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Sierpiński Gasket versus Arrowhead Curve

In the sequel, we extend the theoretical comparison of the Arrowhead Curve and the Sierpiński Gasket, on a numerical point of view, by studying diffusion on both objects, in the purpose of understanding the part played by the initial topological differences.

Introduction

In [START_REF] Cl | Laplacian, on the Arrowhead Curve[END_REF], Cl. David has put the light on a very interesting theoretical problem, by exhibiting two singular objects, with completely different topologies, obtained thus by two different processes, which, however, lead to the same limit: the Sierpiński Gasket, and the Arrowhead Curve. The first one can be obtained by means of an iterated function system, the second, by means of a L-system where, moreover, the same self-similarity no longer seems to hold. The problem at stake was the building of a Laplacian: would those two a priori different structures lead to the same operator ?

To handle the specific geometric features of the Curve, Cl. David has used a discrete approach, by means of a sequence of prefractal graphs. One of the difficulties was to dispose of a well-suited measure. As exposed in [?], for singular sets F of dimension d < n, the existing works rely on what is classically called a d-measure, i.e. a Radon measure µ with support F such that there exist two strictly positive constants c 1 and c 2 satisfying, for any strictly positive number r, and any ball B(X, r) the center of which belongs to F:

c 1 r d µ (B(X, r)) c 2 r d
Usually, one works with the Hausdorff measure (or equivalent ones). Yet, such measures are not adapted to the very specific configuration of Weierstrass spaces, in so far as euclidean geometric conditions are required, for instance, as concerns the Markov Inequality [START_REF] Markov | Selected Works[END_REF], may one want to use trace theorems [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]. Cl. David has thus generalized what she had been done in the specific case of the Weierstrass Curve [START_REF] Cl | Bypassing dynamical systems : A simple way to get the box-counting dimension of the graph of the Weierstrass function[END_REF], [START_REF] Cl | On fractal properties of Weierstrass-type functions[END_REF], by sticking to a n-dimensional measure, defined by means of a a sequence of trapezoidal domains (T m ) m∈N playing the part of a trapezoidal neighborhood of the Curve. Interestingly, she has shown that this choice enabled one to retrieve existing results and was in perfect accordance with both the Kigami and Strichartz approaches [Kig03] [Str06], and the Lagrangian based Mosco one [START_REF] Mosco | Energy functionals on certain fractal structures[END_REF].

In the sequel, we propose to go a step further, and compare numerical results for the heat equation, for both structures, the Curve and the Gasket.

Gasket vs Curve

Frame of the study

We place ourselves, in the following, in the euclidian plane of dimension 2, referred to a direct orthonormal frame. The usual Cartesian coordinates are (x, y).

Notations. We set:

P 1 = (0, 0) , P 2 = (1, 0) , P 3 = 1 2 , √ 3 2 •
Notations. For 1 i 3, we denote by f i the contraction map, of fixed point P i ∈ R 2 , such that:

∀ X ∈ R 2 : f i (X) = 1 2 (X + P i ) • Definition 2.1 (Sierpiński Gasket).
The Sierpiński Gasket is SG the unique set such that:

SG = 3 i=1 f i (SG) • Notations.
i. For any real number θ, we denote by R O,θ the following rotation matrix:

R O,θ = cos θ -sin θ sin θ cos θ •
ii. For 1 i 3, we denote by g i the contraction map, of fixed point P i ∈ R 2 , such that:

∀ X ∈ R 2 : g 1 (X) = 1 2 R O,-2π 3 X+ P 3 2 , g 2 (X) = 1 2 R O,0 X+ P 3 2 , g 3 (X) = 1 3 R O,2 π 3 X+P 2
Definition 2.2 (Sierpiński Arrowhead Curve).

We will call Sierpiński Arrowhead Curve SAC the unique curve such that:

SAC = 3 i=1 g i (SAC) •
Notations. We will denote by V 0 (respectively by V 0 ) the ordered sets of points:

V 0 = {P 1 , P 2 , P 3 } , V 0 = {P 1 , P 2 } •
Notations. For any strictly positive integer m, we set:

V m = 3 i=1 f i (V m-1 ) , V m = 3 i=1 g i V m-1 • Property 2.1.
For any strictly positive integer m, we set:

V m ⊂ V m •
Proof. It can be proved by induction, starting from the fact that, by construction:

V 0 ⊂ V 0 .
Property 2.2 ([Dav19a]).

The set V = m∈N V m is dense in SAC.
Proposition 2.3.

Given a natural integer m, we will denote by N m (resp. N m ) the number of vertices of V m (resp. V m ).

One has for any strictly positive integer m:

N 0 = 3 , N m = 3 m+1 + 3 2 , N 0 = 2 , N m = 3 m + 1 • Proof.
It simply comes from the fact that, for any strictly positive integer m:

N m = 3 N m-1 -3 , N m = 3 N m-1 -2 • 2.2 Iterative construction 2.2.1 Sierpiński Gasket Definition 2.3 (m th order graph, m ∈ N ).
We will denote by SG 0 the complete graph of the set of points V 0 , where, for any integer i belonging to {1, 2, 3}, the point P i is linked to P j , j = i.

For any strictly positive integer m, the set of points V m , where the points of an m th -order cell are linked in the same way as SG 0 , is an oriented graph, which we will denote by SG m (see figures 1-6).

By extension, we will write:

SG m = 3 i=1 f i (SG m-1 ) • Figure 1 -V 0 . Figure 2 -V 1 . Figure 3 -V 2 . Figure 4 -SG 0 . Figure 5 -SG 1 . Figure 6 -SG 2 .
The sequence (SG m ) m∈N . The m th order cells are in black.

Property 2.4.

For any natural integer m: [START_REF] Barnsley | Iterated function systems and the global construction of fractals[END_REF], or [START_REF] Strichartz | Analysis on fractals[END_REF]).

V m ⊂ V m+1 • Property 2.5 ([
The set V = m∈N V m is dense in SG.

Arrowhead Curve

The Curve is obtained by means of a L-system, as described in [START_REF] Cl | Laplacian, on the Arrowhead Curve[END_REF]. For the sake of clarity, we recall the construction.

Notation. Given a point X ∈ R 2 , we will denote by: i. Sim X, 1 2 , π 3 the similarity of ratio 1 2 , the center of which is X, and the angle, π 3 ;

ii. Sim X, 1 2 ,-π 3 the similarity of ratio 1 2 , the center of which is X, and the angle, -π 3 .

Definition 2.4. Let us consider the following points of R 2 :

A = (0, 0) , D = (1, 0) , B = Sim A, 1 2 , π 3 (D) , C = Sim D, 1 2 ,-π 3 (A) • One has: V 1 = {A, B, C, D} •
The set of points V 1 , where A is linked to B, B is linked to C, and where C is linked to D, constitutes an oriented graph, that we will denote by SAC 1 . V 0 is called the set of vertices of the graph SAC 1 .

Let us build by induction the sequence of points:

V m m∈N = X m j 1 j N S m , m∈N , N S m ∈ N such that: X 1 1 = A , X 1 2 = B , X 1 3 = A , X 1 4 = D and for any integers m 2, 1 j N S m , k ∈ N, ∈ N: X m j+k = X m-1 j if k ≡ 0 [3] X m j+k+ = Sim X m-1 j+ , 1 2 ,(-1) m+j+ +k+1 π 3 X m-1 j+ +1 if k ≡ 1 [3] and ∈ 2 N X m j+k+ = Sim X m-1 j+ +1 , 1 2 ,(-1) m+j+ +k+1 π 3 X m-1 j+ if k ≡ 2 [3] and ∈ N \ 2 N
The set of points V m , where two consecutive points are linked, is an oriented graph, which we will denote by SAC m . V m is called the set of vertices of the graph SAC m .

Property 2.6. For any strictly positive integer m:

V m ⊂ V m+1
Property 2.7. If one denotes by (SAC m ) m∈N the sequence of graphs which approximate the Sierpiński gasket SG, then, for any strictly positive integer m:

SAC m SG m
Definition 2.5. Consecutive vertices on the graph SAC Two points X and Y of SAC will be called consecutive vertices of the graph SAC if there exists a natural integer m, and an integer j of 1, . . . , N S m -1 , such that:

X = X m j and Y = X m j+1 or: Y = X m j and X = X m j+1
Definition 2.6. For any positive integer m, the SAC m consecutive vertices of the graph SG C m are, also, the vertices of 3 m-1 trapezes T m,j , 1 j 3 m-1 . For any integer j such that 1 j 3 m-1 , one obtains each trapeze by linking the point number j to the point number j + 1 if j = i mod 4, 0 i 2, and the point number j to the point number j -3 if j = -1 mod 4. One has to consider those polygons as semi-closed ones, since, for any of those 4-gons, the starting vertex, i.e. the point number j, is not connected, on the graph SG C m , to the extreme one, i.e. the point number j -3, if j = -1 mod 4. These trapezes generate a Borel set of R 2 . In the sequel, we will denote by T 1 the initial trapeze, the vertices of which are, respectively:

A , B , C , D Definition 2.7 (m th order polygonal domain delimited by the Arrowhead curve, m ∈ N ).

We denote by T 0 the polygonal domain delimited by the set of points V 0 .

For any strictly positive integer m, the polygonal domain T m formed by the union of the three copies of {g 1 (T m-1 ), g 2 (T m-1 ), g 3 (T m-1 )} (see figures 7-12).

We will write:

T m = 3 i=1 g i (T m-1 ) • Property 2.8. T = lim m→+∞ T m = SAC •
Proof. This simply comes from properties 2.1 and 2.2.

Figure 7 -V 0 . Figure 8 -V 1 . Figure 9 -V 2 . Figure 10 -T 0 . Figure 11 -T 1 . Figure 12 -T 2 .
The sequence (T m ) m∈N of polygonal domains delimited by SAC m .

Property 2.9.

The Arrowhead Curve is dense in the Sierpiński Gasket.

Proof.

For any X in SG, there exists a sequence (X m ) m∈N of points such that, for any natural integer m, X m belongs to SG m , and where:

lim m→+∞ X m = X •
Moreover, for any natural integer m, the triangle T SG m ⊂ SG m contains a trapeze T m,j , 1 j 3 m-1 . One can choose a point Y m belonging to T T m such that:

d (X m , Y m ) = O 2 -m
and consider the sequence (Y m ) m∈N of (T m ) m∈N such that:

lim m→+∞ d(X, Y m ) lim m→+∞ d(X, X m ) + d(X m , Y m ) lim m→+∞ d(X, X m ) + O(2 -m ) = 0
Notations. The Hausdorff dimensions of the Gasket and Curve, which are equals, are:

D SAC = D SG = ln 3 ln 2 •
3 Partial differential equations on Sierpiński Gasket and Arrowhead curve

Laplacian, on the Sierpiński Gasket

For the sake of clarity, we recall the construction Kigami construction of the Laplacian [START_REF] Kigami | Analysis on Fractals[END_REF].

Definition 3.1 (Self-similar measure on SG [START_REF] Strichartz | Differential Equations on Fractals, A tutorial[END_REF]).

We define the self-similar measure µ on SG to be the measure supported by SG such that:

µ = 1 3 3 i=1 µ • f -1 i •
Given a continuous function u on SG, we set:

SG u dµ = lim m→+∞ Xm∈f W SG u(X m ) µ (f Wm SG))
where

f Wm = f 1 • • • • • f m , {f 1 , . . . , f m } ∈ {f 1 , f 2 , f 3 } m .
Moreover, the self-similarity of the measure yields:

SG u dµ = 1 3 3 i=1 SG u • f -1 i dµ •
Notation. In the sequel, µ will thus denote a self-similar measure on SG.

Definition 3.2 (Dirichlet form on Sierpiński Gasket [START_REF] Strichartz | Differential Equations on Fractals, A tutorial[END_REF]).

Given a natural integer m, and a real-valued function u, defined on the set V m of vertices of SG m , the map, which, to any pair of real-valued, functions (u, v) defined on V m , associates:

E SGm (u, v) = 5 3 m X∼ m Y (u(X) -u(Y )) (v(X) -v(Y ))
is a Dirichlet form on SG m . Moreover:

E SGm (u, u) = 0 ⇔ u is constant
It makes sense to define the following Dirichlet form E on SG through:

E(u) = lim m→+∞ E SGm (u) •
Notations. We will denote by: i. dom E the subspace of continuous functions defined on SG, such that:

E(u) < +∞
ii. dom 0 E the subspace of continuous functions defined on SG, which take the value zero on V 0 , and such that:

E(u) < +∞ • Definition 3.3 (Laplacian, on the Sierpiński Gasket [Str06]).
For u ∈ dom E, f ∈ C(SG), u belongs to dom∆ µ and is such

∆ µ u = f , if E(u, v) = - SG f v dµ • If f ∈ L 2 µ (SG), the same definition holds with u ∈ dom L 2 µ ∆ µ .
Theorem 3.1 (Pointwise formula [START_REF] Strichartz | Differential Equations on Fractals, A tutorial[END_REF]).

Given a strictly positive integer m, a vertex X ∈ V \ V 0 , and ψ m X ∈ S (H 0 , V m ) a spline function such that:

ψ m X (Y ) = δ XY ∀ Y ∈ V m 0 ∀ Y / ∈ V m , where δ XY = 1 if X = Y 0 else
The Laplacian ∆ µ of a function u exists at X ∈ SG if and only if the sequence

3 2 5 m ∆ m u(X m )
m∈N converges uniformly towards:

∆ µ u(X)
where:

∆ m u(X) = Y ∼ m X (u(Y ) -u(X)) Y ∼ m X means that (X, Y
) is an edge of F m , and (X m ) m∈N is a sequence of (V m ) m∈N converging twards X.

Integration by parts enables one to define normal derivatives on fractal sets. This definition is valid either both on the boundary V 0 , or in the interior of the considered self-similar set. This provides an equivalent formulation of the Gauss-Green formula : Theorem 3.2 (Green-Gauss formula [START_REF] Strichartz | Differential Equations on Fractals, A tutorial[END_REF]).

Given u ∈ dom ∆µ for a measure µ, ∂ n u exists for all X ∈ V 0 , and:

E(u, v) = - F ∆ µ u v dµ + X∈V 0 ∂ n u(X) v
holds for all v ∈ dom E, where: For any strictly positive integer m, and any real-valued function u, defined on the set V m of the vertices of the graph SAC m , we introduce the Laplacian of order m, ∆ m (u), by:

∂ n u(X) = lim m→+∞ 5 3 m Y ∼ m X (u(X) -u(Y )) •

Laplacian, on the Arrowhead Curve

∆ m u(X) = Y ∈V m , Y ∼ m X c m u(Y ) -u(X) 2 m ∀ X ∈ V m \ V 0 where: m = 1 2 m , c m 2 m = 2 2 m D SAC • Definition 3.5 (Laplacian [Dav19a]).
A real valued function u, continuous on the Arrowhead Curve, will be said to be in the domain of the Laplacian dom ∆ if, for any X / ∈ V 0 :

∆u(X) = lim m→+∞ ∆ m u(X) < +∞ •

Numerical results

We hereafter present results obtained using finite difference computations. We refer to [?] for prooves of the following results.

The heat equation

In the sequel, u denotes the solution of:

     ∂u ∂t (t, x) -∆u(t, x) = 0 ∀ (t, x) ∈ ]0, T [ × F u(t, x) = 0 ∀ (x, t) ∈ ∂F × [0, T [ u(0, x) = g(x) ∀ x ∈ F
where F is a generic notation that refers to the Gasket SG, or the curve SAC.

As in [?], we use a first order forward difference scheme to approximate the time derivative ∂u ∂t ; the Laplacian is approximated by means of sequence of graph Laplacians (∆ m u) m∈N .

Notation (p × p Identity matrix, p ∈ N ).

Given a strictly positive integer p, we will denote by I p denotes the p × p identity matrix.

Notations. Given a strictly positive integer N , we denote by h = T N the related time step.

Sierpiński Gasket

The finite difference scheme is given by [?].

For any integer k belonging to {0, . . . , N -1}, any strictly positive integer m, and any point X in the set V m \ V 0 , the scheme writes:

(S H )              u m h ((k + 1) h, X) -u m h (k h, X) h = 3 2 5 -m    X∼ m Y u m h (k h, Y ) -u m h (k h, X)    u m h (k h, P j ) = 0 u m h (0, X) = g(X)
The solution vector

U m h (k) =    u m h (k h, X 1 ) . . . u m h (k h, X Nm-3 )   
is such that:

U m h (k + 1) = A U m h (k) where A = I Nm-3 -h ∆m
and where ∆m denotes the(N m -3) × (N m -3) normalized Laplacian matrix.

Theorem 4.1 (Consistency [?]).

The finite difference scheme is consistent, the scheme error being given, for α-Hölder continuous functions, by:

ε m k,i = O(h) + O(2 -mα ) 0 k N -1, 1 i N m -3 • Theorem 4.2 (CFL condition for the convergence [?]).
Under the stability condition h 5 m 2 9 the scheme is also convergent for the norm • 2,∞ , such that:

(u m h (k h, X i )) 0 k N,X i ∈Vm\V 0 2,∞ = max 0 k N   3 -m 1 i Nm |u m h (k h, X i )| 2 )   1 2 • 4.1.2 Arrowhead Curve
For any integer k belonging to {0, . . . , N -1}, any strictly positive integer m, and any point X in the set V m \ V 0 , the scheme writes:

(S H )              u m h ((k + 1) h, X) -u m h (k h, X) h = β(X) 3 -2m    X∼ m Y u m h (k h, Y ) -u m h (k h, X)    u m h (k h, P j ) = 0 u m h (0, X) = g(X)
The solution vector

U m h (k) =    u m h (k h, X 1 ) . . . u m h (k h, X N m -2 )   
is such that:

U m h (k + 1) = A U m h (k) where A = I N m -2 -h ∆m
and where ∆m denotes the (N m -2) × (N m -2) normalized Laplacian matrix.

Theorem 4.3 (Consistency).

The finite difference scheme is consistent, the scheme error being given, for α-Hölder continuous functions, by:

ε m k,i = O(h) + O(2 -mα ) 0 k N -1, 1 i N m -2 •
Proof. One has to prove the space discretization error. As in To this purpose, as in [?], one may consider a strictly positive integer m, a point X ∈ V m \ V 0 , and a harmonic function ψ

(m) X
on the m th -order cell, taking the value 1 on X, and 0 on the others vertices, and take mean value formula

∆ µ u(X) -β(X) 3 2m ∆ m u(X) = β(X) 3 m SAC ψ (m) X (Y )(∆u(X) -∆u(Y )) dµ(Y ) = ∆ µ u(X) -∆ µ u(c m ) |X -c m | α 1 2 m α
for some c m in the m th -order cell containing X nd β(X) taking the values 4 2 or 4, depending if X belongs to two different m th -cells or not.

Theorem 4.4 (CFL condition).

Under the stability condition β(X) h 3 2m 1 2 the scheme is also convergent for the norm • 2,∞ , such that:

(u m h (k h, X i )) 0 k N,X i ∈V m \V 0 2,∞ = max 0 k N   d -m 1 i N m |u m h (k h, X i )| 2 )   1 2 • Proof.
For for i = 1, . . . , N m -2, the i th eigenvalue λ i of the matrix A is given by:

λ i = 1 -2 h β 3 2m + h β 3 2m γ i
where, for i = 1, . . . , N m -2, γ i denotes the i th eigenvalue of the matrix: 

B =          0 
γ i = 2 cos π i N m -1 • Proof.
Given an eigenvalue γ of the matrix B, there exists a real vector v of the form

v =    V 0 . . . v N m -1   
such that, for any integer i ∈ {1, . . . , N m -2}:

v i-1 + v i+1 = γv i •
Let us search the roots of the scond order polynomial equation X 2 -γX + 1 = 0:

1. If γ 2 = 4, then X 1 = X 2 = ±1 and v i = (a i+b) (±1) i for i ∈ {1, . . . , N m -2}. Since v 0 = v N m -1 = 0, one has: b = 0 and a N m -1 (±) N m -1 = a 3 m 1 + (-1) 3 m = 0 • then a = 0
This ensures the nullity of the vector v.

2. If γ 2 = 4, then

X 1 , X 2 = γ ± γ 2 -4 2
and v i = a(X 1 ) i + b(X 2 ) i for all i. Since v 0 = v N m -1 = 0, X 1 X 2 = 1 and X 1 + X 2 = γ, one has:

X 1 = 0, X 2 = (X 1 ) -1 , γ = X 1 + (X 1 ) -1
and, for i ∈ {1, . . . , N m -2}:

v i = a(X 1 ) i + b(X 1 ) -i
On the other hand, we have :

a + b = 0, a (X 1 ) N m -1 + b(X 1 ) -(N m -1) = 0 Thus: a = -b , a (X 1 ) N m -1 -(X 1 ) -(N m -1) = 0
To avoid the case of null eigenvector, one must have :

(X 1 ) N m -1 -(X 1 ) -(N m -1) = 0 •
For X 1 = 0, we have

(X 1 ) 1-N m (X 1 ) 2 N m -2 -1 = 0 i.e. (X 1 ) 2 N m -2 = 1
and, for 0 k 2 N m -3:

X 1 = exp i π 2k 2N m -2 γ = exp i π 2k 2 N m -2 + exp -i π 2 k 2 N m -2 = 2 cos π k N m -1 For k = 0, . . . , N m -2, N m , . . . , 2 N m -3, we set: γ k = 2 cos π k N m -1 •
We have:

γ (2 N m -3)-(k-1) = 2 cos π 2 N m -3 -k + 1 N m -1 = 2 cos 2 π -π k N m -1 = 2 cos π k N m -1 = γ k
The eigenvalue set of the matrix is thus:

2 cos π k N m -1 0 k N m -2 • Let us go back to the eigenvalues λ k , k = 1, . . . , N m -2: λ k = 1 -2 h β 3 2m 1 -cos π k N m -1 = 1 -4 h β 3 2m sin 2 π k 2 N m -2 For k = 1, . . . , N m -2: 1 -4 h β 3 2m λ k 1 •
The stability condition is then:

h 3 2m 1 2 β =⇒ |λ k | 1 •
The convergence follows by applying the same idea as in [?].

Numerical results

In the following, we simulate a heat transfer, in the cases of the Sierpiński Gasket and of the Arrowhead curve. The initial value condition is the polynomial function defined, for any pair (x, y) of real numbers, by: g(x, y) = -3 x 2 -y 2 + x y + 3 x -1 2 y

As regards the CFL stability conditions, the Arrowhead Curve appears as more demanding (N ∼ O(9 m )) than the Gasket (N ∼ O(5 m )). 

Discussion

Propagation in both case appears as quite different, starting from the fact that the CFL stability condition is more demanding for the Curve than the Gasket. One can note a difference in the diffusion process, where the trail is off first in the neighborhood of the boundary V 0 , and of the point P 3 at the end, where it reaches the zero value. In the case of the Gasket, the boundary V 0 = V 0 includes the point P 3 .

At T = 1, the situation is the same for the both cases, and the solution reaches the zero value. It is important to remark that the diffusion process in the curve case follows a snake pattern, resulting from the chain structure, contrary to the Gasket, where every points has four neighbours.

To go further and understand the difference between both processes, let us recall the Einstein relation 

Definition 3. 4 (

 4 Laplacian of order m ∈ N [Dav19a]).

  For i = 1, . . . , N m -2:

  4.2.1 Arrowhead Curve (see figures[13][14][15][16][17][18][19] 

Figure 13 -

 13 Figure 13 -The graph of the approached solution for T = 1, k = 0, m = 6.

Figure 14 -

 14 Figure 14 -The graph of the approached solution for T = 1, k = 10, m = 6.

Figure 15 -

 15 Figure 15 -The graph of the approached solution for T = 1, k = 100, m = 6.

Figure 16 -

 16 Figure 16 -The graph of the approached solution for T = 1, k = 1000, m = 6.

Figure 17 -

 17 Figure 17 -The graph of the approached solution for T = 1, k = 10000, m = 6.

Figure 18 -

 18 Figure 18 -The graph of the approached solution for T = 1, k = 1000000, m = 6.

Figure 19 -

 19 Figure 19 -The graph of the approached solution for T = 1, k = 1000000, m = 6.

  Figure 20 -The graph of the approached solution for T = 1, k = 0, m = 6.

Figure 21 -

 21 Figure 21 -The graph of the approached solution for T = 1, k = 10, m = 6.

Figure 22 -

 22 Figure 22 -The graph of the approached solution for T = 1, k = 100, m = 6.

Figure 23 -

 23 Figure 23 -The graph of the approached solution for T = 1, k = 1000, m = 6.

Figure 24 -

 24 Figure 24 -The graph of the approached solution for T = 1, k = 10000, m = 6.

Figure 25 -

 25 Figure 25 -The graph of the approached solution for T = 1, k = 100000, m = 6.

Figure 26 -

 26 Figure 26 -The graph of the approached solution for T = 1, k = 1000000, m = 6.

  [?], between the walk dimension D W , the Hausdorff dimension D H , and the spectral dimension D S :D H = D S D W 2 where: D S = 2 ln N ln(N × ρ)and where N denotes the number of initial points, ρ being the energy scaling factor.
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One has:

The walk dimension, which describes the time-space-scaling of a random walk on the set, is higher in the case of the Arrowhead Curve (the mean exit time from balls is bigger).

As for the spectral dimension, which describes the eigenvalue counting function of the Laplacian, it is of course different in both cases. It reflects the fact that spectral asymptotics on fractals does not only depend on the Hausdorff dimension (geometry), but also on the topology (ramification properties).