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Abstract. We consider the wave equation, �gψ = 0, in fixed flat Friedmann-Lemâıtre-Robertson-Walker
and Kasner spacetimes with topology R+ × T3. We obtain generic blow up results for solutions to the wave

equation towards the Big Bang singularity in both backgrounds. In particular, we characterize open sets of
initial data prescribed at a spacelike hypersurface close to the singularity, which give rise to solutions that

blow up in an open set of the Big Bang hypersurface {t = 0}. The initial data sets are characterized by the

condition that the Neumann data should dominate, in an appropriate L2-sense, up to two spatial derivatives
of the Dirichlet data. For these initial configurations, the L2(T3) norms of the solutions blow up towards the

Big Bang hypersurfaces of FLRW and Kasner with inverse polynomial and logarithmic rates respectively.

Our method is based on deriving suitably weighted energy estimates in physical space. No symmetries of
solutions are assumed.

1. Introduction and main theorems

In this note, we analyse the behaviour of solutions to the wave equation on cosmological backgrounds
towards the initial singularity. Our spacetimes of interest are the spatially homogenous, isotropic flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW hereafter) backgrounds and the anisotropic vacuum Kas-
ner spacetimes. The former plays an important role in physics, since observational evidence suggests that at
sufficiently large scales the universe seems to be spatially homogeneous and isotropic. The Kasner solutions
also play an important role in the theory of general relativity, since they form the past attractor of Bianchi
type I spacetimes, the Kasner circle, which in turn are the basic building blocks in the “BKL conjecture” [5]
concerning spacelike cosmological singularities, see [7] for recent developments on this subject in the setting
of spatially homogeneous solutions to the Einstein-vacuum equations.

The spacetimes have the topology R+ × T3 and are endowed with the metrics:

gFLRW =− dt2 + t
4
3γ (dx2

1 + dx2
2 + dx2

3),
2

3
< γ < 2,(1.1)

gKasner =− dt2 +

3∑
j=1

t2pjdx2
j ,

3∑
j=1

pj = 1,

3∑
j=1

p2
j = 1, pj < 1,(1.2)

respectively. Both metrics gFLRW, gKasner have a Big Bang singularity at t = 0, where the curvature blows
up |Riem| ∼ t−2, as t → 0. Metrics of the form (1.1) are solutions of the Einstein-Euler system for ideal
fluids with linear equation of state p = (γ − 1)ρ, where p is the pressure, and ρ the energy density. The case
γ = 2 corresponds to stiff fluids, i.e., p = ρ, where incompressibility is expressed by the velocity of sound cs
equating the velocity of light c = 1. For the stiff case the dynamics of the Einstein equations towards the
singularity are completely understood by the work of [31, 32, 33]. The other endpoint γ = 2

3 corresponds
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to the coasting universe which does not have a spacelike singularity. On the other hand, the Kasner metric
(1.2) is a solution to the Einstein vacuum equations. When one of the pj = 1 equals one, and the other two
vanish (flat Kasner), it corresponds to the Taub form of Minkowski space and there is no singularity as the
spacetime is flat.

Our goal is to understand the behaviour of smooth solutions to the wave equation towards these singularities
from the initial value problem point of view and by deriving appropriate energy estimates in physical space,
which may also prove useful for dynamical studies. According to the references in the literature, such as
[1, 26, 28, 30], these waves are shown to blow up in certain cases. We wish to characterize open sets of
initial data at a given time t0 > 0 for which such blow up behaviour occurs at t = 0. Denote the constant t
hypersurfaces by Σt.

First, we give the general asymptotic profile of all solutions:

Theorem 1.1. Let ψ be a smooth solution to the wave equation, �gψ = 0, for either of the metrics
gFLRW, gKasner, arising from initial data (ψ0, ∂tψ0) on Σt0 . Then, ψ can be written in the following form:

ψFLRW(t, x) = AFLRW(x)t1−
2
γ + uFLRW(t, x),(1.3)

ψKasner(t, x) = AKasner(x) log t+ uKasner(t, x),(1.4)

where A(x), u(t, x) are smooth functions and uFLRW t
2
γ−1, uKasner(log t)−1 tend to zero, as t→ 0.

We prove the preceding theorem by deriving appropriate stability estimates for renormalized variables,
which as a corollary imply the continuous dependence of A(x) on initial data. For instance, solutions coming

from initial configurations close to those of the homogeneous solutions t1−
2
γ , log t in FLRW and Kasner

respectively, will blow up with leading order coefficients A(x) ∼ 1. Hence, the set of all blowing up solutions
to the wave equation is open and dense.4

Our next theorem yields a characterization of open sets of initial data for which the corresponding solutions
to the wave equation blow up in L2(T3) at the Big Bang hypersurface t = 0.

Theorem 1.2. Let ψ be a smooth solution to the wave equation, �gψ = 0, for either of the metrics
gFLRW, gKasner, arising from initial data (ψ0, ∂tψ0) on Σt0 , t0 > 0. If ∂tψ0 is non-zero in L2(T3), t0 is
sufficiently small such that

2t
2− 4

3γ

0

1− ( 2
3γ )2

3∑
i=1

‖∂t∂xiψ0‖2L2(T3) <ε‖∂tψ0‖2L2(T3), (FLRW)(1.5)

3∑
i=1

2t2−2pi
0

(1− pi)2
‖∂t∂xiψ0‖2L2(T3) <ε‖∂tψ0‖2L2(T3), (Kasner)(1.6)

and ψ0, ∂tψ0 satisfy the open conditions

(1− ε)‖∂tψ0‖2L2(T3) >t
− 4

3γ

0

3∑
i=3

‖∂xiψ0‖2L2(T3)(1.7)

+
2t

2− 8
3γ

0

1− ( 2
3γ )2

3∑
i,j=1

‖∂xj∂xiψ0‖L2(T3),(FLRW)

(1− ε)‖∂tψ0‖2L2(T3) >

3∑
i=3

t−2pi
0 ‖∂xiψ0‖2L2(T3)(1.8)

+

3∑
i,j=1

2t
2−2pi−2pj
0

(1− pi)2
‖∂xj∂xiψ0‖L2(T3),(Kasner)

for some 0 < ε < 1, then ‖A(x)‖L2(T3) > 0.

4In the sense that if a solution blows up in a compact set at Σ0, i.e., A(x) 6= 0 in that compact set, then this property

persists under sufficiently small perturbations. On the contrary, if A(x) = 0 in an open subset of Σ0, one can always add a small

multiple of t
1− 2

γ , log t to produce a new solution with A(x) 6= 0 in that open set.
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Remark 1.3. Given a blowing up solution to the wave equation in either FLRW or Kasner, having non-
vanishing leading order coefficient A(x), it is easy to see, using the expansions (1.3), (1.4), that the solution
satisfies the conditions in Theorem 1.2 for t0 > 0 sufficiently small.

We also prove a local version of Theorem 1.2, giving open initial conditions in a neighbourhood of Σt0 ,
Ut0 , whose domain of dependence intersects the singular hypersurface Σ0 at a neighbourhood U0, where the
L2(U0) norm of the corresponding solutions blows up.

Σ0

Σt0
Ut0

U0

−∂t
Σt Ut

N+
l N−

l

Figure 1. Domain of dependence of an open neighborhood Ut0 of the initial hypersurface Σt0 .

Theorem 1.4. Let Ut0 be an open neighborhood in Σt0 , t0 > 0, whose domain of dependence intersects Σ0

in U0 = (0, δ)3, and let ψ be a smooth solution to the wave equation, �gψ = 0, for either of the metrics
gFLRW, gKasner, arising from initial data (ψ0, ∂tψ0) on Ut0 . If ∂tψ0 is non-zero in Ut0 , t0 is sufficiently small
such that

2t
2− 4

3γ

0

1− ( 2
3γ )2

3∑
i=1

‖∂t∂xiψ0‖2L2(Ut0 )

+
4t

1− 2
3γ

0

1− 2
3γ

[
3‖∂tψ0‖2L2(Ut0 ) +

3∑
l=1

‖∂t∂xlψ0‖2L2(Ut0 )

]
(1.9)

+6 log
(
1 +

2

1− 2
3γ

t
1− 2

3γ

0

δ

)
‖∂tψ0‖2L2(Ut0 ) < ε‖∂tψ0‖L2(Ut0 ),(FLRW)

3∑
i=1

2t2−2pi
0

(1− pi)2
‖∂t∂xiψ0‖2L2(Ut0 )

+

3∑
l=1

4t1−pl0

1− pl
[
‖∂tψ0‖2L2(Ut0 ) + ‖∂t∂xlψ0‖2L2(Ut0 )

]
(1.10)

+

3∑
l=1

2 log
(
1 +

2

1− pl
t1−pl0

δ

)
‖∂tψ0‖2L2(Ut0 ) < ε‖∂tψ0‖2L2(Ut0 ),(Kasner)

and (ψ0, ∂tψ0) satisfy the open conditions:

(1− ε)‖∂tψ0‖2L2(Ut0 )

>t
− 4

3γ

0

3∑
i=1

‖∂xiψ0‖2L2(Ut0 ) +
2t

2− 8
3γ

0

1− ( 2
3γ )2

3∑
i,j=1

‖∂xj∂xiψ0‖2L2(Ut0 )

+
4t

1− 2
γ

0

1− 2
3γ

[
3t
− 4

3γ

0

3∑
i=1

‖∂xiψ0‖2L2(Ut0 ) + t
− 4

3γ

0

3∑
i,l=1

‖∂xi∂xlψ0‖2L2(Ut0 )

]
(1.11)

+ 6 log
(
1 +

2

1− 2
3γ

t
1− 2

γ

0

δ

)
t
− 4

3γ

0

3∑
i=1

‖∂xiψ0‖2L2(Ut0 ), (FLRW)

(1− ε)‖∂tψ0‖2L2(Ut0 )
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>

3∑
i=1

t−2pi
0 ‖∂xiψ0‖2L2(Ut0 ) +

3∑
i,j=1

2t
2−2pi−2pj
0

(1− pi)2
‖∂xj∂xiψ0‖2L2(Ut0 )

+

3∑
i,l=1

4t1−pl0

1− pl
[
t−2pi
0 ‖∂xiψ0‖2L2(Ut0 ) + t−2pi

0 ‖∂xi∂xlψ0‖2L2(Ut0 )

]
(1.12)

+

3∑
l=1

2 log
(
1 +

2

1− pl
t
1− 2

γ

0

δ

) 3∑
i=1

t−2pi
0 ‖∂xiψ0‖2L2(Ut0 ), (Kasner)

for some 0 < ε < 1, then ‖A(x)‖L2(U0) > 0.

The blow up behaviour of linear waves observed near Big Bang singularities is reminiscent of the behaviour
of waves in black hole interiors containing spacelike singularities [8, 14]. Examples are the Schwarzschild
singularity or black hole singularities occurring in spherically symmetric solutions to the Einstein-scalar field
model [10], where a logarithmic blow up behaviour has been observed for spatially homogeneous waves. Such
logarithmic blow up behaviour was recently confirmed [16] for generic linear waves in the Schwarzschild black
hole interior. The aforementioned blow up behaviours, however, are in contrast to the behaviour of waves
observed near null boundaries, where linear and dynamical waves have been shown in general to extend
continuously past the relevant null hypersurfaces [11], [17]-[23], see also [25, 27].

Lastly, we should note that although we only deal with spatially homogeneous spacetimes, our method of
proof is applicable to cosmological spacetimes with Big Bang singularities exhibiting asymptotically velocity
term dominated (AVTD) behaviour [2, 4, 6, 9, 13, 15, 21, 24, 29].

2. Proof of main theorems

2.1. Energy argument and notation. In order to derive the energy estimates required for the proof of
Theorem 1.2, we will apply the vector field method and define certain energy currents constructed from the
stress-energy tensor

Tab[ψ] = ∂aψ∂bψ −
1

2
gab∂

cψ∂cψ ,(2.1)

of the scalar field ψ. The divergence of Tab[ψ] reads

∇aTab[ψ] = ∂bψ ·�gψ,(2.2)

where ∇ stands for the spacetime covariant connection. Hence, if ψ satisfies the homogeneous wave equation

�gψ = 0,(2.3)

it follows that we have energy-momentum conservation ∇aTab[ψ] = 0. Contracting the stress-energy tensor
with a vector field multiplier X, then defines the associated current

JXa [ψ] = XbTab[ψ],(2.4)

whose divergence, according to (2.2), equals

∇aJXa [ψ] = (∇aXb)Tab[ψ] +Xψ ·�gψ(2.5)

Applying the divergence theorem to (2.5), over the spacetime domain {Us}s∈[t,t0] (Figure 1), we thus obtain:∫
Ut

JXa [ψ]naUtvolUt +

3∑
l=1

∫
∪N±l

JXa [ψ]naN±l
volN±l

(2.6)

=

∫
Ut0

JXa [ψ]naUt0 volUt0 −
∫ t0

t

∫
Us

∇aJXa [ψ]volUsds,
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where nUt = −∂t, volUt is the intrinsic volume form of Ut and

nN±l
= −∂t ± t−

2
3γ ∂xl ,

volN±l
= t

4
3γ dtdxidxj ,

t−
2
3γ dt = ±dxl, on N±l

 (FLRW)

nN±l
= −∂t ± t−pl∂xl ,

volN±l
= t1−pldtdxidxj ,

t−pldt = ±dxl, on N±l

 (Kasner)

(2.7)

for each l = 1, 2, 3; i < j; i, j 6= l.
Below we will choose the vector field X to be a suitable rescaling nUt . Note that,

naUtJ
X
a [ψ] = JX0 [ψ] = 1

2 [(∂tψ)2 + |∇ψ|2] and JXa [ψ]naN±l
≥ 0, where ∇ is the covariant derivative intrinsic

to the level sets of t. Hence, if we can control the second term on the RHS of (2.6) (the bulk), in terms of
JX0 [ψ], we obtain an energy estimate for ψ.

Notice that in the case of the whole torus, Ut0 = Σt0 , due to the absence of causal boundary terms, (2.6)
becomes

(2.8)

∫
Σt

JXa [ψ]naΣtvolΣt =

∫
Σt0

JXa [ψ]naΣt0 volΣt0 −
∫ t0

t

∫
Σs

∇aJXa [ψ]volΣsds.

In the analysis that follows, we will often require higher order energy estimates that we can obtain by
commuting the wave equation with spatial derivatives and applying the above energy argument. Note, that
we are considering homogeneous spacetimes in which the spatial coordinate derivatives {∂xi} are Killing and
hence [�g, ∂xi ] = 0, i = 1, 2, 3. This means that the above identities (2.6), (2.8) are also valid for ∂αxψ, where
we use the standard multi-index notation ∂αx = ∂α1

x1
∂α2
x2
∂α3
x3

for an iterated application of spatial derivatives,

α = (α1, α2, α3), |α| = α1 +α2 +α3. In this notation, the Hk(Σt) norm of a smooth function f : (0,+∞)×T3

equals

‖f‖2Hk(Σt)
=
∑
|α|≤k

∫
Σt

(∂αx f)2volEuc,(2.9)

where volEuc = dx1dx2dx3. We will often omit Σt from the norms to ease notation and use Hk, L2 for the
corresponding time-dependent, non-intrinsic norms.

2.2. Flat FLRW. Let ψ be a smooth solution to the scalar wave equation

�gFLRWψ = 0.(2.10)

Consider the orthonormal frame

e0 = −∂t, ei = t−
2
3γ ∂xi(2.11)

adapted to the constant t hypersurfaces Σt with the past normal vector field e0 pointing towards the singu-
larity. In this frame, the second fundamental form Kij of Σt reads

Kii := g(∇eie0, ei) = − 2

3γ

1

t
, i = 1, 2, 3.(2.12)

Further, the intrinsic volume form on Σt equals

volΣt = t
2
γ volEuc.(2.13)

Proposition 2.1. The following energy inequality holds:

t
2
γ

∫
Σt

Je00 [∂αxψ]volΣt ≤ t
2
γ

0

∫
Σt0

Je00 [∂αxψ]volΣt0 ,(2.14)

for all t ∈ (0, t0] and any multi-index α. Moreover, ψ satisfies the pointwise bound

|ψ(t, x)| ≤ C
( ∑
|α|≤2

t
2
γ

0

∫
Σt0

Je00 [∂αxψ]volΣt0

) 1
2 t1−

2
γ − t1−

2
γ

0
2
γ − 1

+ |ψ(t0, x)|,(2.15)

where C > 0 is a constant independent of t0, γ.
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Proof. We compute the divergence of J t
2
γ e0
a [ψ]:

∇aJ t
2
γ e0
a [ψ]

(2.5)
= ∇a(t

2
γ e0)bTab[ψ] = t

2
γKabTab[ψ]− e0t

2
γ T00[ψ](2.16)

= t
2
γK11|∇ψ|2 −

1

2
t

2
γKi

i|∇ψ|2 +
1

γ
t

2
γ−1[(e0ψ)2 + |∇ψ|2]

(2.12)
=

4

3γ

1

t
t

2
γ |∇ψ|2.

Hence, utilising (2.8) for X = t
2
γ e0 yields

t
2
γ

∫
Σt

Je00 [ψ]volΣt = t
2
γ

0

∫
Σt0

Je00 [ψ]volΣt0 −
∫ t0

t

∫
Σs

4

3γ
s

2
γ−1|∇ψ|2volΣsds.(2.17)

≤ t
2
γ

0

∫
Σt0

Je00 [ψ]volΣt0(2.18)

The same identity is valid for ∂αxψ, leading to (2.14). In particular, taking into account the volume form
(2.13), we have the following bounds for ∂tψ:

t
4
γ ‖∂t∂αxψ‖2L2 ≤ 2t

2
γ

0

∫
Σt0

Je00 [∂αxψ]volΣt0 ,(2.19)

for all t ∈ (0, t0] and α. Integrating ∂tψ in [t, t0] and employing the Sobolev embedding H2(T3) ↪→ L∞(T3)
we derive:

|ψ(t, x)| =
∣∣ ∫ t

t0

∂sψ(s, x)ds+ ψ(t0, x)
∣∣(2.20)

≤C
∫ t0

t

‖∂sψ‖H2ds+ |ψ(t0, x)|

≤ C
2
γ − 1

(t1−
2
γ − t1−

2
γ

0 )(
∑
|α|≤2

t
2
γ

0

∫
Σt0

Je00 [∂αxψ]volΣt0 )
1
2 + |ψ(t0, x)|,

for γ < 2. �

Remark 2.2. The bounds (2.14), (2.15) are saturated by the homogeneous function t1−
2
γ , which is an exact

solution of (2.10).

From the previous proposition we understand that t1−
2
γ is the leading order of ψ at t = 0. To prove this

rigorously, we derive analogous energy bounds for the renormalised variable ψ

t
1− 2

γ
that satisfies the wave

equation:

�
ψ

t1−
2
γ

= −2

t
(1− 2

γ
)e0(

ψ

t1−
2
γ

).(2.21)

Proposition 2.3. Let ψ be a smooth solution to the wave equation in FLRW backgrounds with 2
3 < γ < 2.

Then, the following bounds hold uniformly in t ∈ (0, t0]:

t4−
6
γ

∫
Σt

Je00 [∂αx
ψ

t1−
2
γ

]volΣt ≤ t
4− 6

γ

0

∫
Σt0

Je00 [∂αx
ψ

t1−
2
γ

]volΣt0 ,
4

3
≤ γ < 2,(2.22)

t−
2
3γ

∫
Σt

Je00 [∂αx
ψ

t1−
2
γ

]volΣt ≤ t
− 2

3γ

0

∫
Σt0

Je00 [∂αx
ψ

t1−
2
γ

]volΣt0 ,
2

3
< γ ≤ 4

3
,(2.23)

for all t ∈ (0, t0] and any multi-index α. Moreover, the limit

A(x) := lim
t→0

ψ

t1−
2
γ

(2.24)

exists, it is a smooth function and the difference u(t, x) := ψ −A(x)t1−
2
γ satisfies

lim
t→0

t
2
γ

∫
Σt

Je00 [∂αx u]volΣs = 0.(2.25)
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Proof. Let η > 0. We compute

∇a(J t
ηe0
a [

ψ

t1−
2
γ

])
(2.5)
= ∇a(tηe0)bTab[

ψ

t1−
2
γ

] + tηe0(
ψ

t1−
2
γ

) ·�g
ψ

t1−
2
γ

(2.26)

= tηKabTab[
ψ

t1−
2
γ

]− (e0t
η)T00[

ψ

t1−
2
γ

]− 2

t
(1− 2

γ
)tη[e0(

ψ

t1−
2
γ

)]2

(2.12)
= tη−1

[
(

1

3γ
+
η

2
)|∇ ψ

t1−
2
γ

|2 + (
η

2
+

3

γ
− 2)[e0(

ψ

t1−
2
γ

)]2
]

This leads to different choices of η depending on the value of γ, given by

η = 4− 6

γ
, for

4

3
≤ γ < 2,(2.27)

η = − 2

3γ
, for

2

3
< γ ≤ 4

3
.(2.28)

We refer to the former as the stiffest region and the latter as the softest region. The case γ = 4
3 corresponds

to radiation, where η = − 1
2 . For the two cases, (2.26) reads

∇a(J t
4− 6

γ e0
a [

ψ

t1−
2
γ

]) = (2− 8

3γ
)t3−

6
γ |∇ ψ

t1−
2
γ

|2,(2.29)

∇a(J t
− 2

3γ e0
a [

ψ

t1−
2
γ

]) = (
8

3γ
− 2)t−1− 2

3γ [e0(
ψ

t1−
2
γ

)]2.(2.30)

Then, the energy identity (2.8) for ψ

t
1− 2

γ
, X = t4−

6
γ e0, in the stiffest region { 4

3 ≤ γ < 2}, implies that

t4−
6
γ

∫
Σt

Je00 [
ψ

t1−
2
γ

]volΣt ≤ t
4− 6

γ

0

∫
Σt0

Je00 [
ψ

t1−
2
γ

]volΣt0

− (2− 8

3γ
)

∫ t0

t

s3− 6
γ

∫
Σs

|∇ ψ

t1−
2
γ

|2volΣsds

≤ t4−
6
γ

0

∫
Σt0

Je00 [
ψ

t
1− 2

γ

0

]volΣt0 .(2.31)

Commuting with ∂αx yields the bound (2.22). Similarly, we obtain statement (2.23) in the softest region
{ 2

3 < γ ≤ 4
3}. In particular, taking into account the volume form (2.13), we have the bounds:

|∂t
ψ

t1−
2
γ

| ≤ C‖∂t
ψ

t1−
2
γ

‖H2 ≤ C

t2−
2
γ

( ∑
|α|≤2

t
4− 6

γ

0

∫
Σt0

Je00 [∂αx
ψ

t
1− 2

γ

0

]volΣt0

) 1
2

,(2.32)

for
4

3
≤ γ < 2,

|∂t
ψ

t1−
2
γ

| ≤ C‖∂t
ψ

t1−
2
γ

‖H2 ≤ C

t
2
3γ

( ∑
|α|≤2

t
− 2

3γ

0

∫
Σt0

Je00 [∂αx
ψ

t1−
2
γ

]volΣt0

) 1
2

,(2.33)

for
2

3
< γ ≤ 4

3
,

which imply that ∂tψ(t, x) ∈ L1([0, t0]), uniformly in x, for all 2
3 < γ < 2. Thus, ψ

t
1− 2

γ
has a limit function

A(x), as t→ 0. The smoothness of A(x) follows by repeating the preceding argument for ∂αx
ψ

t
1− 2

γ
.



8

Consider now the energy flux of the difference ψ −A(x)t1−
2
γ ,

t
2
γ

∫
Σt

|e0(ψ −A(x)t1−
2
γ )|2 + |∇(ψ −A(x)t1−

2
γ )|2volΣt(2.34)

= t
2
γ

∫
Σt

|t1−
2
γ e0

ψ

t1−
2
γ

+ (1− 2

γ
)t−

2
γ (

ψ

t1−
2
γ

−A(x))|2

+ t2−
4
γ |∇(

ψ

t1−
2
γ

−A(x))|2volΣt

≤ 2t
2
γ

∫
Σt

t2−
4
γ |e0

ψ

t1−
2
γ

|2 + (1− 2

γ
)2t−

4
γ | ψ

t1−
2
γ

−A(x)|2 + t2−
4
γ |∇ ψ

t1−
2
γ

|2

+ t2−
4
γ |∇A(x)|2volΣt

= 4t2
∫

Σt

Je00 [
ψ

t1−
2
γ

]volEuc + 2(1− 2

γ
)2

∫
Σt

| ψ

t1−
2
γ

−A(x)|2volEuc

+ 2t2
∫

Σt

|∇A(x)|2volEuc

(2.22),(2.23)

≤ o(1) + 2(1− 2

γ
)2

∫
Σt

| ψ

t1−
2
γ

−A(x)|2volEuc

+ 2t2−
4
3γ

3∑
i=1

∫
Σt

|∂xiA(x)|2volEuc,

for all 4
3 ≤ γ < 2. The third term in the preceding RHS clearly tends to zero, as t→ 0, and by the definition

of A(x), so does the second term. Since the above argument also applies to ∂αx [ψ − A(x)t1−
2
γ ], this proves

(2.25). �

Remark 2.4. The renormalised estimate (2.22) yields an improved control over the spatial gradient of ψ
compared to (2.14). Indeed,

t2−
4
γ t

2
γ

∫
Σt

|∇ψ|2volΣt ≤ t
4− 6

γ

0

∫
Σt0

Je00 [
ψ

t1−
2
γ

]volΣt0 ,
4

3
≤ γ < 2,

t
4
3γ−2t

2
γ

∫
Σt

|∇ψ|2volΣt ≤ t
− 2

3γ

0

∫
Σt0

Je00 [
ψ

t1−
2
γ

]volΣt0 ,
2

3
< γ ≤ 4

3
,

(2.35)

holds for all t ∈ (0, t0], where in the stiffest case 2− 4
γ < 0, while in the softest 4

3γ − 2 < 0.

The previous proposition validates the asymptotic profile (1.3) of ψ, as stated in Theorem 1.1.

Lemma 2.5. The following estimate for the L2 norm of ∂xiψ holds:

‖∂xiψ‖L2(Σt) ≤ ‖∂xiψ‖L2(Σt0 ) +
√

2
(t

1− 2
γ

0 − t1−
2
γ )

1− 2
γ

t
2
γ

0

(∫
Σt0

Je00 [∂xiψ]volEuc

) 1
2

,(2.36)

for all t ∈ (0, t0].

Proof. Differentiating in e0 we have:

1

2
e0‖∂xiψ‖2L2(Σt)

≤‖∂xiψ‖L2(Σt)‖e0ψ‖L2(Σt)(2.37)

≤ 1

t
2
γ

(
2t

2
γ

0

∫
Σt0

Je00 [∂xiψ]volΣt0

) 1
2

‖∂xiψ‖L2(Σt)(using (2.14))

or

e0‖∂xiψ‖L2(Σt) ≤
√

2
t

2
γ

0

t
2
γ

(∫
Σt0

Je00 [∂xiψ]volEuc

) 1
2

.(2.38)

Integrating the above on [t, t0] gives (2.36) for γ < 2. �



9

Remark 2.6. The bounds that we have proven so far, stated in Propositions 2.1, 2.3 and Lemma 2.5, are
also valid if we replace the integral domains Σt,Σt0 by Ut, Ut0 . This can be easily seen from the fact that in
the corresponding energy identity (2.6), the null boundary terms have a favourable sign for an upper bound
and therefore can be dropped.

Now we may proceed to derive the blow up criterion given in Theorem 1.2. First, notice that for γ > 2
3 ,

the main contribution of the energy flux generated by Je0 [ψ] comes from the e0ψ term. Indeed, by (2.35) it
follows that

t
2
γ

∫
Σt

Je00 [ψ]volΣt =
1

2

∫
Σt

t
4
γ (∂tψ)2volEuc +O(tη)(2.39)

where η = 4
γ − 2 > 0, for γ ∈ [ 4

3 , 2) and η = 2− 4
3γ > 0, for γ ∈ ( 2

3 ,
4
3 ]. Hence, taking the limit t→ 0 in the

preceding identity and utilizing (2.25) leads to

lim
t→0

t
2
γ

∫
Σt

Je00 [ψ]volΣt =
1

2
(1− 2

γ
)2

∫
Σ0

A2(x)volEuc.(2.40)

Combining (2.17), (2.40) we derive:

1

2
(1− 2

γ
)2

∫
Σ0

A2(x)volEuc(2.41)

= t
2
γ

0

∫
Σt0

Je00 [ψ]volΣt0 −
4

3γ

∫ t0

0

s
2
γ−1

∫
Σs

|∇ψ|2volΣsds

≥ 1

2
t

4
γ

0 ‖∂tψ‖2L2(Σt0 ) +
1

2
t

4
γ−

4
3γ

0

3∑
i=1

‖∂xiψ‖2L2(Σt0 )(by (2.36))

− 8

3γ

∫ t0

0

s
4
γ−1− 4

3γ ds

3∑
i=1

‖∂xiψ‖2L2(Σt0 )

− 16

3γ

∫ t0

0

s
4
γ−1− 4

3γ
(t

1− 2
γ

0 − s1− 2
γ )2

(1− 2
γ )2

ds

3∑
i=1

t
2
γ

0

∫
Σt0

Je00 [∂xiψ]volΣt0

=
1

2
t

4
γ

0 ‖∂tψ‖2L2(Σt0 ) −
1

2
t

8
3γ

0

3∑
i=3

‖∂xiψ‖2L2(Σt0 )

− t
2− 4

3γ

0

1− ( 2
3γ )2

3∑
i=1

[
t

4
γ

0 ‖∂t∂xiψ‖2L2(Σt0 ) + t
8
3γ

0

3∑
j=1

‖∂xj∂xiψ‖2L2(Σt0 )

]
.

Now is evident now that if the assumptions of Theorem 1.2 for FLRW are satisfied, then ‖A(x)‖L2(T3) > 0.
To prove Theorem 1.4 for FLRW, we use the local energy identity (2.6) and plug in (2.7), (2.13), (2.16):

t
2
γ

∫
Ut

Je00 [ψ]volUt(2.42)

=
1

2
t

4
γ

0 ‖∂tψ‖2L2(Ut0 ) +
1

2
t

4
γ−

4
3γ

0

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

− 4

3γ

∫ t0

t

s
4
γ−1− 4

3γ

3∑
i=1

‖∂xiψ‖2L2(Us)
ds

−
3∑
l=1

∫ t0

t

∫
N±l ∩Us

s
2
γ+ 4

3γ
1

2

[
|(e0 ± el)ψ|2 + |eiψ|2 + |ejψ|2

]
dsdxidxj .(i < j; i, j 6= l)
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Since t−
2
3γ dt = ±dxl along N±l , it follows by integrating that the closure U t of the neighbourhood Ut is the

cube I3, where I = [− t
1− 2

3γ

1− 2
3γ

, δ + t
1− 2

3γ

1− 2
3γ

]. We make use of the following 1-dimensional Sobolev inequality5

(2.43) f2(t, xl) ≤ (δ +
2

1− 2
3γ

t1−
2
3γ )−1

∫
I

f2(t, xl)dxl + ‖f(t, xl)‖2H1(I),

for f ∈ H1(I), t ∈ (0, t0].
First, we take the limit t → 0 in (2.42), employing (2.40), and then we apply (2.36) to the integrand in

the third line of (2.42) and (2.43) to the integral over N±l ∩ Us in the last line of (2.42) to deduce the lower
bound:

1

2
(1− 2

γ
)2

∫
U0

A2(x)volU0(2.44)

≥ 1

2
t

4
γ

0 ‖∂tψ‖2L2(Ut0 ) +
1

2
t

4
γ−

4
3γ

0

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

− 8

3γ

∫ t0

0

s
4
γ−1− 4

3γ ds

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

− 16

3γ

∫ t0

0

s
4
γ−1− 4

3γ
(t

1− 2
γ

0 − s1− 2
γ )2

(1− 2
γ )2

ds

3∑
i=1

t
2
γ

0

∫
Ut0

Je00 [∂xiψ]volUt0

−
∫ t0

0

(1 +
1

δ + 2
1− 2

3γ

s1− 2
3γ

)s−
2
3γ

∫
Us

s
4
γ 12Je00 [ψ]volEucds

−
∫ t0

0

s−
2
3γ

∫
Us

4s
4
γ

3∑
l=1

Je00 [∂xlψ]volEuc

≥ 1

2
t

4
γ

0 ‖∂tψ‖2L2(Ut0 ) −
1

2
t

8
3γ

0

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

− t
2− 4

3γ

0

1− ( 2
3γ )2

3∑
i=1

[
t

4
γ

0 ‖∂t∂xiψ‖2L2(Σt0 ) + t
8
3γ

0

3∑
j=1

‖∂xj∂xiψ‖2L2(Σt0 )

]

−
∫ t0

0

(1 +
1

δ + 2
1− 2

3γ

s1− 2
3γ

)s−
2
3γ ds

∫
Ut0

12t
4
γ

0 J
e0
0 [ψ]volEuc(by (2.14) for {Ut})

−
∫ t0

0

s−
2
3γ ds

∫
Ut0

4t
4
γ

0

3∑
l=1

Je00 [∂xlψ]volEuc

=
1

2
t

4
γ

0 ‖∂tψ‖2L2(Ut0 ) −
1

2
t

8
3γ

0

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

− t
2− 4

3γ

0

1− ( 2
3γ )2

3∑
i=1

[
t

4
γ

0 ‖∂t∂xiψ‖2L2(Σt0 ) + t
8
3γ

0

3∑
j=1

‖∂xj∂xiψ‖2L2(Σt0 )

]

− t
1− 2

3γ

0

1− 2
3γ

[
6t

4
γ

0 ‖∂tψ‖2L2(Ut0 ) + 6t
8
3γ

0

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

+ 2t
4
γ

0

3∑
l=1

‖∂t∂xlψ‖2L2(Ut0 ) + 2t
8
3γ

0

3∑
i,l=1

‖∂xi∂xlψ‖2L2(Ut0 )

]

5Proof by fundamental theorem of calculus: f2(t, xl) ≤ minxl∈I f
2(t, xl) +

∫
I 2|f ||∂xlf |dxl ≤ |I|−1‖f‖2

L2(I)
+ ‖f‖H1(I).
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− 3 log
(
1 +

2

1− 2
3γ

t
1− 2

3γ

0

δ

)[
t

4
γ

0 ‖∂tψ‖2L2(Ut0 ) + t
8
3γ

0

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

]
.

Thus, if the assumptions of Theorem 1.4 for FLRW are satisfied, then the RHS of (2.44) gives ‖A(x)‖L2(U0) >
0. This completes the proofs of the main theorems for FLRW.

2.3. Kasner. For Kasner the adapted orthonormal frame to the constant t hypersurfaces reads:

e0 = −∂t, ei = t−pi∂xi .(2.45)

In this frame, the non-zero components of the second fundamental form K of the Σt hypersurfaces are

Kii := g(∇eie0, ei) = −pi
t
, i = 1, 2, 3.(2.46)

Further, the intrinsic volume form volΣt on Σt equals

volΣt = tvolEuc.(2.47)

Proposition 2.7 (Upper bound). Let ψ be a smooth solution to the wave equation, �gψ = 0, in Kasner.
Then the following energy inequality holds:

t

∫
Σt

Je00 [∂αxψ]volΣt ≤ t0
∫

Σt0

Je00 [∂αxψ]volΣt0(2.48)

for all t ∈ (0, t0] and any multi-index α. Moreover, ∂βxψ satisfies the pointwise bound

|∂βxψ(t, x)| ≤ C
∑
|α|≤2

(
t20

∫
Σt0

Je00 [∂αx ∂
β
xψ]volΣt0

) 1
2

log
t0
t

+ |∂βxψ(t0, x)|,(2.49)

for any multi-index β, where C is a constant independent of t0, pi.

Proof. We compute the divergence of the current Je0a [ψ]:

∇aJ te0a [ψ]
(2.5)
= ∇a(te0)bTab[ψ] = tKabTab[ψ]− (e0t)T00[ψ]

=

3∑
i=1

Kiit(eiψ)2 − 1

2
Ki

it|∇ψ|2 +
1

2

[
(e0ψ)2 + |∇ψ|2

]
(2.50)

(2.46)
=

3∑
i=1

(1− pi)(eiψ)2.

Hence, by (2.8), for X = te0, we have

t

∫
Σt

Je00 [ψ]volΣt = t0

∫
Σt0

Je00 [ψ]volΣt0 +

∫ t0

t

∫
Σs

3∑
i=1

(pi − 1)(eiψ)2)volΣsds(2.51)

≤ t0
∫

Σt0

Je00 [ψ]volΣt0 .(pi ≤ 1)

Note, that the same inequality holds for ∂βxψ by commuting the wave equation with ∂βx . In particular, taking
into account the volume form, we control

t2
∫

Σt

(∂tψ)2volEuc ≤ 2t0

∫
Σt0

Je00 [ψ]volΣt0 , t
2‖∂t∂βxψ‖2H2(2.52)

≤
∑
|α|≤2

2t0

∫
Σt0

Je00 [∂αx ∂
β
xψ]volΣt0 ,

for all t ∈ (0, t0].
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Using the fundamental theorem of calculus along e0 and Sobolev embedding H2(T3) ↪→ L∞(T3), we then
derive

|∂βxψ(t, x)| = |
∫ t

t0

∂s∂
β
xψds+ ψ(t0, x)|(2.53)

≤
∫ t0

t

C‖∂s∂βxψ‖H2(volEuc)ds+ |∂βxψ(t0, x)|

≤C
∑
|α|≤2

(
t20

∫
Σt0

Je00 [∂αx ∂
β
xψ]volEuc

) 1
2

log
t0
t

+ |∂βxψ(t0, x)|,(by (2.52))

for all t ∈ (0, t0]. �

Instead of deriving renormalised energy estimates, as in the previous subsection for FLRW (see Proposition
2.3), we prove the validity of the expansion (1.4) by using (2.49) to view the wave equation as an inhomoge-
neous ODE in t. This procedure is more wasteful in the number of derivatives of ψ that we need to bound
from initial data, but it is slightly simpler.

Proof of Theorem 1.1 for Kasner. We express the wave equation for ψ in terms of the (t, x1, x2, x3) coordinate
system and treat the spatial derivatives of ψ as error terms:

−∂2
t ψ −

1

t
∂tψ +

3∑
i=1

t−2pi∂2
xiψ = 0 ⇒ ∂t(t∂tψ) =

3∑
i=1

t1−2pi∂2
xiψ.(2.54)

Integrating in [t, t0] we obtain the formula

t∂tψ = t0∂tψ0 −
∫ t0

t

3∑
i=1

s1−2pi∂2
xiψds

ψ(t, x) =ψ(t0, x) + t0∂tψ0 log
t

t0
+

∫ t0

t

1

s

∫ t0

s

3∑
i=1

s1−2pi∂2
xiψdsds(2.55)

=ψ(t0, x) +

(
t0∂tψ0 +

∫ t0

0

3∑
i=1

s1−2pi∂2
xiψds

)
log

t

t0

+

∫ t0

t

1

s

∫ s

0

3∑
i=1

s1−2pi∂2
xiψdsds

=A(x) log t+ u(t, x),

where

A(x) = t0∂tψ0 +

∫ t0

0

3∑
i=1

s1−2pi∂2
xiψds,(2.56)

u(t, x) =ψ(t0, x)−
(
t0∂tψ0 +

∫ t0

0

3∑
i=1

s1−2pi∂2
xiψds

)
log t0(2.57)

+

∫ t0

t

1

s

∫ s

0

3∑
i=1

s1−2pi∂2
xiψdsds.

Note, that since by the assumption 1 − 2pi > −1 and by (2.49) ‖∂βxψ‖L∞ ≤ C| log t|, t ∈ (0, t0], the

functions s1−2pi∂2
xiψ, 1

s

∫ s
0

∑3
i=1 s

1−2pi∂2
xiψds are integrable6 in [0, t0] and hence the above formulas make

sense. Moreover, it is implied by (2.56), (2.57) that A(x), u(t, x) are smooth functions and u = uKasner and
its spatial derivatives are in fact uniformly bounded up to t = 0:

‖∂αx u‖L∞(Σt) ≤ C,(2.58)

for all t ∈ (0, t0], any multi-index α, where C > 0 is a constant depending on initial data. �

6By Proposition 2.7, their L1([0, t0]) norm is bounded by initial data.
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Next, we prove the blow up result stated in Theorem 1.2 for Kasner. Notice that since pi < 1, the main
contribution of the energy flux generated by the current Je0 [ψ], as t→ 0, comes from the ∂tψ term:

t

∫
Σt

Je0 [ψ]volΣs =
1

2

∫
Σt

t2(∂tψ)2 +

3∑
i=1

t2−2pi(∂xiψ)2volEuc(2.59)

=
1

2

∫
Σt

t2(∂tψ)2volEuc +

3∑
i=1

t2−2piO(| log t|2).

Utilising (1.4), (2.58) it follows that

lim
t→0

t

∫
Σt

Je0 [ψ]volΣs =
1

2
lim
t→0

∫
Σt

t2(∂tψ)2volEuc =
1

2

∫
Σ0

A2(x)volEuc.(2.60)

Thus, returning to (2.51) and taking the limit t→ 0 we obtain the identity:∫
Σ0

A2(x)volEuc = t0

∫
Σt0

Je00 [ψ]volΣt0 +

∫ t0

0

∫
Σs

3∑
i=1

(pi − 1)(eiψ)2volΣsds(2.61)

=
1

2
t20‖∂tψ‖2L2(Σt0 ) +

1

2

3∑
i=1

t2−2pi
0 ‖∂xiψ‖2L2(Σt0 )

+

∫ t0

0

3∑
i=1

(pi − 1)s1−2pi

∫
Σs

(∂xiψ)2volEucds.

We bound the L2 norm of ∂xiψ as follows:

Lemma 2.8. The following estimate for the L2 norm of ∂xiψ holds:

‖∂xiψ‖L2(Σt) ≤ ‖∂xiψ‖L2(Σt0 ) +

(
2t0

∫
Σt0

Je00 [∂xiψ]volΣt0

) 1
2

log
t0
t
,(2.62)

for all t ∈ (0, t0].

Proof. We have

− 1

2
∂t‖∂xiψ‖2L2(Σt)

C−S
≤ ‖∂xiψ‖L2(Σt)‖∂t∂xiψ‖L2(Σt)

− ∂t‖∂xiψ‖L2(Σt) ≤ ‖∂t∂xiψ‖L2(Σt)

‖∂xiψ‖L2(Σt) ≤ ‖∂xiψ‖L2(Σt0 ) +

∫ t0

t

‖∂s∂xiψ‖L2(Σs)ds

‖∂xiψ‖L2(Σt)

(2.52)

≤ ‖∂xiψ‖L2(Σt0 ) +

(
2t0

∫
Σt0

Je00 [∂xiψ]volΣt0

) 1
2

log
t0
t
,(2.63)

where in the last inequality we made use of (2.52). �

Applying (2.63) to (2.61) we derive:∫
Σ0

A2(x)volEuc(2.64)

≥ 1

2
t20‖∂tψ‖2L2(Σt0 ) +

1

2

3∑
i=1

t2−2pi
0 ‖∂xiψ‖2L2(Σt0 )

+

3∑
i=1

∫ t0

0

(pi − 1)s1−2pids(2‖∂xiψ‖2L2(Σt0 ))

+

3∑
i=1

∫ t0

0

(pi − 1)s1−2pi | log
s

t0
|2ds

(
2t20‖∂t∂xiψ‖L2(Σt0 )
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+ 2

3∑
j=1

t2−2pi
0 ‖∂xj∂xiψ‖L2(Σt0 )

)

≥ 1

2
t20‖∂tψ‖2L2(Σt0 ) −

1

2

3∑
i=1

t2−2pi
0 ‖∂xiψ‖2L2(Σt0 )

−
3∑
i=1

t2−2pi
0

(1− pi)2

[
t20‖∂t∂xiψ‖2L2(Σt0 ) +

3∑
j=1

t2−2pi
0 ‖∂xj∂xiψ‖2L2(Σt0 )

]
.

If the assumptions of Theorem 1.2 for Kasner are satisfied, then it is clear from the preceding lower bound
that ‖A(x)‖L2(T3) > 0.

To prove the local version of the blow up criterion in Theorem 1.4, we argue similarly, but also take into
account the contribution of the null flux terms in (2.8). Note that the upper bounds (2.48), (2.49), (2.63)
are also valid for the integral domains Ut, U0 in place of Σt,Σt0 , since the null flux terms in (2.8) have a
favourable sign for an upper bound. Hence, taking the limit t→ 0 in (2.6) and employing (2.7), (2.50), (1.4),
(2.58) we obtain: ∫

U0

A2(x)volEuc(2.65)

≥ 1

2
t20‖∂tψ‖2L2(Ut0 ) +

1

2

3∑
i=1

t2−2pi
0 ‖∂xiψ‖2L2(Ut0 )

+

∫ t0

0

3∑
i=1

(pi − 1)s1−2pi

∫
Us

(∂xiψ)2volEucds

−
3∑
l=1

∫ t0

t

∫
N±l ∩Us

s2−pl 1

2

[
|(e0 ± el)ψ|2 + |eiψ|2 + |ejψ|2

]
dsdxidxj .(i < j; i, j 6= l)

Since t−pldt = ±dxl along N±l , it follows by integrating that the closure U t of the neighbourhood of Ut is

the product I1 × I2 × I3, where Ii = [− t
1−pi

1−pi , δ + t1−pi

1−pi ]. The analogous inequality to (2.43) then reads

f2(t, xl) ≤ (δ +
2

1− pl
t1−pl)−1

∫
Il

f2(t, xl)dxl + ‖f(t, xl)‖2H1(Il)
,(2.66)

with f ∈ H1(Il), t ∈ (0, t0].

Applying the latter bound to the integral over N±l ∩ Us on the RHS of (2.65), along with (2.63), we derive∫
U0

A2(x)volEuc(2.67)

≥ 1

2
t20‖∂tψ‖2L2(Ut0 ) +

1

2

3∑
i=1

t2−2pi
0 ‖∂xiψ‖2L2(Ut0 )

+

3∑
i=1

∫ t0

0

(pi − 1)s1−2pids(2‖∂xiψ‖2L2(Ut0 ))

+

3∑
i=1

∫ t0

0

(pi − 1)s1−2pi | log
s

t0
|2ds

(
2t20‖∂t∂xiψ‖L2(Ut0 )

+ 2

3∑
j=1

t2−2pi
0 ‖∂xj∂xiψ‖L2(Ut0 )

)

−
3∑
l=1

[ ∫ t0

t

(1 +
1

δ + 2
1−pl s

1−pl
)s−pl

∫
Us

4sJe00 [ψ]volUsds

+

∫ t0

t

s−pl
∫
Us

4sJe00 [∂xlψ]volUsds

]
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≥ 1

2
t20‖∂tψ‖2L2(Ut0 ) −

1

2

3∑
i=1

t2−2pi
0 ‖∂xiψ‖2L2(Ut0 )

−
3∑
i=1

t2−2pi
0

(1− pi)2

[
t20‖∂t∂xiψ‖2L2(Σt0 ) +

3∑
j=1

t2−2pi
0 ‖∂j∂xiψ‖2L2(Σt0 )

]

−
3∑
l=1

2t1−pl0

1− pl

[
t20‖∂tψ‖2L2(Ut0 ) +

3∑
i=1

t2−2pi
0 ‖∂xiψ‖2L2(Ut0 )

+ t20

3∑
l=1

‖∂t∂xlψ‖2L2(Ut0 ) +

3∑
i=1

t2−2pi
0 ‖∂xi∂xlψ‖2L2(Ut0 )

]

−
3∑
l=1

log
(
1 +

2

1− pl
t1−pl0

δ

)[
t20‖∂tψ‖2L2(Ut0 ) + t2−2pl

0

3∑
i=1

‖∂xiψ‖2L2(Ut0 )

]
.

Thus, given the assumptions in Theorem 1.4 for Kasner, it follows that ‖A(x)‖L2(U0) > 0, as required.
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