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1. Introduction

Tilting theory [1] allows us to construct derived equivalences in various settings. Prime examples
are the derived equivalences between algebras obtained from tilting modules [9] or tilting com-
plexes [21] and the derived equivalences between algebras and (non commutative) varieties ob-
tained from tilting bundles, cf. for example [2,3,8,11]. An important consequence of the existence
of a derived equivalence is the agreement of various subordinate invariants. For instance, the
Grothendieck group [21] and Hochschild cohomology [10, 15, 22] are preserved. Another invari-
ant is the finiteness of global dimension, to which this note is devoted. It is well-known that finite-
ness of global dimension is preserved when two algebras are linked by a tilting module [9, III.3.4]
or a tilting complex [7, 12.5]. Similar facts hold in the geometric examples. It seems natural to
unify the algebraic and geometric examples by considering the following general question:

Question. Given a tilting object T in the (bounded) derived category of an abelian category A ,
does finite global dimension of A imply finite global dimension of the endomorphism ring of T ?

Despite the ubiquity of tilting objects in algebra and geometry, there seems to be no general
result in the literature which guarantees that tilting preserves finite global dimension, even when
the category A is hereditary.1 An explanation may be possible confusion about the very definition

∗Corresponding author.
1 [19, Theorem 6.1] claims that End(T ) has finite global dimension when A is hereditary, but the proof seems to be

incomplete.
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564 Bernhard Keller and Henning Krause

of a tilting object. In fact, there are various possible definitions in the literature, and we need to
clarify this point.

Let A be an abelian category. By definition, its global dimension is the infimum of the integers
d such that Exti

A
(−,−) = 0 for all i > d . Denote by D(A ) the derived category of A . Fix an object

T ∈ D(A ) and set Λ= End(T ). We assume that Hom(T,Σi T ) = 0 for all i 6= 0.
We consider two settings for T to be a tilting object, depending on whether the abelian category

A is essentially small or not. For the first setting, we focus on the bounded derived category
Db(A ) of objects with cohomology concentrated in finitely many degrees. Then we define
T ∈ Db(A ) to be tilting if Db(A ) equals the thick subcategory generated by T .2 For example, if
Γ is a right coherent ring of finite global dimension and A the abelian category modΓ of finitely
presented right Γ-modules, then the object T of Db(A ) is tilting if and only if it is isomorphic to a
tilting complex in the sense of [21].

Theorem 1. Let T ∈ Db(A ) be tilting. Suppose that A is noetherian, that is, each object in A is
noetherian. Then the global dimension of Λ is at most 2d + t , where d is the global dimension of
A and t the smallest integer such that H i T = 0 for all i outside an interval of length t . Moreover,
RHom(T,−) induces a triangle equivalence Db(A ) ∼−→ Db(modΛ) when Λ is right coherent.

For our second setting, assume that A is a Grothendieck category so that D(A ) has arbitrary
(set-indexed) coproducts given by coproducts of complexes. Recall that an object C of D(A ) is
called compact if the functor Hom(C ,−) commutes with arbitrary coproducts. Each compact
object lies in Db(A ), cf. Lemma 7. Then we define T ∈ D(A ) to be tilting if it is compact and
D(A ) equals the localizing subcategory generated by T (the closure under Σ±1, extensions and
arbitrary coproducts). For example, if A is the category ModΓ of all right modules over a ring Γ,
then the tilting objects in D(A ) are precisely those isomorphic to tilting complexes in the sense
of [21].

Theorem 2. Let T ∈ D(A ) be tilting. Then RHom(T,−) induces a triangle equivalence D(A ) ∼−→
D(ModΛ) and gl.dim Λ ≤ 2d + t , where d and t are defined as in Theorem 1.

We deduce Theorem 1 from Theorem 2. The proof uses t-structures and the strategy is inspired
by [7, 12.5]. For Theorem 2, we compare the canonical t-structure on D(A ) with the canonical one
on D(ModΛ); this yields the bound for the global dimension of Λ. For Theorem 1, we embed A

into a Grothendieck category Ā and employ the fact that a tilting object T ∈ Db(A ) identifies
with a tilting object in the unbounded derived category D(Ā ).

2. t-structures and finite global dimension

Let T be a triangulated category with suspension Σ : T ∼−→ T . A pair (U ,V ) of full additive
subcategories is called t-structure provided the following holds [4]:

(1) ΣU ⊆ U and Σ−1 V ⊆ V .
(2) Hom(X ,Y ) = 0 for all X ∈ U and Y ∈ V .
(3) For each X ∈ T there exists an exact triangle X ′ → X → X ′′ → ΣX ′ such that X ′ ∈ U and

X ′′ ∈ V .

2Often the following weaker condition is used: Hom(T,Σi X ) = 0 for all i ∈Z implies X = 0. This is not sufficient in our
context.
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Bernhard Keller and Henning Krause 565

We consider the following example. Let A be an abelian category and T = D(A ) its derived
category. For n ∈Z set

T ≤n :=
{

X ∈T
∣∣∣H i X = 0 for all i > n

}
,

and

T >n :=
{

X ∈T
∣∣∣H i X = 0 for all i ≤ n

}
.

Then we have T ≤n = Σ−n T ≤0 and T >n = Σ−n T >0 for all n ∈ Z. For each X ∈ T the
truncations in degree n provide an exact triangle

τ≤n X −→ X −→ τ>n X −→Σ(τ≤n X )

with τ≤n X ∈ T ≤n and τ>n X ∈ T >n . Thus the pair (T ≤0,T >0) is a t-structure and called
canonical t-structure on D(A ). Note that the canonical t-structure restricts to the one on Db(A ).

Lemma 3. Let (D≤0,D>0) denote the canonical t-structure on Db(A ). Then the global dimension
of A is bounded by d if and only if Hom(X ,Y ) = 0 for all X ∈D≥0 and Y ∈D<−d .

Proof. For objects A, A′ ∈ A and i ∈ Z we have Exti (A, A′) ∼= Hom(A,Σi A′). Thus the global
dimension of A is bounded by d if and only if for all objects X ,Y ∈ Db(A ) with cohomology
concentrated in a single degree we have Hom(X ,Y ) = 0 when X ∈ D≥0 and Y ∈ D<−d . The
assertion of the Lemma 3 follows since for X ∈ D≥0 and Y ∈ D<−d , the truncations induce finite
filtrations

X = τ≥0 X � τ≥1 X � τ≥2 X � · · ·
and

· · · � τ<−d−2 Y � τ<−d−1 Y � τ<−d Y = Y

such that each subquotient has its cohomology concentrated in a single degree i , with i ≥ 0 for
the subquotients of X and i <−d for the subquotients of Y . �

We wish to extend this Lemma 3 from Db(A ) to D(A ). To this end, we fix a Grothendieck
category A . Let us recall some basic facts about derived limits and colimits in D(A ). We will use
derived functors in the sense of Deligne [5, 1.2]. Recall that one of the most pleasant properties
of Deligne’s definition is that for an adjoint pair (F,G), if the derived functors exist, they still form
an adjoint pair (LF,RG), see for example [14, Section 13]. Let I denote a small category. We write
A I for the Grothendieck category of functors I → A . The diagonal functor ∆ : A → A I taking
an object to the constant functor has a left adjoint colim and a right adjoint lim. Let us examine
their derived functors. Since the functor ∆ is exact, its left and right derived functors exist and
are canonically isomorphic to the induced functor D(A ) → D(A I ). For general I , the existence
of Lcolim is unclear but if I is filtered, then colim is exact (by the definition of a Grothendieck
category) and so its left derived functor exists and is canonically isomorphic to the induced
functor D(A I ) → D(A ), which we still denote by colim. This implies in particular that arbitrary
coproducts exist in D(A ) and are computed by coproducts in the category of complexes. For
arbitrary I , the category A I is still a Grothendieck category. This implies that the right derived
functor Rlim exists and is computed as Rlim X = lim iX , where X → iX is a homotopy injective
resolution in the homotopy category of A I , see for example [12, Theorem 14.3.4]. In particular,
this implies that products of arbitrary set-indexed families (Xi )i∈I of objects of D(A ) exist in D(A )
and are computed as products in the category of complexes∏

i∈I
iXi ,

C. R. Mathématique, 2020, 358, n 5, 563-570



566 Bernhard Keller and Henning Krause

where Xi → iXi is a homotopy injective resolution for each i ∈ I . For example, if Xi is homolog-
ically left bounded, then for iXi , we may take any strictly left bounded complex with injective
components quasi-isomorphic to Xi .

Lemma 4. For each complex X ∈ D(A ) its truncations induce exact triangles

Σ−1X
∐

p≥0
τ≤p X

∐
p≥0

τ≤p X X

and

Rlimq ≤0τ≥q X
∏

q ≤0
τ≥q X

∏
q ≤0

τ≥q X Σ
(

Rlimq ≤0τ≥q X
)
.

Moreover, we have X ∼−→ Rlimτ≥q X when the injective dimension of each H n X admits a global
bound not depending on n and H n X = 0 for n À 0.

Remark 5. As explained above, the coproducts in the first triangle may be computed in the
category of complexes, whereas the products in the second triangle are products in the derived
category or equivalently derived products computed using homotopy injective resolutions. The
triangles exist by [16, Proposition A.5(3)] and its dual but we give a direct proof for the special
case at hand below.

Proof. For the first triangle we observe that the colimit of the τ≤p X in the category of complexes
can be computed degreewise. This gives an exact sequence

0
∐

p≥0
τ≤p X

∐
p≥0

τ≤p X X 0

of complexes and therefore an exact triangle in D(A ), as in the assertion of the Lemma 4.
For the second triangle we need to construct a K-injective (homotopy injective) resolution

of (τ≥q X ) in the category of complexes of inverse systems. For each q < 0, choose an injective
resolution H q X → Jq . Then choose a K-injective resolution τ≥0X → I0 and, for q < 0, recursively
define morphisms εq : Iq+1 →Σq+1 Jq such that we have morphisms of triangles in D(A )

Σq H q X τ≥q X τ≥q+1X Σq+1H q X

Σq Jq Iq Iq+1 Σq+1 Jq
εq

where the vertical morphisms are quasi-isomorphisms and ΣIq is the cone over a lift to a
morphism of complexes of εq . The system (Iq ) is then quasi-isomorphic to (τ≥q X ) and K-injective
in the homotopy category of complexes of inverse systems. Thus, it may be used to compute the
right derived limit of (τ≥q X ). We obtain a degreewise split exact sequence of complexes

0 lim Iq
∏

q ≤0
Iq

∏
q ≤0

Iq 0

and therefore an exact triangle in D(A ), as in the assertion of the Lemma 4, with

Rlim τ≥q X ∼= Rlim Iq
∼= lim Iq .

Now suppose that the injective dimension of H q X admits a global bound, say d , and we may
assume that H q X = 0 for all q > 0. To show the isomorphism X ∼−→ Rlimτ≥q X we modify the
above construction of a K-injective resolution of (τ≥q X ) as follows. For each q ≤ 0, choose an
injective resolution H q X → Jq , where the components of Jq vanish in all degrees strictly greater
than d . We put I0 = J0 and, for q < 0, recursively define morphisms εq : Iq+1 → Σq+1 Jq as before.
Again, the system (Iq ) may be used to compute the right derived limit of (τ≥q X ). Since the Jq are
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uniformly right bounded, the system (Iq ) becomes stationary in each degree. This yields in D(A )
the required isomorphism

X ∼= lim Iq
∼= Rlim(τ≥q X ). �

Lemma 6. Let (D≤0,D>0) denote the canonical t-structure on D(A ) and suppose the global
dimension of A is bounded by d. Then for X ∈D≥0 and Y ∈D<−d−2 we have Hom(X ,Y ) = 0.

Proof. We apply Lemma 4. Thus X fits into an exact triangle given by the truncations τ≤p X , and
it suffices to show that Hom(τ≤p X ,Y ) and Hom(Στ≤p X ,Y ) vanish for all p. On the other hand,
Y fits into an exact triangle given by the truncations τ≥q Y , and therefore it suffices to show that
Hom(τ≤p X ,τ≥q Y ), Hom(Στ≤p X ,τ≥q Y ), and Hom(Στ≤p X ,Σ−1τ≥q Y ) vanish for all p and q . This
holds by Lemma 3 since both arguments belong to Db(A ). �

3. Tilting for D(A )

Let A be a Grothendieck category and D(A ) its unbounded derived category. Recall that the
category D(A ) has arbitrary (set-indexed) coproducts given by coproducts in the category of
complexes. Notice that the right derived product functor yields arbitrary products in D(A ). In
particular, the product of a family of left bounded complexes with injective components is also
their product in D(A ).

Lemma 7. If C is a compact object of D(A ), then the cohomology H pC vanishes for all but finitely
many integers p.

Proof. For each p ∈ Z, choose a monomorphism ip : H pC → Ip into an injective object. Using
the identification

HomD(A )(C ,Σ−p I ) = HomA (H pC , I )

valid for each injective I of A , the ip yield a morphism i from C to the product (in the category
of complexes and in the derived category) of the Σ−p Ip . Clearly, in the category of complexes
(and hence in the derived category), this product is canonically isomorphic to the corresponding
coproduct. So we obtain a morphism from C to the coproduct of theΣ−p I p which in cohomology
induces the ip . By the compactness of C , this morphism factors through a finite subcoproduct of
the Σ−p Ip so that all but finitely many of the ip have to vanish. Since they are monomorphisms,
the same holds for the H pC . �

Now let T be a tilting object of D(A ). Thus T is compact, the group Hom(T,Σp T ) vanishes for
all p 6= 0, and D(A ) equals its localizing subcategory generated by T .

Let Λ be the endomorphism ring of T . Then Λ is quasi-isomorphic to the derived endomor-
phism algebra RHom(T,T ) and so the functor RHom(T,−) yields a triangle equivalence

D(A ) ∼−−→ D(ModΛ),

cf. [13]. We use it to identify D(A ) with D(ModΛ). The canonical t-structure on D(A ) is denoted
by (D≤0,D>0), while the canonical t-structure on D(ModΛ) is denoted by (D(Λ)≤0,D(Λ)>0).

Lemma 8. Suppose that A and ModΛ have finite global dimension. Then the functor
RHom(T,−) restricts to an equivalence Db(A ) ∼−→ Db(ModΛ).

Proof. Given objects X ,Y ∈ Db(A ) we have Hom(X ,Σi Y ) = 0 for almost all i since A has finite
global dimension. This is easily shown by induction on the number of integers n such that
H n(X ⊕Y ) 6= 0. It follows that RHom(T,−) restricts to a functor F : Db(A ) → Db(ModΛ), since

H i RHom(T, X ) ∼= Hom(T,Σi X )

C. R. Mathématique, 2020, 358, n 5, 563-570



568 Bernhard Keller and Henning Krause

and T ∈ Db(A ) by Lemma 7. On the other hand, Db(ModΛ) equals the thick subcategory of
D(ModΛ) that is generated by the category ProjΛ of projective Λ-modules, viewed as complexes
concentrated in degree zero, since Λ has finite global dimension. It follows that F is essentially
surjective since F identifies the closure of T under arbitrary coproducts and direct summands
with ProjΛ. �

From now on suppose that the global dimension of A is bounded by d , and fix t ≥ 0 such that
H p T = 0 for all p 6∈ [−t ,0], cf. Lemma 7.

Lemma 9. We have D(Λ)≤0 ⊆ D≤0.

Proof. For X ∈D>0 and i ≤ 0 we have Hom(T,Σi X ) = 0 since T ∈D≤0. It follows that X ∈D(Λ)>0,
since D(A ) ∼−→ D(ModΛ) identifies T with Λ and H i X ∼= Hom(Λ,Σi X ) in D(ModΛ). Thus
D(Λ)≤0 ⊆ D≤0. �

Lemma 10. We have D(Λ)≥0 ⊆ D≥−d−t−2.

Proof. Let X ∈D≤0. Then H i T = 0 for all i 6∈ [−t ,0] implies Hom(T,Σi X ) = 0 for all i > d + t +2 by
Lemma 6. It follows that D≤0 ⊆D(Λ)≤d+t+2, and therefore D(Λ)≥0 ⊆ D≥−d−t−2. �

Proof of Theorem 2. Let X ,Y ∈ ModΛ and i > 2d + t +4. Then

X ∈D(Λ)≥0 ⊆ D≥−d−t−2 and Σi Y ∈D(Λ)<−2d−t−4 ⊆ D<−2d−t−4

by Lemmas 9 and 10. It follows from Lemma 6 that

Exti (X ,Y ) = Hom
(

X ,Σi Y
)
= 0.

Thus the global dimension of Λ is bounded by 2d + t +4. In order to improve this bound, observe
that RHom(T,−) restricts to an equivalence Db(A ) ∼−→ Db(ModΛ) by Lemma 8. Then we compare
t-structures on Db(A ) and use Lemma 3 instead of Lemma 6. It follows that the global dimension
of Λ is bounded by 2d + t . �

4. Tilting for Db(A )

Let A be an abelian category and T ∈ Db(A ) a tilting object; recall this means Hom(T,Σi T ) = 0 for
all i 6= 0 and Db(A ) equals the thick subcategory generated by T . Set Λ = End(T ) and denote by
projΛ the category of finitely generated projectiveΛ-modules. By [17, Theorem 3.2], the inclusion
addT ,→ Db(A ) extends to a triangle functor Kb(addT ) → Db(A ). Then it is straightforward to
show that the composite projΛ ∼−→ addT ,→ Db(A ) extends to a triangle equivalence

Db(projΛ) ∼−−→ Kb(addT ) ∼−−→ Db(A ).

We deduce Theorem 1 from Theorem 2 when A is noetherian, that is, each object in A is
noetherian. To this end, we fix an essentially small abelian category A and let Ā := Lex(A op,Ab)
denote the category of left exact functors A op → Ab. Then Ā is a Grothendieck category and
the Yoneda embedding A → Ā which sends X ∈ A to Hom(−, X ) is fully faithful and exact,
cf. [6, Chapter II].

Lemma 11. Suppose that A is noetherian and of finite global dimension. Then D(Ā ) is compactly
generated (so equals the localizing subcategory generated by all compact objects) and the inclusion
A → Ā induces a fully faithful functor Db(A ) → D(Ā ) that identifies Db(A ) with the full
subcategory of compact objects.

C. R. Mathématique, 2020, 358, n 5, 563-570
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Proof. The inclusion A → Ā identifies A with the full subcategory of noetherian objects in Ā . It
is well-known that an object I of Ā is injective if and only if Ext1(−, I ) vanishes on all noetherian
objects. This implies that the global dimension of Ā equals that of A .

Let InjĀ denote the full subcategory of injective objects and K(InjĀ ) the category of
complexes up to homotopy. Then the canonical functor K(InjĀ ) → D(Ā ) is an equivalence,
cf. [18, Proposition 3.6]. It follows that D(Ā ) is compactly generated and that Db(A ) identifies
with the full subcategory of compact objects, cf. [18, Proposition 2.3]. �

Proof of Theorem 1. We apply Lemma 11. The functor Db(A ) → D(Ā ) identifies a tilting object
T of Db(A ) with a tilting object of D(Ā ). Let Λ = End(T ). Then Theorem 2 provides the bound
for the global dimension of Λ. When Λ is right coherent, then the triangle equivalence D(Ā )∼−→ D(ModΛ) restricts to an equivalence

Db(A ) ∼−→ Db(projΛ) ∼−→ Db(modΛ)

on the full subcategory of compact objects. �

5. Concluding remarks

We end this paper with some remarks. Let us fix an essentially small abelian category A with a
tilting object T ∈ Db(A ), and set Λ= End(T ).

Recall that a Λ-module X is pseudo-coherent if it admits a projective resolution

· · · −→ P1 −→ P0 −→ X −→ 0

such that each Pi is finitely generated. We denote by pcohΛ the full subcategory of pseudo-
coherent Λ-modules; it is a thick subcategory of the category of all Λ-modules, so closed under
direct summands, extensions, kernels of epis, and cokernels of monos.

Remark 12. Suppose that A is noetherian and of finite global dimension. Then RHom(T,−)
induces a triangle equivalence Db(A ) ∼−→ Db(pcohΛ).

For each pair of objects X , X ′ ∈ A we have Exti
(
X , X ′) = 0 for i À 0. This provides some

restriction on the global dimension of A .

Remark 13. Let A be a length category; thus each object has finite composition length. Then

gl.dimA = inf
S,S′

simple

{
i ∈N

∣∣∣Exti+1 (
S,S′)= 0

}
<∞

since the number of isoclasses of simple objects is bounded by the length of H∗T .

Remark 14. The global dimension of A need not be finite when Db(A ) admits a tilting object.
Let Λ be a right noetherian ring and set A = modΛ. Then Λ ∈ Db(A ) is tilting if and only if
each object in A has finite projective dimension. In this case the global dimension of A equals
the (small) finitistic dimension of Λ, which may be infinite (even when Λ is commutative),
cf. [20, Appendix, Example 1].
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