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Induced pluripotent stem cell-derived organoids offer an unprecedented access to

complex human tissues that recapitulate features of architecture, composition and

function of in vivo organs. In the context of Parkinson’s Disease (PD), human midbrain

organoids (hMO) are of significant interest, as they generate dopaminergic neurons

expressing markers of Substantia Nigra identity, which are the most vulnerable to

degeneration. Combined with genome editing approaches, hMO may thus constitute

a valuable tool to dissect the genetic makeup of PD by revealing the effects of

risk variants on pathological mechanisms in a representative cellular environment.

Furthermore, the flexibility of organoid co-culture approaches may also enable the

study of neuroinflammatory and neurovascular processes, as well as interactions with

other brain regions that are also affected over the course of the disease. We here

review existing protocols to generate hMO, how they have been used so far to

model PD, address challenges inherent to organoid cultures, and discuss applicable

strategies to dissect the molecular pathophysiology of the disease. Taken together, the

research suggests that this technology represents a promising alternative to 2D in vitro

models, which could significantly improve our understanding of PD and help accelerate

therapeutic developments.
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PARKINSON’S DISEASE

Pathophysiology
Parkinson’s Disease (PD) is the second most frequent neurodegenerative disorder after Alzheimer’s
Disease. It affects over 10 million people worldwide, with an estimated yearly cost of 52 billion
dollars in the United States alone, and an increasing prevalence due to an aging population (1).
Although PD has historically been characterized by its motor symptoms (bradykinesia, tremor,
and rigidity), the frequent co-occurrence of cognitive and psychiatric symptoms (such as apathy,
depression, and executive dysfunction) have led to the revaluation of PD as a quintessential
neuropsychiatric disorder (2).

At the cellular level, the central hallmark of PD is the misfolding and aggregation of α-
synuclein (α-syn), a protein involved in neurotransmitter release, membrane remodeling and
vesicle recycling, into toxic ß-sheet rich fibrillar aggregates (3). While impairments in protein
synthesis, folding, and degradation have been extensively linked to α-syn aggregation and toxicity,
recent advances have also highlighted the importance of lipid dysregulation in its pathological
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mechanisms (4). In most cases, these alterations lead to the
accumulation of α-syn aggregates along with mis-trafficked lipid
vesicles and organelles into inclusions termed Lewy Bodies
(LB) and neurites (5, 6), which are considered to be the main
histological manifestation of PD. While it remains unclear
whether LB themselves play a harmful, protective or even
“neutral bystander” role in PD (7), α-syn-associated pathology
eventually induces the degeneration of vulnerable cells through
altered mitochondrial, proteasomal, and autophagy-lysosomal
pathways (6, 8).

This vulnerability has been linked to several cellular
characteristics: elaborate neuronal arborization with many
vesicular release sites (enriched in α-syn), elevated intracellular
calcium concentrations due to autonomous pacemaker activity,
and higher basal levels of mitochondrial oxidative stress (9).
These characteristics are all found in the dopaminergic (DA)
neurons of the substantia nigra (SN), which are the most
affected neuronal type in PD. Their progressive degeneration
leads to a massive loss of DA release within cortico-basal
ganglia networks, and the emergence of both motor and
psychiatric symptoms of PD (10). The symptomatology is further
broadened by alterations of other neuronal types throughout the
course of the disease, although to a lesser extent (11). These
include other neuromodulator-producing neurons [cholinergic
(12), noradrenergic (13), and possibly serotonergic (14, 15)],
enteric neurons (16), as well as cortical neurons, in which
comorbid Alzheimer’s Disease pathology can arise in later
stages (17, 18). Additionally, microglia and astrocyte-mediated
neuroinflammatory processes are also known to contribute
to neurodegeneration and the progression of synucleinopathy
(19, 20).

PD is also a highly heterogeneous disease, as patients
can present significant differences for example regarding age
of onset (21), adherence to Braak staging (9), alteration in
neurotransmitter systems (22–27) and symptom presentation (9,
21, 28, 29). This heterogeneity thus suggests that the etiology of
PDmay involve a diversity ofmolecular and cellularmechanisms,
which remain to be fully identified.

Molecular Basis
Much of our understanding of the pathological mechanisms of
PD come from the study of relatively rare, high risk/monogenic
forms of the disease. To this day, 19 disease-causing genes
have been identified, amongst which 10 are autosomal dominant
(including mutations in SNCA, which encodes α-syn, and in the
Leucine Rich Repeat Kinase 2 / LRRK2 gene), and 9 autosomal
recessive (including PRKN, PINK1) (30). PD cases due to
mutations in those genes however only represent 5–10% of all
cases. Interestingly, the G2019S LRRK2 mutation has a variable
penetrance, as it can lead to both sporadic and familial PD (31).

The most recent GWAS meta-analysis to date has identified
90 common genetic variants with medium to low effect sizes
that were associated with PD (32). This study also found that
the expression of candidate genes was exclusively enriched in
neuronal cell types (with the strongest enrichment residing in
SN DA neurons, followed by pallidal, thalamic, and cortical
neurons), a striking contrast with recent reports on the genetic
architecture of Alzheimer’s Disease which heavily implicated

peripheral and CNS glial cell types (33) (blood, spleen,
lung, and microglia). Gene ontology analyses also revealed
enrichment for pathways referring to cellular stress responses
and suggest a potential implication of neuro-inflammatory
mechanisms. Interestingly, no significant association with
other neuromodulator-producing neurons (serotonergic,
noradrenergic, cholinergic) was revealed in these analyses, thus
highlighting the centrality of DA and DA-associated networks in
PD pathophysiology. This result may nevertheless be due to the
fact that this study did not account for PD subtypes (21), which
may be associated with alterations in different neurotransmitter
systems (22–27). In this regard, future studies integrating large
cohort GWAS data with patient stratification strategies may help
identify molecular mechanisms driving PD heterogeneity.

Amongst the most highly significant and best characterized
risk variants are those in the beta-glucocerebrosidase (GBA) gene.
Such variants seem to impair lysosomal function and can lead to
an increase in PD risk between 2- and 19-fold, and are associated
with amore severe clinical profile regarding symptomatology and
progression rate (21, 30). Interestingly, the presence of multiple
risk variants in a single patient (referred to as the “polygenic
load”), has also been shown to influence age of disease onset, but
not the rate of progression (34).

Recent population studies have yielded PD heritability rates
ranging between 0.22 and 0.27 (32, 35), suggesting that a
majority of cases may be due to the interaction of genetic and
environmental factors [rural living and pesticide exposure are
well-known risk factors, while tobacco, coffee, and moderate
alcohol consumption may be protective, see review (36)], and
to stochastic processes. Mosaicism may for instance be a non-
negligible contributor to the pathogenesis of sporadic PD (37), as
changes in copy numbers of the SCNA gene have been observed
in patient SN DA neurons (38). Nevertheless, only a minor
fraction of the disease’s heritability (16–36% depending on its
prevalence) can be explained by the most recently identified
risk loci (32), indicating that much of the “missing heritability”
remains yet to be uncovered. This may be partly achieved
through better understanding of epistatic interactions and the
functional annotation of the non-coding genome, in which a
majority of the single nucleotide polymorphisms (SNPs) fall.
Indeed, like many other complex polygenic human diseases, the
etiology of sporadic PD is likely attributable to the interactive
effects of a high numbers of variants on the regulation of large-
scale genetic networks (39). A growing body of research is
for example revealing how non-coding variants affecting long
range enhancer/promoter interactions or non-coding RNA may
be involved in PD pathophysiology (40–43). However, as non-
coding sequences tend to be less conserved between species,
appropriate human models of the disease are thus required to
expand our understanding of the molecular basis of PD.

MODELING PD IN VITRO

Reproducing Midbrain Development
in vitro
Given the importance of DA degeneration in PD, human induced
pluripotent stem cell (hiPSC)-derived DA cultures constitute
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highly relevant biological models to study the associated
molecular mechanisms in vitro.

Midbrain DA (mDA) neurons are found in 3 separate
nuclei: the Substantia Nigra pars compacta (SN, forming the
A9 group), Ventral Tegmental Area (VTA, A10 group,) and
Retrorubral Field (RRF, A8 group). A9 mDA neurons, which
primarily project to sensorimotor and associative striatal areas
(putamen and caudate nucleus), as well as some cortical
areas, are particularly vulnerable to neurodegeneration in
PD (10, 11).

In order to generate mDA neurons in vitro, several protocols
have been established based on our understanding of midbrain
development [see in depth reviews (44, 45)]. To summarize,
stem cells are initially directed toward a neuroectodermal
fate through TGFβ/activin/nodal and BMP pathways inhibition
[referred to as dual SMAD inhibition (46)], using different
combinations of molecules. SHH, WNT, and FGF8 signaling
are then typically modulated in order to specify midbrain
floor plate identity, from which mDA progenitors arise. Cells
are then differentiated and matured through the use of
neurotrophic factors such as brain and glial-derived neurotrophic
factors (BDNF, GDNF) and Ascorbic Acid, a commonly used
antioxidant. Correct specification should induce the expression
of transcription factor (TF) FOXA1/2 in mDA progenitor cells,
which in turn regulates the expression of LIM homeobox
TFs LMX1A and LMX1B. These TFs are required for the
specification and differentiation of mDA neurons, notably by
up-regulating NURR1, PITX3, and Tyrosine Hydroxylase (TH),
which together constitute essential markers of mDA neuron
identity. The differentiation and survival of mDA neurons
is then regulated by EN1/2 homeobox genes, which remain
expressed in adult neurons (44). It is worth noting that
these differentiations protocols do not generate SN-like mDA
neurons specifically, but rather a diversity of mDA subtypes
(47), out of which some neurons express markers of A9 or
A10 identity.

hiPSC-Derived Models of PD in 2D
The development of these protocols triggered a wave
of characterization studies aiming at identifying altered
phenotypes of 2D mDA cultures derived from patient
hiPSCs carrying monogenic (PAKR2, PINK1, LRRK2,
SNCA, GBA, and OPA1) or sporadic forms of the disease.
These phenotypic effects have been well-described in
the literature, both at the cellular and molecular levels
[see reviews (48–51)]. To summarize, several converging
pathological mechanisms that contribute to the vulnerability
of human mDA neurons were reproduced in vitro,
including reductions in neuronal arborization, increases
in α-syn expression, oxidative stress, and mitochondrial
dysfunctions (decreased respiration and ATP production,
impaired mitochondrial biogenesis), as well as altered
cellular stress responses [such as the unfolded protein and
integrated stress responses, which involve the endoplasmic
reticulum (52–54)].

While these experiments helped validate hiPSC-derived
mDA neurons as human cellular models of PD and achieve a

better understanding of the cellular and molecular dysfunctions
involved, only a few studies have however reported mDA
degeneration (55, 56). Not surprisingly, the weeks-long
differentiation of these DA neurons (up to 3 months) raises
the limitations of these 2D cultures relatively to human
development, in particular regarding neuronal maturity
and the establishment of synaptic connections to other
cell types. This has partially been taken into account using
microfluidic devices that recreate direct contacts between
mDA neurons and striatal medium spiny neurons (57), or
using co-cultures with astrocytes (58). These approaches
however do not allow the development of mDA neurons
concomitantly with other cell types as it happens in vivo,
which contributes to DA maturity and may be involved in
PD mechanisms.

Developing 3D Midbrain Organoids
In this context, the rise of human stem-cell derived brain 3D
organoid cultures, which recapitulate features of the brain’s
composition, organization, and function (59), has led to
significant advances in our understanding of neurodevelopment
and in disease modeling. Although midbrain and mDA markers
have been found to spontaneously arise in non-directed whole
brain organoids (60), the proportions of cells expressing such
markers tends to be small and highly variable, thus warranting
the development of more directed differentiation protocols.
While some approaches have led to the development of
“neurospheres,” which contain an increased proportion of DA
neurons (along with excitatory, inhibitory neurons as well as
glial cells) (61), most efforts have been directed at specifically
reproducing mesencephalic development in the dish, in order
to generate mDA neurons in representative human “midbrain
organoid” (hMO) structures.

Tieng et al. (62) were the first to adapt a widely-used 2D
differentiation protocol (63) to 3D suspension through the
use of microwells to create homogeneously sized embryonic
bodies, which were then placed on an orbital shaker for 3
weeks, before being seeded and grown at air-liquid interface.
Although the suspension-culture phase of their protocol was
short, they proved that such an approach could efficiently
generate mDA progenitor cells (∼80% of all cells expressed
FOXA2 and LMX1A) as well as TH-expressing cells after
only 3 weeks. Following these results, 3 new protocols were
published within 1 year (64–66), describing the generation
and long term maintenance of hMO (up to 5 months). These
papers were the first to provide in depth characterization
of the model, and proof that these organoids could be
maintained in long term cultures in order to favor neuronal
maturation. Although each protocol presents differences in
timing, specific molecules used and their concentrations, these
approaches mainly rely either on the sequential (65) or
simultaneous (62, 64, 66) use of morphogens to induce midbrain
floor plate identity, as described earlier (see Figure 1 for
graphical summary). In order to promote nutrient and oxygen
diffusion throughout the hMO, all of these initial protocols
relied on the use of orbital shakers, as well as hydrogel
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FIGURE 1 | Summarized hMO differentiation strategies. hMO differentiation protocols aim at reproducing essential dynamics of in vivo human midbrain development,

which are represented by the drawings in the middle section: (1) midbrain specification using dual SMAD inhibition and WNT modulation; (2) midbrain floor plate (mfp)

induction through modulation of SHH and FGF8, and (3) differentiation and maturation of midbrain dopaminergic neurons using neurotrophic factors (see Table 1 for

details in hMO models of PD). Each step is associated with the generation of cell types that can be identified in vivo and in hMO models using the mentioned markers.

Starting from hiPSC-derived embryonic bodies (EB), the described protocols have either relied on the use of sequential or simultaneous patterning strategies,

represented as the top and bottom branches, respectively. Optional modifications to the protocol include expansion of mfpNeural Progenitor Cells (mfpNPC), hydrogel

embedding, use of orbital shakers or microfluidics devices, aging strategies, and DA treatment. The generated hMO typically contain mDA neurons expressing

markers of A9 and A10 terminal differentiation, and long-term cultures may favor the apparition of neuromelanin granules, which can be enhanced through DA

stimulation. Features of floor plate organization in ventricle, intermediate, and mantle zones (VS, IZ, MZ) may also be revealed using markers of mDA progenitors (65).

This organization is particularly evident in hydrogel-embedded organoids, as this process favors apico-basal polarization. SB, SB431542; DM, dorsomorphin; CHIR,

CHIR99021; A83, A-83-01; SHH, sonic hedgehog; SAG, smoothened agonist; FGF8: fibroblast derived growth factor 8; BDNF/GDNF, brain/glial-derived neurotrophic

factor; AA, ascorbic acid; cAMP, cyclic AMP; LDN, LDN193189; PM, purmorphamine; TGFß3, Transforming growth factor beta 3; FGF20, fibroblast derived growth

factor 20.

embedding in some cases to promote apico-basal orientation and
cellular proliferation.

These organoids developed features of organization similar to
the midbrain floor plate, namely a ventricular zone containing
OTX2+ FOXA2+ cells, as well as intermediate (LMX1A+
NURR1+) and mantle layers containing progressively maturing
neurons (MAP2+ TH+). Several markers of pan-mDA neuronal
identity have been consistently observed in hMO, including the
dopamine transporter (SLC6A3 / DAT), DOPA decarboxylase
enzyme DDC, and TF PITX3 (65, 67). While each study tried
to estimate the proportions of mDA neurons in the hMO,
differences in the methodologies and protocols used have led
to variable results. For instance, by using FACS approaches,
Jo et al. (65) found that at 2 months of differentiation, 22%
of all cells were MAP2+ TH+, while Monzel et al. (66)
found at the same timepoint a much higher yield of cells
expressing essential markers of mDA identity: 61% were
TH+FOXA2+LMX1A+. Nevertheless, both studies found
that neuromelanin (NM) granules spontaneously appeared in
long term cultures, their structures resembling those found in
adult human SN tissue. Exogenous DA treatment could also

significantly increase the accumulation of NM, suggesting that
these granules may indeed be by-products of DA metabolism
(65). While the authors did not try to dissect the diversity
of mDA subtypes generated, which is in of itself a complex
endeavor in vivo [see review (68)], NM-containing cells were
indeed found to be enriched in transcripts expressed in A9
SN mDA neurons such as KCNJ6 (GIRK2) and ALDH1A1
(47, 65, 69). Interestingly, ALDH1A1 may be particularly
implicated in mDA neuron vulnerability to degeneration in PD
(70). Some neurons were also found to be positive for CALB1,
a marker of A10 VTA identity (65, 66). No study has however
aimed at identifying A8 RRF-like neurons, likely due to the
fact that they do not have a clear molecular signature (68).
These organoids were also found to produce DA, and mDA
neurons showed characteristic electrophysiological pacemaker
activity which was responsive to the use of D2/D3 agonist
quinpirole. Beyond mDA neurons and their progenitors,
excitatory and inhibitory neurons (62, 65) were found in these
hMO, as well as astrocytes and myelinating oligodendrocytes,
consistent with the composition of the midbrain
(65, 66).
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hMOhold a number of advantages over their 2D counterparts.
RNA sequencing of hMO for instance showed that their
transcriptomic profile was closer to that of prenatal midbrain
samples compared to 2D cultures (63), with higher expression
of mDA markers such as ALDH1A1 and KCNJ6 (GIRK2), as
well as glial markers OLIG3 and SLC1A3 (EAAT1/GLAST).
Interestingly, markers of non-dopaminergic catecholaminergic
neurons such as DBH and SLC6A2 (NET), which frequently
arise in 2D cultures, were also found to be significantly
decreased in hMO, thus highlighting the importance
of the 3D environment for proper mDA specification.
Tieng and colleagues (62) also showed that mDA neurons
derived from 3D cultures expressed higher levels of TH and
presented varicose-like neurites reminiscent of A9 neuronal
morphology, which had not previously been observed in
2D cultures. Furthermore, the spontaneous or dopamine-
induced apparition of neuromelanin granules (65–67) is a
remarkable feature as it has rarely been found in 2D cultures
(55, 71).

More recent evolutions of these protocols have confirmed
the initial observations, as well as aimed at increasing the
quality and reproducibility of hMO (67, 72–76) and better
estimating their yield of mDA neurons. For instance, using
a high content image analysis approach, Smits et al. (73)
showed that TH+ cells composed 62% of all cells after 1
month of differentiation, while Ahfeldt et al. (74) found
using a knock-in TH:tdtomato line, that TH+ cells composed
∼38% of total cells at a similar timepoint. Such differences
are likely to arise from cell line effects as well as protocol
variations. Kwak et al. (67) recently aimed at establishing ideal
conditions to maximize mDA neuron generation in hMO, by
testing out different combinations of molecules for SMAD
inhibition and modulating WNT signaling. These modifications
allowed them to approximately double their yield of TH+

cells compared to commonly used molecule combinations (86%
TH+ cells by day 28), and to efficiently suppress cortical
marker expression. By 4 months of culture, their hMO were
also producing higher concentrations of DA than previously
reported. Taken together, these findings support the relevance
of hMO cultures to obtain mDA neurons expressing markers
of terminal differentiation (such as NM production) in a 3D
environment that reproduces the neuronal and glial composition
of the human midbrain.

Midbrain Organoid Models of PD
The first two in-depth reports of PD modeling in hMO focused
on the effects of the LRRK2 G2019S mutation, which has
been associated with both sporadic and familial forms of the
disease due to its variable penetrance (31), and which constitutes
the most common genetic risk factor for PD. To do so, the
researchers relied on Crispr-Cas9 gene editing to either introduce
the mutation in a control hiPSC line (77), or to combine
this with a correction in a mutant patient line (73). Smits
et al. (73) found that while the number of mDA progenitors
(FOXA2+TH- cells) was significantly increased after 1 month
of differentiation in LRRK2 vs. control hMO, an apparent
impairment of differentiation led to a reduction in the number

and complexity of mDA neurons (FOXA2+TH+) after longer
periods of culture (day 70). Interestingly, the increase in the
number of progenitors was significantly higher in LRRK2 PD
hMO compared to those from controls with the knock-in
mutation. This result thus highlights the importance of the
genetic background in the penetrance of the LRRK2 G2019S
variant (31). In line with these findings, Kim et al. (77) observed
that while LRRK2 G2019S hMO were no different in size
compared to controls, mDA neurite length and expression
of mDA identity markers were decreased (such as TH, DAT,
NURR1, PITX3, EN1) by day 60. The LRKK2 hMO also
contained higher levels of phosphorylated α-syn in endosomal
compartments, and higher expression levels of markers of
mitophagy and autophagy. The authors also identified TXNIP [a
thiol-oxidoreductase that induces lysosomal dysfunction and DA
cell death when overexpressed (78)] as an important mediator
of LRRK2-G2019S pathological mechanisms, and proved that
knocking-down its expression reversed the accumulation of
phosphorylated α-syn.

More recently, an extensive report from Ahfeldt et al. (74)
used hMO to study the roles of 3 severe PD-associated mutations
(in PRKN/PARK2, DJ1/PARK7, and ATP13A2/PARK9) through
genomic editing of a healthy control hiPSC line. RNAseq
analyses of TH+ cells after 1 month of differentiation found
that PRKN–/– mDA neurons showed the highest amount of
differentially expressed genes (1641) compared to controls.While
proteomics analyses revealed a dysregulation of the autophagy-
lysosomal pathway in all cell lines, the PRKN–/– mDA
neurons also showed an upregulation of pathways associated
with oxidative phosphorylation, mitochondrial dysfunction,
and Sirtuin signaling, as well as a significant depletion of
mitochondrial proteins. Supporting these results, they found
a significantly higher level of mitochondrial reactive oxygen
species (ROS) in TH+ cells from PRKN−/− hMO compared
to their TH- counterparts and to control cells (both TH+ and
TH–). Furthermore, while the mDA neuronal population was
significant reduced in PRKN−/− organoids (from 40 to 17% of
all cells), there were no significant differences in the other two
cell lines. The authors showed that this deficit was not due to an
impairment in mDA generation, but rather to the death of newly
differentiated TH+ neurons, which could be linked to a 3-fold
increase in SNCA protein expression in these hMO. Interestingly,
the expression of VTA marker CALB1 was 4x higher in the
PRKN−/− hMO, suggesting that A9-like neurons may have been
more severely affected by the early neuronal death, thus leading
to a bias in subtype generation. It is however not known if other
mutations would have provoked a similar phenotype at later
timepoints, although mDA neurons inDJ1−/− and ATP13A2−/−

hMO also tended to show increases in mitochondrial ROS.
Reports of decreased mDA identity and impairment of

mitochondrial function were supported by two additional studies
which partly relied on hMO. For instance, SNCA A53T-mutated
hMO recapitulated the increased expression of eEF2K mRNA
found in post-mortem patient SN (79). eEF2K, also known
as Calmodulin-dependent protein Kinase III (CamKIII), is a
crucial regulator of protein synthesis and synaptic plasticity,
and is involved in a-syn mediated mitochondrial toxicity (79).
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Mutations in PINK1, which encodes a mitochondrial kinase,
have also been linked to reduced TH+ counts in hMO (80).
Taken together, these studies suggest that hMO constitute a
valid translational model to investigate the effects of different
PD-associated mutations, as they reproduce elements of cellular
pathology involving oxidative stress found in post-mortem tissue
(81) (see Table 1 for summary).

Interestingly, a recent study focusing on a novel variation
in the POLG1 gene (Q811R), previously linked to progressive
external ophthalmoplegia and parkinsonism (75), found
significant increases in hMO TH+ cells after 100 days of culture
compared to those from a gender-matched control. This study
also reported an increased production of NM in response to
DA treatment, which may have neurotoxic effects in the long
run. Although no deficits in mitochondrial respiration were
observed, metabolic and proteomics data indicated an increased
level of glycolysis, which was specific to neurons. The striking
differences from previously mentioned results (reduced mDA
neuron counts and impaired mitochondrial respiration) indicate
that POLG1-related PD may thus entail different pathological
mechanisms. However, as isogenic lines were not used as controls
in this study, the experiments should be replicated to confirm
these findings.

hMO may also be of use to study sporadic forms of PD,
including the effects of PD-associated environmental stressors.
So far, only one study has aimed at deriving hMO from patients
with sporadic PD (82). The authors found, in line with previous
articles, a decrease in TH expression after 1 month of culture
of hMO derived from 2 sporadic patients, compared to those
from 2 healthy controls. This effect might have been linked to
early decreases in FOXA2 and LMX1A expression. They however
also measured an increase in the expression of PTX3, which
encodes a protein (Pentraxin 3) involved in neuroinflammatory
responses that is increased in the plasma of PD patients (84).
Nevertheless, as hiPSC-based studies of sporadic diseases are
hard to control for, additional studies with increased statistical
power are needed to further explore sporadic PD mechanisms
in hMO. Sporadic PD dynamics may also be probed through
exposure to mitochondrial stressors such a rotenone and MPTP,
which have been shown to preferentially affect mDA neurons in
hMO and related cultures (67, 77, 85).

As discussed earlier, the 3D nature of hMO favors better
modeling of the in vivo midbrain over 2D cultures, and may
by extension provide a better translational value when studying
neurodegenerative disorders such as PD. A study for instance
showed that in plated cultures of LRRK2 G2019S mDA neurons,
most of the PD phenotype (such as a reduction of the number and
arborisation complexity of TH+ cells, impaired mitochondrial
function and increased apoptosis) appeared only when Matrigel
was used to recreate a 3D environment (86). Similarly, when
comparing the transcriptome of hMO to 2D cultures of LRRK2
G2019S-derived mDA neurons, Kim et al. (77) found that
the genes differentially expressed in hMO were enriched for
transcripts found in post-mortem PD tissue. In support of this
finding, the expression of TXNIP, which they proved to be central
to pathophysiological mechanism in LRRK2 G2019S, showed
4-fold higher expression in hMO compared to 2D cultures.

Altogether, these studies indicate that 3D hMO cultures may
constitute a significant improvement over 2D cultures as in vitro
platforms to model PD.

FUTURE TECHNOLOGICAL CHALLENGES

Challenges Inherent to Organoid Culture
It is somewhat surprising that several essential features of
PD pathophysiology can be modeled in relatively young
stem-cell derived structures, which may conceptually be
better suited to study pathologies with clearly recognized
neurodevelopmental components such as autism spectrum
disorder (ASD), schizophrenia, lissencephaly, and many others
(87). Furthermore, the reprogramming of differentiated patient
cells to iPSC-states is known to have a “rejuvenating” effect by
erasing many crucial aging-related epigenetic marks (88). Brain
organoids have however also proven to be able to reproduce
strong aging-related cellular phenotypes of Alzheimer’s Disease
(AD) (89–91). As tracking the earliest stages of PD or AD is an
inherently difficult task, these results thus support the possibility
that important neurodevelopmental aspects of such diseases may
have been overlooked [see reviews (92, 93)].

However, another complementary possibility is that these
severe phenotypesmay partly be a by-product of organoid culture
limitations. Indeed, although 3D organoid models constitute
significant advances compared to their 2D counterparts, their
density and size restrain the proper diffusion of oxygen and
nutrients to all cells, leading to a well-known necrotic core.
Brain organoids are also characterized by an upregulated reliance
on glycolysis and high levels of ER stress, which may impair
neuronal differentiation and promote mitochondrial stress (94),
an aggravating factor in the context of neurodegeneration.
Furthermore, while glial cells play an essential role of clearance
in disorders such as PD and AD [see reviews (95, 96)],
gliogenesis mainly happens in later stages of organoid culture
(after 6 months in forebrain organoids) (97), and typically
does not include microglial cells, unless differentiation protocols
favor their apparition (98). In this sense, the stressful culture
conditions and incomplete glial support may trigger and/or
speed up pathophysiological cascades primed by genetic risk
variants in PD hMO, and lead to the early apparition of severe
neurodegeneration-related phenotypes.

Reducing in vitro Culture Artifacts
An essential endeavor to answer these questions will be to
develop strategies to reduce culture-related artifacts, and to
modulate cellular maturation in order to study early and
later stage neurons and glia. Several studies have already
started addressing these issues. For instance, it is now
clear that transplantation inside rodent brains can effectively
vascularise the organoids, correct artifacts linked to in vitro
culture and significantly enhance neuronal maturation (94,
99, 100). These improvements nevertheless come at the
expense of uncontrolled interactions between the host and
grafted tissue, and synaptic integration into the host brain
(100). It is however for now not known what effects such
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TABLE 1 | Summary of studies using hMO to model PD.

References Genetic risk

variants

Cellular

Stressors

Protocol %TH+

cells

(controls)

PD-related phenotype Therapeutic

approaches

SMADi WNT SHH FGF8 Maturation Scaffolding,

agitation

Jan et al. (79) SNCA A53T / DM (1µM)

SB (10µM)

CHIR (3µM) PM

(0.5–0.75µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(500 µM) AA (200 µM)

TGFß3 (1 ng/mL)

Matrigel +

orbital shaker

/ ↑ eEF2K mRNA, linked to

mitochondrial stress

/

Kim et al. (77) LRRK2

G2019S

AO removal,

MPTP

(200–500µM)

Unclear CHIR (3µM) SHH

(100 ng/mL)

FGF8

(100 ng/mL)

BDNF, GDNF

(20 ng/mL)

AA (200µM) until

day 45

Matrigel +

orbital shaker

60% (Day 60) ↓ mDA neuron mRNA

markers, neurite length

↑ α-syn, mitophagy &

autophagy markers, MPTP

sensitivity

• Description of an “aging”

strategy (–AO) for hMO

• Identification of TXNIP as a

mediator of

LRRK2 pathology

• Therapeutic strategies

rescue elements of

phenotype

LRRK

inhibition &

TXNIP knock-

down

Smits et al.

(73)

LRRK2

G2019S

/ LDN (250 nM)

SB (10µM)

CHIR

(3–0.7µM)

SAG (0.5µM) / BDNF, GDNF

(10 ng/mL)

cAMP (500µM)

AA (200µM)

TGFß3 (1 ng/mL)

DAPT (10µM)

/ 54% (Day 70) ↑ mDA progenitor cells

↓ Number and complexity of

mDA neuons

• Implication of

genetic background

/

Chumarina

et al. (75)

POLG1 Q11R / LDN (100 nM)

SB (10µM)

CHIR (0.8µM) SAG

(1–2 µM)

SHH

(200 ng/mL)

FGF8

(100 ng/mL)

BDNF, GDNF

(10 ng/mL) cAMP

(500µM)

AA (200µM)

TGFß3 (1 ng/mL)

DA (50 µM) start.

day 30

/ 40% (Day

100)

↑ Number of mDA and

DA-induced NM accumulation

↑ Neuronal reliance on

glycolysis

• No alterations in

mitochondrial function

/

Ahfeldt et al.

(74)

PRKN−/−

DJ1−/−

ATP−/−

/ LDN (100 nM)

SB (10µM)

CHIR

(1µM)

SAG (1 µM)

PM (2 µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(100µM)

AA (200µM)

DAPT (10µM)

SpinQ

agitation

40% (Day 35) • Different molecular & cellular

phenotypes / mutation

• Dysregulation of

autophagy-lysosomal

pathways in all lines

↑ Mitochondrial stress, SNCA

expression, in PRKN−/−

↑ early death of mDA neurons

in PRKN−/− (A9 specific?)

/

(Continued)
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TABLE 1 | Continued

References Genetic risk

variants

Cellular

Stressors

Protocol %TH+

cells

(controls)

PD-related phenotype Therapeutic

approaches

SMADi WNT SHH FGF8 Maturation Scaffolding,

agitation

Kwak et al.

(67)

/ MPTP

(10–100µM)

Best: DM

(2µM)

A83 (2µM)

CHIR (Best:

3µM)

SAG (2µM) FGF8

(100 ng/mL)

BDNF, GDNF

(10 ng/mL) cAMP

(125µM)

AA (200µM)

DA (50 µM) start.

week 8

Matrigel (+I/L)

+ orbital

shaker

86% of

neurons (Day

35)

↑ Vulnerability of mDA

neurons to MPTP toxicity

/

Chlebanowska

et al. (82)

Sporadic PD / SB (10µM)

Noggin (200 ng/mL)

CHIR (0.8µM) SHH

(100 ng/mL)

FGF8

(100 ng/mL)

BDNF, GDNF

(10 ng/mL) cAMP

(125µM)

AA (100µM)

Matrigel (+I/L)

+ orbital

shaker

/ ↓ TH expression

↑ Pentraxin 3 (PTX3)

expression

/

Monzel et al.

(83)

/ 6OHDA

(50–500µM)

DM (1µM)

SB (10µM)

CHIR (3µM) PM

(0.5–0.75µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(0.5mM)

AA (200µM)

TGFß3 (1 ng/mL)

Matrigel +

orbital shaker

∼50% (Day

42)

↑ Vulnerability of mDA

neurons to 6OHDA toxicity

/

Jarazo et al.

(80)

PINK1

Q456X/I368N

PRKN

R275W

/ DM (1µM)

SB (10µM)

CHIR (3µM) PM

(0.5–0.75µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(500µM)

AA (200µM)

TGFß3 (1 ng/mL)

Matrigel +

orbital shaker

∼45% (Day

30)

↓ Number of mDA neurons in

PINK1 hMO

• HP-β-CD treatment

increases

mDA neuron counts in PINK1

and PRKN hMO

HP-β-CD

DM, dorsomorphin; SB, SB431542; CHIR; CHIR99021; PM, purmorphamine; BDNF/GDNF, brain/glial-derived neurotrophic factor; AA, ascorbic acid; cAMP, cyclic AMP; LDN, LDN193189; SAG, smoothened agonist; I/L, short treatment

with insulin (2.5 µL/mL) and laminin (200 ng/mL), mDA neuron, midbrain dopamine neuron; NM, neuromelanin.
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transplantations approaches would have on neurodegeneration-
related phenotypes in organoid grafts.

Animal-free approaches may however also be of use.
Biophysics studies of allometric scaling have for instance
highlighted the importance of culture medium, hydrogel
composition and microfluidic device uses in the context of 3D
cultures (101–105). First of all, the composition of commonly
used media for hMO culture should be scrutinized. Indeed, such
composition may be partly responsible for the cellular stress
and differentiation defects observed in several brain organoid
cultures (94), as the abnormally high levels of glucose used
in the vast majority of hMO protocols are known to impair
the normal metabolic reprogramming of neural progenitor
cells to neurons (106) through increased oxidative and ER
stress (107). Furthermore, recent reports suggest that using
culture medium with more physiological levels of glucose may
be more adapted for neuronal maturation and modeling of
neurological disorders (108–110). Secondly, the development of
synthetic hydrogels as alternatives to animal-derived Matrigel
and Geltrex may provide enhanced control and reproducibility
of the 3D environment in which organoids grow (105). Thirdly,
in order to compensate for diffusion limitations in organoids,
two approaches have been described. Cakir et al. (111) for
instance showed that cortical organoids genetically engineered
to express hETV2, which encodes a transcription factor involved
in endothelial differentiation, spontaneously formed a vascular-
like network in vitro which dramatically reduced markers of
cell death and hypoxia without the need for transplantation.
Alternatively, microfluidic devices may also help increase oxygen
and nutrient diffusion throughout the organoids, as evidenced
in hMO cultures (112). Finally, electromagnetic stimulation may
also be of interest to enhance neuronal differentiation (113, 114),
including in hMO (115).

Addressing Variability in Organoid Differentiations
Organoid cultures have also gained notoriety for being highly
variable, which can be a major issue for disease modeling
and testing therapeutic approaches. This variability can be
traced down to several crucial factors: differences due to
the heterogenous genetic backgrounds of hiPSC cell lines,
variations in hiPSC culture and differentiation protocols used,
as well as batch effects. Nevertheless, each of these aspects
may be addressed in order to improve the reproducibility of
the model.

For instance, regarding the variability imputable to genetic
background heterogeneity, several approaches may be adopted.
The most straightforward path when studying variants carrying
a high risk and penetrance is to generate isogenic controls
using Crispr-Cas9 gene editing. Alternatively, in order to study
lower-risk variants with reduced penetrance, more elaborate
strategies may be necessary, such as relying on hiPSC lines
from related donors, or taking into account polygenic risk
scores in patient and control selection criteria in order to
recreate a continuous variable for risk scores (116), an approach
that has seen recent applications in the field of schizophrenia
research (117).

Furthermore, the way in which hiPSC cells are cultured
in the lab may have an important effect on their ability to
generate reproducible organoid structures. Indeed, a recent
study from Watanabe et al. (118) revealed that commonly used
feeder-free hiPSC culture conditions (compared to fibroblast-
supported), reduced their ability to generate reproducible high-
quality cortical organoids by altering their pluripotency state. The
authors however showed that these defects could be alleviated
through the use of TGFß superfamily agonists, which increase the
quality of organoid differentiation toward different brain areas as
well as reproducibility across cell lines.

Importantly, the variability in brain organoid cultures was
initially identified in whole-brain organoids, which rely on
very little to no exogenous patterning, and which are very
sensitive to cell line and batch effects (60). Several studies have
since shown that this variability could be significantly reduced
through the use of cytokines to guide and restrict organoid
differentiation toward a specific regional fate. While this was
initially demonstrated in forebrain organoid protocols (97, 119),
a recent study fromNickels and colleagues (76) showed that hMO
protocol refinement could also significantly reduce cell line and
batch variability. Taken together, these approaches can thus help
cut back on multiple sources of variability in hMO generation
and improve their translational value for PD modeling and
therapeutic discovery.

Aging in a Dish
As aging is the main risk factor for PD (120), understanding
its mechanisms and reproducing them in vitro may also help
build better disease models. At the molecular level, aging is
associated with changes affecting the DNA’s structure, content
(reduced telomere length and mitochondrial copy numbers,
increased DNA damage), epigenetic modulation (methylation
clocks can reliably predict chronological age), and has identifiable
transcriptomic, proteomic and metabolomic signatures [see
reviews (121, 122)]. At the cellular level, aging is also
characterized by a progressive accumulation of oxidative stress
and mitochondrial dysfunction, a global increase in the number
of cells baring features of senescence, as well as chronic low-
grade inflammation (122). In the context of PD, both molecular
(123, 124) and cellular dynamics (9) of aging have been identified
as altered.

In this regard, perhaps the most problematic limitation of
hMO as model systems for neurodegenerative diseases is that
they rely on the use of cellular reprogramming, which has a
rejuvenating effect on thesemolecular and cellular processes (88).
Studies of epigenetics, transcriptomics, have for instance shown
that organoids reproduce fetal molecular signatures of the human
brain (125, 126). While this limitation does not prevent the study
of disease-associated molecular aging mechanisms using hiPSC-
derived cultures—a recent report showed that retinal organoids
derived from Down Syndrome patients had a faster rate of DNA
aging compared to controls (127)—it is a major obstacle to study
aged states in vitro.

In order to bypass this limitation and reproduce
aging phenotypes in a dish, several types of approaches
have so far been described. Vera et al. showed that
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manipulation of telomere length, one of the molecular
hallmarks of aging, through telomerase inhibition could
induce other markers of aging (increased expression
of γH2AX, a common marker of DNA damage, and
increased oxidative stress) and accentuate PD phenotypes
in hiPSC-derived 2D mDA cultures (128). A previous
report from that group also found that a similar effect
could be induced through overexpression of Progerin, the
abnormal protein responsible for premature aging in Progeria
syndrome (55).

Another more indirect alternative is to rely on the induction
of cellular states associated with aging, for example through
manipulation of oxidative stress in vitro with toxins (such as
6-OHDA, MPTP) or through changes in media formulation.
For instance, in their 2019 paper, Kim et al. (77) removed
antioxidants from the hMO culture medium after 45 days of
culture (hMO-AO). While they did not provide a comparison
with hMO+AO, they found that after 2 months of differentiation
over a third of cells contained NM granules [compared to
7% at 146 days using a similar protocol with AO (65)],
two thirds expressed markers of mature A9 neurons such
as GIRK2, and over 40% expressed high levels of DNA
damage (γH2AX+). Transcriptomics analyses also showed
that control hMO-AO showed enrichment for “aged” human
midbrain transcripts, and genes differentially expressed in
LRRK2-G2019S hMO-AO were enriched for transcripts found
in post-mortem PD midbrain tissue, thus supporting the
relevance of their aging strategy. In this context, the basal
level of ER stress characterizing organoid cultures (94) may
also in of itself constitute an indirect aging strategy through
alterations of global homeostatic mechanisms, including calcium
homeostasis (129).

Finally, direct reprogramming of somatic cells such as
fibroblasts into neural lineage cells (iNeurons, or iN) through
transgenic expression of transcription factors (such as ASCL1
and NEUROG2), non-coding RNA, or even using small molecule
cocktails, may constitute the most elegant way of inducing
aging-related processes in vitro. Indeed, “aged” iNs preserve
multi-level marks (epigenetic, genomic, transcriptomic, and
proteomic) of aging and environmental interactions (130).
This approach allows iN to maintain phenotypes such as
defective mitochondrial function compared to hiPSC-derived
neurons (131). While mDA neurons have already been generated
using this approach (132), adapting this technology to hMO
generation may however prove to be challenging, as published
protocols for now rely on the direct conversion to post-mitotic
neuronal types.

Enhanced Organoid Designs
The use of hMO can also be expanded by taking advantage
of the flexibility of organoid cultures (see Figure 2A for
graphical summary). For instance, organoids can be completed
with non-neuronal lineage cells that do not typically arise
during neural organoid differentiations, but which may be
of interest for disease modeling. In the context of PD, co-
culturing hMO with microglia-like and endothelial cells could
for example enable researchers to study neuroinflammatory

mechanisms involving glial activation and brain-blood-barrier
disruption (133).

Several teams have indeed shown that hiPSC-derived
microglia-like cells (iMG) (134–136) as well as immortalized
human microglia (137) could efficiently colonize organoids
when cultured together. These integrated microglial cells
develop extensive ramified branching, and respond to challenges
such as physical injury, stimulation with lipopolysaccharides,
corticosteroids and amyloid-β-42 (amyloid-β-42) oligomers, as
well as infection with Zika and Dengue viruses (135, 137–
139). Two studies in particular showcase how iMG-organoid
co-cultures may be of use to model neurodegenerative diseases.
First of all, Lin et al. (89) showed that iMG carrying an APOE4
genotype (a high AD risk allele of the APOE gene) had an
altered morphology and reduced ability to clear extracellular Aβ

aggregates in organoid co-cultures compared to their (low-risk)
isogenic APOE3 counterparts. Secondly, a study from Song et al.
(139) proved that iMG were sensitive to the regional identity
of the brain organoids they integrated (in this study, dorsal vs.
ventral forebrain), and that this microenvironment impacted
their response to Aβ-42 stimulation. Given that microglia
play an important role in PD pathophysiology (96) and are
influenced by regional specificities (140, 141), such co-cultures
approaches may thus constitute a relevant strategy to study
neuroinflammatory interactions.

Furthermore, as alterations in blood-brain barrier (BBB)
function contribute to neuroinflammatory processes in PD,
assessing the interaction between endothelial cells (ECs),
pericytes and hMO may also be of interest. While this may
be partly achieved through in vivo transplantation in rodents,
the fact that the vascularization originates from the host (99,
100) may be a considerable limitation to study pathological
cellular interactions. More elaborate strategies can however help
overcome this issue. For instance, the transgenic induction
of hETV2 expression in organoids mentioned earlier (111)
leads to the formation of a vascular structure reproducing
key elements of BBB identity and function in vitro, which is
sensitive to the disrupting effects of Aβ-42 oligomers. As an
alternative, a vascular system can also be initiated in vitro
by co-culturing organoids with hiPSC- or human umbilical
vein-derived ECs, before proceeding to transplantations (142,
143).

Nevertheless, despite mDA neuron neurodegeneration being
the central element of PD pathology, there is also evidence of
a loss of cholinergic, adrenergic, and potentially serotonergic
neurons over the course of the disease, which alters cortical
and basal ganglia function and has been linked to several non-
motor symptoms (11–15). Moreover, cortical regions can also be
affected by Amyloid-ß and Tau pathology, which are associated
with PD dementia (17, 18). In this context, using organoids
differentiated toward different brain regions can help address the
extended PD picture. Newly characterized brainstem organoids
are particularly relevant as their composition encompasses
midbrain and hindbrain structures, in which arise not only mDA,
but also serotoninergic, cholinergic, and noradrenergic neurons
(144). Cortical, subpallial, and thalamic organoids have also
been well-characterized (145), and may be studied independently
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FIGURE 2 | Developments and applications of hMO cultures. (A) Potential developments of hMO cultures include aging strategies, fusions with other brain region

organoids, co-cultures with non-neuronal lineage cells (such as microglia, endothelial cells), use of microfluidics or “organ on a chip” approaches, and in vivo

transplantations. (B) hMO constitute relevant biological platforms to study the effects of PD-associated genetic and environmental factors on cellular function and

molecular networks. Such approaches may lead to a better understanding of the molecular basis of PD, help identify new therapeutic targets, and develop

personalized medicine approaches.

or fused with hMO/brainstem organoids to recreate elements
of basal ganglia circuitry involved in PD (146–148). Such
structures, named “assembloids,” could thus be used to study
cellular interactions andmolecular phenotypes in interconnected
structures and to address more complex questions in vitro.
For instance, what are the effects of genetic and environmental
risk factors on different neuromodulator-producing cell types
and their connectivity to forebrain structures? Why are
striatal cells, despite receiving massive inputs from the SN,
seemingly less vulnerable to synucleinopathy compared to
cortical neurons (9)?

Finally, beyond the central nervous system (CNS), there
is increasing evidence for an important role of the enteric
nervous system (ENS) in PD pathophysiology (16), which may
be addressed using intestinal or engineered ENS organoids
(149). In this regard, a first study comparing the transcriptomic
profiles of intestinal and neural organoids derived from LRRK2
G2019S patient hiPSCs to those from healthy controls reported
a wide range of alterations in biological processes and pathways
in both models, suggesting that this path should be further
explored (150).

Tools to Explore the Molecular Basis of PD
Using hMO
While hMO have for now mainly been used to study
the effects of high-risk variants on cellular and molecular
phenotypes, combining the access to human tissue provided by
organoids with GWAS and -OMICs data provides an unbiased
approach to further explore the genetic networks, cell types and
developmental stages implicated in PD pathophysiology (see
Figure 2B for graphical summary).

For instance, while GWAS data is often integrated with
expression quantitative trait loci (eQTL) and post-mortem data
to predict candidate risk genes with some tissue specificity,
recently developed approaches may help researchers extract
additional relevant information. For example, H-MAGMA (Hi-
C-coupled MAGMA) can further improve candidate gene
identification by incorporating chromatin interaction profiles
from human brain tissue across neurodevelopmental stages
(151). Cell-type specificity may also be explored more finely
by integrating GWAS data with single-cell RNA sequencing
(scRNAseq) datasets from the target tissue. Such an approach
recently allowed Bryois et al. (152) to reveal a significant
association of PD with cholinergic, monoaminergic, and enteric
neurons as well-oligodendrocytes using scRNAseq data from
a whole CNS. Although the main findings of this study were
replicated in post-mortem human tissue, their identification
approach relied on the analysis of protein-coding genes
expressed in the CNS of adolescent mice. In this context, hMO
scRNAseq datasets (153) may thus constitute more relevant
tools to explore the cell types (and subtypes) involved in PD
pathophysiology. Single-cell approaches may also constitute
an ideal readout to assess the molecular effects of somatic
mosaicism (such as SNCA CNVs), which can be induced
in organoids through the use of transfection and mixing
approaches (154).

Furthermore, considering that PD SNPs mainly fall into non-
coding regions of the genome (32), combining readoutmodalities
such as RNAseq, ChIP-seq, ATAC-seq, and proteomics can help
dissect complex molecular networks by including non-coding
elements and epigenetic modifications. For example, Inoue et al.
(155) used a combination of multiple modalities including
lentivirus-based massively parallel reporter assay to identify
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key regulatory elements and dynamics involved in the neural
induction of embryonic stem cells. They also found a significant
enrichment of neurological disorder GWAS variants in regions
withH3K27ac histonemodifications. A similar approachwas also
recently applied to forebrain organoid models (126). The authors
used a combination of RNA-seq and ATAC-seq to map changes
in gene expression, chromatin accessibility, and transcription
factor dynamics in purified neuronal and glial lineages over
20 months of differentiation. They then also incorporated
GWAS risk gene mapping to identify specific cell types and
neurodevelopment stages involved in ASD and schizophrenia.
Multimodal -OMICs integration has also proven to be a useful
strategy to identify the repertoires of long non-coding RNAs
(lncRNA) in mDA neurons (41), in which GWAS SNP mapping
identified 8 lncRNA possibly involved in PD pathophysiology.
With the development of single-cell approaches [see recent
reviews (156, 157)], identification of cell subtypes involved in
PD pathophysiology may further increase our understanding of
the disease.

CRIPSR-based technology may also be of particular use
to explore the molecular networks involved in PD, notably
through the use of genetic perturbation screens, and through
enhanced disease modeling [see review (158)]. Indeed, Crispr-
based techniques offers an unprecedented method to model the
polygenic liability of complex disorders such as PD in vitro.
In a proof of concept experiment, Schrode et al. (159) used
Crispr-based allelic conversion and activation/inhibition to
manipulate four risk genes associated with schizophrenia in
hiPSC-derived neuronal cultures, and demonstrated a synergistic
effect on synaptic function. Furthermore, combining such
approaches with the use of environmental stressors associated
with PD may constitute a unique opportunity to model
gene ∗ environment interactions in vitro. For instance, while
several studies using hMO and related 3D cultures have
shown mDA neuronal vulnerability to acute treatment with
mitochondrial toxins such as rotenone, MPTP, and 6-OHDA
(67, 77, 83, 85), studying the interaction of lower to medium risk
genetic variants with chronic, low-dose environmental stressors
may allow us to reproduce idiopathic trajectories of PD in
a dish.

Therapeutic Opportunities
Organoids also constitute a relevant platform to identify
novel therapeutic compounds and to assess their efficacy
on specific phenotypes. Kim et al. (77) showed that alpha-
synuclein accumulation could be reduced in LRRK2 G2019S
hMO through treatment with a LRRK2 kinase activity inhibitor
(GSK2578215A), but also by knocking down the expression
of TXNIP, which their study had identified as a central
mediator of G2019S pathology. Jarazo et al. (80) also found
that treatment with the HP-ß-CD compound improved mDA
neuronal differentiation in PINK1 and PRKN-mutated hMO,
likely through increased mitophagy.

A few elements should be heeded regarding therapeutic
developments using hMO. First of all, as organoid generation is
prone to variability, taking measures to reduce this confounding
factor (detailed in section Addressing variability in organoid

differentiations) is essential to accurately assess the potential of
therapeutic targets. Secondly, the organoids generated should be
extensively characterized, in order to best plan the modalities
of therapeutic testing and to help identify the appropriate
readouts to quantify the effects. In this sense, disease-modifying
treatments targeting deficits in early differentiation of mDA
neurons may require different modalities and readouts than
those aiming at increasing the survival of compromised,
mature cells.

In the long run, hMO technology opens up perspectives for
personalized medicine. The study by Ahfeldt et al. (74) identified
at least two distinct molecular phenotypes in hMO derived from
either PRKN−/−, or ATP13A2/DJ1mutated lines, indicating that
familial PD mutations induce different pathological cascades,
which may call for different therapeutic strategies. Furthermore,
personalized medicine approaches may also be explored in cases
of non-familial PD. An initial experiment for example proved
that cellular alteration in hiPSC-derived neurons from patients
with Bipolar Disorder were reversed by lithium treatment only
if the patients were also responsive to the medication (160).
More recently, Lang et al. (161) proved that mDA neurons
from patients carrying an identical variation in a common risk
gene (GBA N370S) could be stratified based on their molecular
profile using RNA sequencing. Clinical follow-up confirmed
that their strategy had indeed isolated a patient who proved
to be non-responsive to levodopa treatment, and who received
a revised diagnosis of progressive supra nuclear palsy. They
also identified a causative role of the mis-localization of a
class IIa histone deacetylase (HDAC4) in the remaining cell
lines, which was then also observed in 2 out of 4 idiopathic
PD-derived mDA neuron lines. As modulating the activity or
localization of HDAC4 alleviated the cellular PD phenotype, this
study suggests that deriving personalized medicine approaches
from hiPSC-derived cultures may indeed be a reality in the
foreseeable future.

Finally, transplantation of hMO into PD patients’ brains to
compensate for their loss of mDA neurons also constitutes
a promising therapeutic endeavor. Recent studies have
demonstrated that stem cell-derived mDA neurons or mDA
progenitors could indeed functionally integrate into striatonigral
circuits (162), and provide some symptomatic relief in a non-
human primate model of PD without forming tumors (163). As
organoids have been shown to efficiently integrate into rodent
neural circuits after transplantation (100), using dopamine-
producing hMO may prove to be a useful development for
therapeutic purposes. In this regard, a recent patent (115)
indicates that hMO transplantation in a unilateral 6OHDA
mouse model of PD could reduce turning behavior in response
to an apomorphine challenge, suggesting that the hMOmay have
functionally integrated into the host organism.

CONCLUSION

Since their first description in 2014, hMO have proven to
efficiently generate functional, NM-producing mDA neurons
with A9/A10-like identity in structures that recapitulate features
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of composition and organization of the human midbrain. PD
modeling studies using hMO have also shown their ability to
reproduce elements of the disease, such as α-syn accumulation
and impairment of mitochondrial function. Interestingly, some
mutations did not elicit such phenotypes, suggesting that hMO
may also be suited to investigate PD heterogeneity. Whether
the observed phenotypes are due to developmental or aging-
related pathological mechanisms remains however unclear, as
limitations inherent to hiPSC-derived organoid cultures might
for now prevent the dissociation of such aspects. Nevertheless,
recent studies suggest that these limitations can be overcome
through optimisation of culture systems, “aging” strategies and
transplantation into host organisms. Future development of
hMO co-culture systems will also help study neuroinflammatory
processes and interactions with other brain areas involved in
PD pathophysiology. Combined with genetic engineering and

multimodal molecular readouts, hMOmay thus provide a crucial
platform to explore the molecular basis of PD, with direct
therapeutic implications.
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