Table 2. A detailed 
analysis of results presented in Tables 1 and 2 
leads to the non-ambiguous following 
conclusions: 

 

Insert Table 2 near here 

 

        Ω        
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1. Firstly, the results show that core 
parameters, namely    and the related 

exponent α, remain almost unchanged 
between the free atoms and these 
same atoms involved in related 
molecular systems. For instance, α=2.22 
for the iodine free atom I (2P) when a 
large-core ECP is used whereas α=2.21 
for the same atom involved in the IF3 

molecule. However, noticeable 
differences of core parameters are 
observed when moving from an ECP 
small-core to a large-core (see Table 1). 
In any case, the augmented electron 
density restores the proper features of 
both the density and the electron 
localization function in the vicinity of 
nuclear regions and also at the frontier 
between the inner and outer atomic 
shells. The core basin population 
calculated with the augmented density 
obtained from a small-core ECP has 
always been found to be in good 
agreement with the corresponding 
density obtained from the all-electron 
calculation. For instance, a difference of 
only 0.01 e was found for  the core 
population of Fe in FeCp2 and the values 
calculated at the B3LYP/SDD (small-
core) level and the B3LYP/6-311+G(d, p) 
level. Using a large-core ECP (CRENBS), 
this latter difference was found to be 
0.19e. This reveals the difference 
between the wavefunction obtained 
when a large-core is employed instead 
of the corresponding all-electron 
wavefunction.  
 

2. In the regions where the 
pseudopotential and the all-electron 
density coincides, one could even likely 
confirm from the Table 1 that, the core 
electron densities have a very small 
effect on the values of topological 
descriptors evaluated at the location of 
selected bond critical points (see Figure 
6). This statement is true for all typical 
descriptors computed in this paper, 

namely, the distance of the BCP (rbcp) 
from the nuclear location of the heavy 
atom, the electron density (ρ

b
), the 

gradient norm of the electron density 

(|ρ
b
|), the Laplacian of electron 

density (2ρ
b
), the ratio of density 

energies |V
b
|/G

b
 and also the value of 

ELF. Note that the difference between 
values obtained from the augmented 
  nsity  n  th      n     nsity ρ(r)val 

are negligible if small-core ECPS are 
employed and almost unchanged if 
large-core ECPs are used. For instance, 
the Laplacian of electron density is only 
reduced on average by more than 0.001 
e.bohr-4 for species containing Cu and 
Fe as well as for the heaviest 
compounds containing the I, Au or U 
atoms. 
 

3. The robustness of this methodology has 
also been evaluated in the framework 
of the extended Hückel semi-empirical 
calculations where the core density is 
missing (  

    
 = 2 and   

    
 = 2 and 

  
    =2). Because pathologies have been 

identified with the quantum chemical 
topology analysis a long time ago[7], it is 
very interesting to explore whether the 
tight Gaussian functions are also able to 
restore the proper features. All results 
for C2H4, the adenine, NH2OH and the 
furan molecules are gathered in Table 
2. The plots of electron densities of C2H4 
and adenine are displayed in Figures 7 
and 8. As observed in Figure 7 (left), 
pathologies appear in the gradient 
vectors field of the electron density of 
C2H4, especially located in the regions 
near the carbon atoms. Indeed, 
gradient vectors seem to be wrongly 
oriented from the nuclear carbon 
centers to valence regions and no bond 
critical point (3, -1) has been found 
between the two carbon atoms. In 
contrast (Figure 7, right), using the core 
parameters obtained from a Hartree-
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Fock/SDD calculation (  
    

 = 2 and   
    

 

= 2), the topology seems to be restored 
for augmented densities. Indeed, 
atomic basins have been now clearly 
identified for carbon atoms and a 
typical saddle point (3, -1) has been 
found at the middle of the C-C bond. In 
a similar manner, the plot augmented 
density and the location of the bcp 
obtained at the Hückel level of theory 
along a selected N-C bond of the 
adenine molecule is depicted in Figure 
8. Interestingly, the latter (Figure 8 
right, red line) appears close to those 
obtained at the B3LYP/6-311G(2d) level 
of theory which is taken as reference 
(Figure 8 right, blue line). Without 
curing, many spurious critical points are 
found in the inner regions and also in 
the border regions with the valence. 
The augmented density analysis shows 
maxima on the nuclear locations of C 
and N atoms which allow us to soundly 
restore the topological properties 
throughout the whole molecular space. 
Bond critical points (3, -1) have been 
indeed found in valence regions close to 
the middle of N-C and C-C bonds. But 
more important are the trends drawn 
from the numbers. As shown in Table 2, 
previously outlined trends regarding the 
properties calculated at the BCP in 
Table 1 can be extended to the Hückel 
level of theory. Indeed, the features of 
descriptors at BCP remain in reasonable 
agreement with the Hartree-Fock/SDD 
level of theory. For example, for the N-C 
bonds as well as for the N-O bond, the 
electron density computed at the BCP 
(ρ

b
) is notably strong, (0.25-0.30 e bohr-

3 on average), the Laplacian of the 

density (2ρ
b
) exhibits a (small) 

negative value, while the ratio 
              is higher than 2.0 and ELF 
goes to 1. These features are commonly 
associated with a typical shared-shell 
(covalent) interaction. 

 

Figure 6. Optimized structural parameters (Å) of 
compounds given in Table 1 obtained at the B3LYP level of 
theory. The location of the bond critical points given in 
Table 1 and discussed in the paper, are displayed with a 
red dagger. 

 
Figure 7. The Gradient vector field of the electron density 
displayed in the molecular plane of the C2H4 molecule 
optimized at the extended Hückel level of theory.  
(a)  Valence electron density ρ(r)val. 
(b) Augmented electron density ρ(r) = ρ(r)core + ρ(r)val.  

Core parameters:   
    

 = 2 electrons,    = 0.797 bohr and  

 = 0.866 bohr-1. The red circles stake out the carbon 
topological atoms. 
 

 
Figure 8. Left: Augmented Electron density ρ(r) = ρ(r)core + 
ρ(r)val plot (e.bohr-3) for the C5H5N5 molecule optimized at 
the extended Hückel level of theory. Blue regions are high 
values of the density (left).  
Right: Electron density plot displayed along the selected N-
C bond surrounded by a circle. Color code: black: valence 
Hückel electron density ρ(r)

val
. Blue: all-electron density 

calculated at the B3LYP/6-311G(2d) level of theory. The 
bcp is located at 1.117 bohr from the carbon atom.  Red: 
augmented electron density ρ(r). The bcp is located at 
1.243 bohr from the carbon atom.  
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Core parameters: C:   
    

 = 2 electrons,   = 0.856 bohr,  = 

0.807 bohr-1. N:   
    

 = 2 electrons,   = 0.482 bohr,  = 

2.179 bohr-1. 
 

VI. Concluding remarks 

     Beyond considerations regarding the analysis 
and the understanding of bonding schemes 
when pseudopotentials are used, this study has 
demonstrated the puzzling robustness and the 
fluency of parametrized tight Gaussian 
functions to restore the core density and the 
proper profiles of the electron localization 
function in the inner atomic regions. Only small 
modifications were found on the values of 
investigated topological descriptors when 
changing from small-core to large-core ones, or 
when moving from small basis set to extended 
ones. Also, it has been confirmed that the QCT 
analysis is quite suitable for systems containing 
heavy elements in the context of semi-empirical 
calculations when core densities have been 
restored in this way. Without this healing, the 
QCT analysis remains strongly hampered by the 
spurious topology of the gradient vectors field. 
Finally, the work shows how this methodology 
can be easily implemented at different non-
relativistic or relativistic levels of theory (HF, 
semi-empirical or DFT) or whatever the 
quantum program used. An extension of this 
work to any correlated wavefunction can also 
be planned using approximated electron 
densities and KED defined in terms of natural 
orbitals.[60,61] To conclude, their indisputable 
utility opens up opportunities for helping 
chemists to apply the QCT tools when systems 
containing heavy atoms are used.
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