X. Chen, I. T. Mccrum, K. A. Schwarz, M. J. Janik, and M. T. Koper, Co-adsorption of Cations as the Cause of the Apparent pH Dependence of Hydrogen Adsorption on a Stepped Platinum Single-Crystal Electrode, Angewandte Chemie International Edition, vol.56, pp.15025-15029, 2017.

M. J. Janik, I. T. Mccrum, and M. T. Koper, On the presence of surface bound hydroxyl species on polycrystalline Pt electrodes in the "hydrogen potential region" (0-0.4 V-RHE), Journal of Catalysis, vol.367, pp.332-337, 2018.

N. Dubouis and A. J. Grimaud, The Hydrogen Evolution Reaction: From Material to Interfacial Descriptors, Chemical Science, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02322438

J. Velasco-velez, The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy, Science, vol.346, pp.831-834, 2014.

C. H. Wu, Molecular-Scale Structure of Electrode-Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid, Journal of the American Chemical Society, vol.140, pp.16237-16244, 2018.

C. Li, In situ probing electrified interfacial water structures at atomically flat surfaces, Nature Materials, vol.18, pp.697-701, 2019.

E. Liu, Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts, Journal of the American Chemical Society, vol.141, pp.3232-3239, 2019.

M. Chen, Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer, Nature Chemistry, vol.10, pp.413-419, 2018.

O. Hollóczki, R. Macchieraldo, B. Gleede, S. R. Waldvogel, and B. Kirchner, Interfacial Domain Formation Enhances Electrochemical Synthesis, Journal Physical Chemistry Letter, vol.10, pp.1192-1197, 2019.

Y. Meng, L. Aldous, S. R. Belding, and R. G. Compton, The hydrogen evolution reaction in a room temperature ionic liquid: mechanism and electrocatalyst trends, Physical Chemistry Chemical Physics, vol.14, pp.5222-5228, 2012.

S. Bi, Minimizing the electrosorption of water from humid ionic liquids on electrodes, Nature Communications, vol.9, p.5222, 2018.

G. Feng, X. Jiang, R. Qiao, and A. A. Kornyshev, Water in Ionic Liquids at Electrified Interfaces: The Anatomy of Electrosorption, ACS Nano, vol.8, pp.11685-11694, 2014.

L. Suo, Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, vol.350, pp.938-943, 2015.

Y. Yamada, Hydrate-melt electrolytes for high-energy-density aqueous batteries, Nature Energy, vol.1, p.16129, 2016.

O. Borodin, Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes, ACS Nano, vol.11, pp.10462-10471, 2017.

N. Dubouis, The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for " Water-in-Salt, electrolytes. Energy & Environmental Science, vol.11, pp.3491-3499, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02388359

M. Mceldrew, Z. A. Goodwin, A. A. Kornyshev, and M. Z. Bazant,

, Double Layer in Water-in-Salt Electrolytes, Journal of Physical Chemistry Letter, vol.9, pp.5840-5846, 2018.

Y. Y. Birdja, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nature Energy, vol.4, pp.732-745, 2019.

S. Z. Andersen, A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements, Nature, vol.570, pp.504-508, 2019.

J. E. Tanner, Use of the Stimulated Echo in NMR Diffusion Studies, Journal of Chemical Physics, vol.52, pp.2523-2526, 1970.

M. J. Abraham, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, pp.19-25, 2015.

X. Grabuleda, C. Jaime, and P. A. Kollman, Molecular dynamics simulation studies of liquid acetonitrile: New six-site model, Journal of Computational Chemistry, vol.21, pp.901-908, 2000.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, Journal of Physical Chemistry, vol.91, pp.6269-6271, 1987.

X. Liu, New Force Field for Molecular Simulation of Guanidinium-Based Ionic Liquids, Journal of Physical Chemistry B, vol.110, pp.12062-12071, 2006.

D. Bhowmik, Aqueous solutions of tetraalkylammonium halides: ion hydration, dynamics and ion-ion interactions in light of steric effects, Physical Chemistry Chemical Physics, vol.16, pp.13447-13457, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01484087

J. ?qvist, Ion-water interaction potentials derived from free energy perturbation simulations, Journal of Physical Chemistry, vol.94, pp.8021-8024, 1990.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, vol.81, pp.511-519, 1984.

D. J. Evans and B. L. Holian, The Nose-Hoover thermostat, Journal of Chemical Physics, vol.83, pp.4069-4074, 1985.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, PACKMOL: A package for building initial configurations for molecular dynamics simulations, Journal of Computational Chemistry, vol.30, pp.2157-2164, 2009.

U. Essmann, A smooth particle mesh Ewald method, Journal of Chemical Physics, vol.103, pp.8577-8593, 1995.

B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, LINCS: A linear constraint solver for molecular simulations, Journal of Computational Chemistry, vol.18, pp.1463-1472, 1997.

M. Brehm and B. Kirchner, TRAVIS -A Free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories, Journal of Chemical Information and Modeling, vol.51, pp.2007-2023, 2011.

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, pp.33-38, 1996.

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, Journal of Chemical Physics, vol.126, p.84704, 2007.

J. I. Siepmann and M. Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, Journal of Chemical Physics, vol.102, pp.511-524, 1995.

T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, On the
URL : https://hal.archives-ouvertes.fr/hal-02394741

, Water?Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes, Journal of Physical Chemistry B, vol.107, pp.1345-1352, 2003.

T. R. Gingrich and M. Wilson, On the Ewald summation of Gaussian charges for the simulation of metallic surfaces, Chemical Physics Letters, vol.500, pp.178-183, 2010.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, pp.327-341, 1977.

G. Ciccotti, M. Ferrario, and J. Ryckaert, Molecular dynamics of rigid systems in cartesian coordinates A general formulation, Molecular Physics, vol.47, pp.1253-1264, 1982.