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Abstract

The Electro-Acoustic Reflectometry (EAR) method was recently proposed for the purpose of

probing space charge with a high spatial resolution. In this article, the underlying physical principle

of the method is studied in order to explain the observed signals. The effect of boundary conditions

is exploited to experimentally validate the theoretical calculations.
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I. INTRODUCTION

The challenge facing today the non destructive methods for space charge measurement in

dielectric materials is achieving a better bulk spatial resolution than the already existing one

which is about 10µm at best [1, 2]. Actually, the need for enhancing the spatial resolution

occurs due to the continuous miniaturization trend in technology, on one hand, and to the

use of higher voltages such as in High Voltage Direct Current (HVDC) systems, becoming

more common, on the other hand. In fact the higher the operating voltage or the thinner

the dielectric material, the larger the electric field and the more likely is the charge injection

into the dielectric materials of the electronic devices and hence the quicker the dielectric

breakdown is reached.

The usual non destructive measurement methods can be grouped into three categories,

the Thermal method [3–5], the Pressure-Wave-Propagation (PWP) method [6–8] and the

Pulsed-Electro-Acoustic (PEA) method [9, 10]. These methods all share the same physical

working principle [2, 11] but differ in their implementation and their processing techniques.

The main idea in the measurement of space charge with these methods is sending a physical

perturbation to the sample containing space charge and measuring its response; either elec-

tric or elastic. The efforts in this area of research are now focused on improving the spatial

resolution of these methods [12–15]. While the limitation of the thermal method is purely

physical as it is due to the diffusion nature of the excitation [14, 16], it is mainly imposed

by available technology for the elastic methods as it is due to insufficient bandwidth of the

measurement system.

The Electro-Acoustic-Reflectometry (EAR) method has been introduced [17–19] to over-

come this problem. A review of the basics of the EAR method is given in Section II.

The physical model which is based on the state equations of an electro-elastic coupling is

addressed in Section III. Simulation results are presented in Section IV followed by experi-

mental results in Section V for validation.

II. EAR METHOD BASICS

When an insulating material is subjected to an electrical excitation, the variation of the

electrostatic forces due to the charges inside the material gives birth to elastic waves. In
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the case of the PEA method, these waves are transmitted to a wave-guide and then to a

piezoelectric transducer for measurement. High resolution requires fast rise-time excitation

[2], and thus high frequency components. At high frequency, it is very hard to manufacture

good elastic couplings to ensure the non dispersion of the elastic waves traveling from the

sample toward the transducer, because elastic waves greatly scatter on any defect when

the wavelength is very small (namely, at high frequency) which destroys the signal. With

the EAR method, the electrical energy consumed for the generation of the elastic waves is

measured instead of directly measuring the elastic waves. In fact, since the sample can be

viewed as an electrical load, one part of the incident electrical excitation is absorbed by the

sample and the other part is reflected back to the generator; the sum of the energy of these

two parts being equal to the energy of the excitation. Hence, if elastic waves are generated

after excitation, more energy is absorbed by the sample and thus less energy is reflected back

to the generator. As a consequence, the reflected electrical signal, which links directly to the

electrical impedance of the sample, holds an attribute of the elastic signal which is generated

within the sample. In addition, excitation and measurement are made in frequency domain

as it is more convenient at high frequencies. Figure 1 illustrates the EAR method principle.

Making the measurement frequency by frequency is equivalent to using the frequency

content of a time domain impulse. In theory, a perfect impulse function has an infinite

amplitude and a zero-time duration, thus infinite frequency span spectrum. In practice, the

amplitude of an impulse and its duration are always finite as well as its spectrum. There is an

inverse relationship between the impulse duration and its spectrum bandwidth. The shorter

the time duration of the impulse, the larger its spectrum. To achieve the required spatial

resolution for the measurement of space charge in thin films, the impulse duration must be

as short as possible, or at least its rise time. Actually, the rise time value is directly linked

to the spatial resolution with elastic measurement methods [2]. Therefore, instead of using

a time domain impulse, its frequency components are used. The broader the spectrum, the

shorter the equivalent time domain impulse, hence the spatial resolution can be enhanced.

It is desired to reach a bulk spatial resolution below 10µm. For instance to get to 1-µm

spatial resolution, the excitation bandwidth must be 1 GHz in the case of most polymers. At

microwave frequencies, the conventional approach for measuring voltages and currents does

not apply because of the propagation phenomenon of the electric waves that occurs whenever

their wavelength is small compared to the size of the measurement circuit elements. Given
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this, a microwave setup is more suitable for the implementation of the EAR method.

In microwave theory, the sample can be considered as a black box which is fully char-

acterized by its scattering matrix in a one-port configuration as shown in Figure 2. The

scattering matrix element of interest in our case is S11 which holds the reflected signal from

the sample. It is worth noting that this parameter is dimensionless as it is the ratio of the

reflected electric wave from the sample to the incident electric wave on the sample from ex-

citation as shown in Figure 2. If the sample were purely dielectric, its impedance Zd would

be a capacitance in parallel with a conductance whereas, in the presence of space charges, a

mechanical impedance Zm adds in parallel to Zd so the overall impedance representing the

sample is Zs = Zm ‖ Zd as described in figures 1b and 1d, respectively.

The reflection coefficient S11 is directly related to the sample electric impedance Zs and

is given by

S11 =
Zs − Z0

Zs + Z0

(1)

where Z0 is the impedance of the line connecting the generator to the sample which is equal

to 50 Ω with the standard instrumentation. In the case of the electro-elastic coupling, the

electric impedance of the sample Zs is modified due to the appearance of a motional branch

of impedance Zm as shown in Figure 1 and the reflection coefficient varies. This clearly

shows that the reflected electric signal holds information about space charges within the

sample under test.

III. PHYSICAL MODELING

The EAR method is an all electrical-method since both the excitation and the measured

signal are of electrical nature. However, it relies on an electro-elastic phenomenon which

causes the generation of elastic waves inside the insulating material. Actually the electro-

elastic effect takes place within any insulating material whenever subjected to an electric

excitation. This is described in physics by the set of state equations in which stress, defor-

mation, electric displacement and electric field are related through the material stiffness, its

permittivity and its electro-elastic coefficient. Since excitation is made at a single frequency

at a time and lock-in measurement is used at the same frequency, static and higher order

electro-elastic effects vanish and only linear effects remain. As a consequence the set of state

equations which is the combination of Hooke’s law and Maxwell’s equation for the electric
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displacement could be written in one dimension as










T (ω) = cS(ω)− e⋆E(ω)

D(ω) = ǫ⋆E(ω) + e⋆S(ω)
(2)

where ω is the angular frequency at which excitation and measurement are made, T is the

mechanical stress, S is the mechanical deformation, D is the electric displacement, E is

the applied electric field, c is the elastic stiffness, ǫ⋆ is the equivalent permittivity and e⋆

is the equivalent piezoelectric coefficient of the material. The equivalent permittivity is

ǫ⋆ = ǫ+ aS0, where ǫ is the material permittivity at rest, a is the electrostrictive coefficient

and S0 is the static deformation of the sample. The equivalent piezoelectric coefficient is

e⋆ = e + (a − ǫ)E0, where e is the actual piezoelectric coefficient of the material and E0

is the static electric field in the sample. For the sake of simplicity, the stars are dropped

hereafter.

The uni-dimensional assumption (Figure 3) holds since the other dimensions of the sample

are infinitely large with respect to the thickness considered in the practical case of thin films

during measurement. In other words, boundary effects are negligible compared to surface

effects.

The mechanical deformation is given by

S(x, t) =
∂u(x, t)

∂x
(3)

where u(x, t) is the mechanical displacement in a longitudinal mode of propagation along

the x-axis. The electric current density j(t) generated through electro-elastic coupling can

be obtained by writing the Maxwell-Ampère’s law assuming a uniform magnetic field within

the sample. One has

j(t) = −∂D(x, t)

∂t
(4)

As to the propagation equation, one has for a propagation along the thickness of the

sample

mv
∂2u(x, t)

∂2t
+ c

∂2u(x, t)

∂2x
= f(x, t) (5)

where f(x, t) is the force density acting on the material and mv is the mass density. The

solution to the homogeneous equation, that is to say out of the sources, is

u(x, t) = A exp(ıωt− ıkx) +B exp(ıωt+ ıkx) (6)
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where A and B are the amplitudes of the elastic waves propagating in the positive and

negative x-directions, respectively, k is the wave number and ı is the imaginary constant.

However, in the case where a bulk charge is present within the sample, it constitutes a

source for the elastic wave and must be taken into consideration in the expression of the

material displacement. In that line of thought, one has to consider the general case where

a bulk charge is present within the sample and a voltage is applied to it. In this situation,

image charges are induced on the electrodes due to both the bulk charge and the applied

voltage. If a charge σ is present at position xs inside the sample of thickness d to which

a voltage V0 is applied, then charges σ1 and σ2 are induced on the electrodes as shown in

Figure 4c. These are the superposition of the induced charges σ′
1 and σ′

2 by the applied

voltage alone, and the induced charges σ′′
1 and σ′′

2 by the space charge alone. These induced

charges can be written as function of the bulk charge σ and the applied voltage V0 as















σ1 = σ′
1 + σ′′

1 = −ǫ V0

d
− σ (d− xs)

d
at x = 0

σ2 = σ′
2 + σ′′

2 = +
ǫV0

d
− σxs

d
at x = d

(7)

Including the contribution of all charges to the displacement and dropping the harmonic

dependence exp(ıωt) for sake of clarity, the overall mechanical displacement can be rewritten

as

u(x) = A exp(−ıkx) +B exp(ıkx)

+
σδE

2ıωZ
exp(−ık|x− xs|)

+
σ1δE

2ıωZ
exp(−ık|x|)

+
σ2δE

2ıωZ
exp(−ık|x− d|)

(8)

One has only to inject this term into the set of state equations and use the Maxwell-

Ampère’s law to compute the generated electric current density j(t). One has to bear in

mind that the electric current density is related to the voltage applied at angular frequency

ω as δV (ω) = Zs j(ω), where Zs is the impedance of the sample. Therefore, the information

about space charge held in the change of impedance of the sample can be found in the

generated electric current as well. Hence, these quantities can be used interchangeably to

investigate space charges.

The computed generated current density given in frequency domain is j(ω) = jd(ω) +
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jm(ω) with






























jd(ω) = ıω
ǫ

d
δV (ω)

jm(ω) = ıω
ǫV0 + σ(d− xs)

d2
u(0)

+ıω
σxs − ǫV0

d2
u(d)− ıω

σ

d
u(xs)

(9)

One can see clearly in the expression of the electric current density the presence of a

first term jd(ω) depending on the applied varying electrical voltage δV (ω) and 3 others in

jm(ω) depending on the elastic displacement u(x). One can identify in jd(ω) the sample

admittance corresponding to a per unit surface capacitance of ǫ/d. This term holds the

dielectric behavior of the sample. The 3 other terms in jm(ω) contain the contribution of the

assumed bulk charge σ at position xs, the contribution of the induced charge σ1 at position

0 and the contribution of the induced charge σ2 at position d. These contributions depend

on the elastic displacement at positions xs, 0 and d, respectively. Hence, the information

about the space charge can be recovered from the 3 last terms.

A transformation to time domain by applying an inverse Fourier Transform allows to get

the time domain signal corresponding to the elastic response of the sample. As the elastic

signal depends on the elastic displacement at the boundaries and at the charge position, one

has to solve for the elastic displacement in order to compute the electric current density. The

solution consists in finding the amplitude of the waves traveling in both directions within

the sample, that is to find A, and B as a function of position. Hence, one has to take into

account the boundary conditions. Given that, four situations are considered here: (i) free

boundaries, (ii) stiff boundaries, (iii) stiff/free boundaries and (iv) free/stiff boundaries. The

following conditions must be fulfilled for each case:







































u(0) = u(d) = 0 Stiff boundaries

T (0) = T (d) = 0 Free boundaries

u(0) = T (d) = 0 Stiff/free boundaries

u(d) = T (0) = 0 Free/stiff boundaries

(10)

These conditions imply large reflection at both interfaces. This is a good situation for

the EAR method because generating standing waves inside the sample makes it easier to

distinguish in the signal the effect of elastic waves from the effect of conventional dielectric
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losses [20]. Moreover, contrarily to PWP and PEA methods for which elastic waves must

enter or exit the sample to implement the measurement, elastic waves are generated and

measured from inside the sample in the case of the EAR method, therefore it is better to

keep elastic waves inside the sample as long as possible. Although it is easier to obtain

mismatched interfaces than matched interfaces, interfaces are neither perfectly stiff nor free

in the general case. However, these intermediate situations can always be described by the

superposition of stiff and free conditions. Thus, studying stiff and free conditions shed light

on all intermediate conditions.

Applying conditions (10) yields to the exact expression of the elastic displacement in

each case and one only has to substitute it in the expression of the electric current density.

Solving for A and B in these four situations gives for the stiff boundary conditions


















A = −σ1 sin(kd) + σ sin(k(d− xs))

2ıωZ sin(kd)
δE

B = −σ2 sin(kd) + σ sin(kxs)

2ıωZ sin(kd) exp(ıkd)
δE

(11)

for the free boundary conditions


















A =
σ1 (1− cos(kd)) + σ (1− cos(k(d− xs)))

2ωZ sin(kd)
δE

B =
σ2 (1− cos(kd)) + σ (1− cos(kxs))

2ωZ sin(kd) exp(ıkd)
δE

(12)

for the stiff/free boundary conditions


















A =
σ1 (1− cos(kd)) + σ (1− cos(k(d− xs)))

2ıωZ cos(kd)
δE

B =
σ2 sin(kd) + σ sin(kxs)

2ωZ cos(kd) exp(ıkd)
δE

(13)

and for the free/stiff boundary conditions


















A =
σ1 sin(kd) + σ sin(k(d− xs))

2ωZ cos(kd)
δE

B =
σ2 (1− cos(kd)) + σ (1− cos(kxs))

2ıωZ cos(kd) exp(ıkd)
δE

(14)

IV. SIMULATION RESULTS

The information about space charge is within the elastic component jm(ω) of the gener-

ated electric current density by electro-elastic coupling. Therefore, the time domain signal is
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computed hereafter using this component in order to investigate its space charge information

content.

Values of xs ranging from d/10 to 9d/10 with a step of d/10 for all the four boundary

conditions are investigated. The time domain signal is obtained through an inverse Fourier

transform from the calculation of jm(ω) by taking ω ranging from 0 to 50πvs/d, where

vs is the velocity of sound inside the sample. This corresponds to up to 50 harmonics

inside the sample. In the presented figures, the spectra are plotted in a log-scale to better

see the variations. These spectra correspond to the maximum resonance occurring when

the denominator of the elastic wave amplitudes A and B approaches 0. Slight losses are

introduced in the wave number k to overcome calculation divergence and sampling issues.

In all time domain figures presented hereafter, the abscissa is mapped to position within

the sample using x = vst. As obtained signals are periodic, only the first period, which

corresponds to the sample thickness d, and half of the second period are shown.

The computed elastic spectra for xs = 3d/10 with the four boundary conditions are

shown in Figure 5 in the case of ǫV0/d = 1 C/m2 and σ = 0 C/m2 (no internal charge).

The corresponding time domain signals are shown in Figure 6. One can see from this set

of results that when the boundaries are stiff and no space charge is within the sample,

no signal is detected meaning the induced charges on electrodes cannot be detected. In

this case, charges are bound because of the stiffness of the boundaries and cannot move in

response to the excitation, hence no elastic signal is generated. When the boundaries are

free, the charges induced on the electrodes by the applied voltage are well detected and in

the case of stiff/free and free/stiff boundaries, only the charges on the free boundary are

detected.

When no voltage is applied and a space charge is present within the sample (ǫV0/d =

0 C/m2 and σ = 1 C/m2), an elastic signal is detected with all types of boundaries as

shown in Figure 7. The observed peaks in the time domain signal correspond to the instants

when a charge is displaced by the elastic waves. One should notice that this signal has not

only information about the space charge but also exhibits features corresponding the signal

generated by the image charges σ1 and σ2 as expressed in (7).

For the case of an assumed bulk charge and an applied voltage (ǫV0/d = 1 C/m2 and

σ = 1 C/m2), one can see from Figure 8 that for all boundary types there is no major

change in the time signal compared to the former case, except for the modification of the
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amplitude. Actually, there is a superposition of the two previous cases which makes this

change in amplitude but without affecting the information about the charge position. This

also shows that the effect of voltage alone can be deduced by combining a measurement

under voltage and a measurement under short-circuit. This is very useful for making the

calibration since, knowing the capacitance of the sample, it is possible to attribute to the

peak amplitude in the signal the known charge quantity on the electrodes.

To gain an insight into the meaning of the obtained signals, a time-position map is used to

follow the path of the generated elastic waves. This is shown for the cases of stiff boundaries

and free boundaries in figures 9 and 10, respectively. The elastic waves are represented by

bold arrows. Circles in the time-position map correspond to a signal generation by charge

movement due to the elastic waves, with the same assumption of a bulk charge σ at 3d/10

and two charges σ1 and σ2 on the boundaries.

For the stiff boundary case, when the electrical excitation is applied to the sample, only

the internal charge is free to move and generates elastic waves. These elastic waves have

two components traveling in opposite directions along the thickness of the sample. When

these components arrive at the boundaries, they bounce back in the opposite direction and

continue to travel and bounce back and forth in a periodic pattern. Each time these elastic

waves encounter the internal charge (see the circles), this latter is displaced and an electrical

signal is generated.

In the case of free boundaries, all charges (in the bulk and on the boundaries) are free to

move upon electrical excitation and all of them generate elastic waves. These waves travel

along the thickness of the sample and bounce back and forth when reaching the boundaries.

In this case, an electrical signal is generated whenever an elastic wave encounters a charge

whether in the bulk or on the boundaries (see the circles). When more than one charge is

moved at a time, all contributions sum up to form the obtained signal.

Though the signal seems to contain many spurious contributions, these contributions

are not distributed at random and their amplitude is actually informative. For instance

the amplitude of the 3 peaks inside the sample in the situation shown in Figure 10 are

respectively proportional to α1 = −2σ1σ (at 0.3d), α2 = −1
2
σ2 (at 0.6d) and α3 = −2σ2σ

(at 0.7d). Therefore one has in that case σ =
√
2α2, σ1 = α1/

√
8α2 and σ2 = α3/

√
8α2.

One can further verify the correlation between the assumed charge position and the

obtained time signal by comparing the obtained time signal for different positions of the
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bulk charge. This is shown for the four types of boundaries in figures 11 to 13. One can see

from these figures that each position of the bulk charge can be traced from the time signals

as each time signal is specific to the bulk charge position. For sake of clarity, each signal is

shifted upward depending on the position of the bulk charge.

V. EXPERIMENTAL RESULTS

The measurement setup is shown in Figure 15. It comprises a two-port vector network

analyzer (VNA, HP8722ES) and a sample holder. Only one port of the VNA is used for the

experiments. Data acquisition and processing are performed with Matlab software.

To demonstrate the effect of the interface type on the measured signal, experiments were

carried out using a 2-mm-diameter circular PVDF sample with two types of boundaries.

First, the case of free boundaries is considered as described by the configuration in Figure 16a

where the sample is put directly (dry contact) on the ground plane of the sample holder.

Second, silicone oil is spread in a thin layer on the ground plane before putting the sample

on top of it as illustrated in Figure 16b. Attention is paid when handling the oil so that

it does not overflow on top of the sample in order to keep a free boundary from the probe

side. One should note that in this situation the boundary is not perfectly stiff but is much

stiffer than when using a dry contact.

The reflection coefficient S11 is measured with the same measurement setup and the time

domain signal is computed with the usual way [19]. The results are shown in Figure 17. One

can see a clear reduction of the second peak of the time signal resulting with the configuration

shown in Figure 16b in comparison to the resulting signal with the configuration shown in

Figure 16a. This result correlates well with the expected signal from simulation results of

free/stiff boundary case though the second peak does not completely vanish as in theory

because in practice this boundary is not perfectly stiff.

One can further check these results by computing the elastic reflection coefficient from

the signals. Indeed, the amplitude of the signal at the back interface is proportional to total

displacement of the interface (see equation (9)) thus to the sum of the effects due to the

incident elastic wave and to the reflected elastic wave. Therefore if Γ corresponds to the

refection coefficient at the back interface, then the amplitude of the signal is proportional

to 1−Γ, 1 standing from the incident wave and −Γ standing for the fraction of the incident
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wave reflected in the opposite direction. As a consequence, the ratio of the signal amplitudes

between the situations described in Figure 16a and Figure 16b depends only on the reflection

coefficients Γa and Γb in the two situations as (1−Γb)/(1−Γa). In addition, one has a total

reflection in the situation described in Figure 16a, hence Γa = −1. One finds from Figure 17

a ratio of 0.65 = (1− Γb)/2, thus corresponding to a reflection coefficient Γb ≈ −0.3.

The acoustic reflection coefficient depends on the acoustical impedance of materials as

Γ =
Zt − Zi

Zt + Zi
thus Zt = Zi

1 + Γ

1− Γ
(15)

where Zt is the acoustic impedance of the material to which the wave is transmitted and Zi

the acoustic impedance of the material holding the incident wave. It can be recalled that the

acoustic impedance is the product of the velocity of sound vs multiplied by the mass density

mv and is expressed in Rayl which is equivalent to kilogram per square meter per second.

Knowing the acoustic impedance of the sample Zi ≈ 3MRayl, one finds from Γb and equation

(15) an acoustic impedance Zt ≈ 1.6MRayl. This acoustic impedance is smaller than the

one of Brass (Zbrass ≈ 40.4MRayl) but very close to the one of oil (Zoil ≈ 1.4MRayl). In

fact, it is very hard to make an oil layer thinner than 10 µm even if contact points exist

between the sample and the brass. As a consequence, in the scale of the transit time, the

sample sees mainly the oil and not the brass and hence the reflection coefficient is closer to

the one on oil instead of the one on brass.

VI. CONCLUSION

The signal delivered by the EAR method has been modeled starting from the state equa-

tions. The linear form of the elasto-electric coupling is considered because both excitation

and measurement are made at the same frequency. It is demonstrated that the reflected elec-

trical signal from the sample contains information on the space charge distribution within

the sample and on the charges on the electrodes. Various boundary conditions have been

investigated. It is found that a signal is generated whenever a charge can move thus a

stiff boundary do not generate a signal since it prevents the charges on that boundary to

move. Experiments carried out with a 9-µm-thick PVDF sample under various boundary
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conditions have provided very consistent results, validating the model of the EAR method.
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Figure 1. Measurement principle of the EAR method. The sample is subjected to an electrical

excitation at different frequencies (black arrow). The reflected electric signal (gray arrow) is mea-

sured. (a) If no charge is present within the sample under test, dielectric losses (dotted arrow)

consume little of the incident energy and the reflection (gray arrow) is large. (b) Equivalent electric

circuit of case (a) where the sample corresponds to an electrical impedance Zd which corresponds

more or less to a capacitor. (c) If electric charges are present within the sample, the generation of

elastic waves (dotted arcs) consumes additional energy through electro-elastic coupling, thus the

reflection (gray arrow) is smaller. (d) Equivalent circuit of case (c) where the mechanical branch of

impedance Zm is used to represent the effect of elastic wave generation.
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Figure 2. Representation of a one-port network in transmission line theory. The reflection coefficient

S11 is given by the ratio of the reflected wave b1 by the incident wave a1.
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Figure 11. Obtained signals with stiff boundaries for a bulk charge position from d/10 to 9d/10.

The gray area corresponds to the sample.
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Figure 12. Obtained signal with free boundaries for a bulk charge position from d/10 to 9d/10.

The gray area corresponds to the sample.
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Figure 13. Obtained signal with stiff/free boundaries for a bulk charge position from d/10 to 9d/10.

The gray area corresponds to the sample.
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Figure 14. Obtained signal with free/stiff boundaries for a bulk charge position from d/10 to 9d/10.

The gray area corresponds to the sample.
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Figure 15. Schematic of the measurement setup of the EAR method composed of a vector network

analyzer (VNA), a computer and a sample holder.
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Figure 16. Test configurations. (a) Free boundary condition. (b) Almost free/stiff boundary

condition.
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