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A B S T R A C T

The DESIREE project has developed a platform offering several complementary therapeutic decision support
modules to improve the quality of care for breast cancer patients. All modules are operating consistently with a
common breast cancer knowledge model (BCKM) following the generic entity-attribute-value model. The BCKM
is formalized as an ontology including both the data model to represent clinical patient information and the
termino-ontological model to represent the application domain concepts. This ontological model is used to
describe data semantics and to allow for reasoning at different levels of abstraction. We present the guideline-
based decision support module (GL-DSS). Three breast cancer clinical practice guidelines have been formalized
as decision rules including evidence levels, conformance levels, and two types of dependency, “refinement” and
“complement”, used to build complete care plans from the reconciliation of atomic recommendations. The
system has been assessed on 138 decisions previously made without the system and re-played with the system
after a washout period on simulated tumor boards (TBs) in three pilot sites. When TB clinicians changed their
decision after using the GL-DSS, it was for a better decision than the decision made without the system in 75 % of
the cases.

1. Introduction

On the worldwide level, breast cancer is the most common cancer
among women and the second most common cancer. In 2018, two
million new cases and more than 600,000 deaths were reported.1 In
France, breast cancer is the most frequent cancer with almost 58,000
new cases per year, in front of prostate cancer, lung cancer, and col-
orectal cancer with 50,000, 46,000 and 43,000 new cases per year,
respectively. After having doubled between 1985 and 2005, breast
cancer incidence is globally currently stable in France. More precisely,
whereas breast cancer incidence is decreasing for women aged 50–79
who may benefit from the breast cancer national screening program
promoted by the National Health Insurance, it is increasing by more
than 60 % for women aged 30–49. With 10,000 deaths per year

(consolidated figures in 2018), breast cancer mortality is declining in
France and breast cancer is one of the best prognosis cancers with
among the best five and ten-year survival rates (87 % and 76 %, re-
spectively). However, it still remains a therapeutic challenge especially
for triple negative breast cancers and HER2+ breast cancers, for which
improvements are both possible and necessary [1].

Clinical practice guidelines (CPGs) are free-text documents devel-
oped by National agencies or academic associations to provide the best
recommendations for the management of a set of selected patient
profiles. These recommendations are built from published clinical re-
search results and represent the state of the art following evidence-
based medicine principles [2,3]. Although studies have shown that
implementing oncology CPGs does improve clinical outcomes in both
overall and recurrence-free survivals of cancer patients [4–11], there
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are still variations in clinical practices and the compliance of clinician
decisions with CPGs remains low [6,12], e.g., Wöckel et al., reported a
51.9 % compliance rate for the decision of comprehensive care plans for
breast cancer patients [6].

In recent years, most countries have implemented organizational
measures such as multidisciplinary team meetings or tumor boards
(TBs) to promote the shared decision of the various health professionals
involved in the management of cancer patients [13]. The goal is to
bring together specialists (surgeons, oncologists, radiation therapists,
radiologists, pathologists, geneticists, etc.) to discuss each patient case
and be able to collectively build the best patient-specific and evidence-
based care plan. TBs are also expected to improve CPG implementation
as well as clinical trial enrolment. While studies have shown that TBs
can improve the compliance of decisions with CPGs [14–16], organi-
zation of TBs is hindered by the complexity of discussed patient cases
and the amount of information to manage. There is indeed a large
number of cases to discuss and finally little time to devote to each of
them leading to question the actual impact of TBs on care quality
[17–19].

Clinical decision support systems (CDSSs) are health IT tools that
require computable biomedical knowledge, person-specific data, and a
reasoning or inferencing mechanism that combines knowledge and data
to generate and present, at appropriate times, intelligently filtered in-
formation to clinicians in order to enhance the quality of their decisions
and consequently the quality of the care delivered. While the sole dis-
semination of free-text CPGs showed to have a low impact on clinician
behavior, studies reported that embedding CPGs within CDSSs could
improve the compliance of clinician decisions with best practices, in
general [20–22] and in the specific case of cancer care decisions made
by TB clinicians [23–25].

DESIREE is a European project funded under the H2020 program.
The objective is to develop a web-based software ecosystem dedicated
to the personalized, collaborative, and multidisciplinary management
of primary breast cancer, from diagnosis, to therapy, and follow-up. The
DESIREE platform offers some image-based diagnostic decision support
modalities involving mammogram-based breast density classification
[26], fully automated breast boundary and pectoral muscle segmenta-
tion [27], and breast mass classification using ensemble convolutional
neural networks [28]. Research works on predictive modeling have also
been conducted, e.g., to predict the esthetic outcome of Breast Con-
servative Therapy considering mechanical forces due to gravity, breast
density and tissue distribution, and the inflammation induced by
radiotherapy and the wound healing [29]. Additional decision support
services have been developed to support the therapeutic decisions of TB
clinicians [30]. The first decision support module is based on the pro-
posal of guideline-based recommendations from patient data. Since
CPGs have many flaws [31], e.g., they are incomplete, ambiguous, and
do not take into account patient preferences, it happens that non-
guideline-compliant TB decisions are legitimate. In this case, they have
a clinical value that should be capitalized as another source of knowl-
edge, beyond CPGs. Thus, DESIREE offers a second decision support
module based on the experience gained from non-compliant TB deci-
sions [32]. Finally, a third decision support module has been developed
based on the implementation of a case-based reasoning process where
the goal is to reuse past TB decisions made for patients similar to the
new patient case discussed by TB clinicians [33].

The three therapeutic decision support modalities have been im-
plemented within the DESIREE platform as three complementary and
interoperable decision support modules, denoted GL-DSS for the
guideline-based module, EXP-DSS for the experience-based system, and
CB-DSS for the one using the case-based reasoning. We used semantic
web tools to implement both GL-DSS and EXP-DSS. More specifically,
we have built a breast cancer knowledge model (BCKM) as an ontology
used as a conceptual and terminological structure federating the three
decision support modules for representing knowledge and patient data
[34]. This paper is focused on the presentation of the BCKM and the

DESIREE GL-DSS module of the DESIREE platform.

2. The guideline-based decision support module

2.1. Overview of DESIREE components

The DESIREE platform offers several complementary modalities of
decision support [30]. If they differ in the knowledge resources they use
and the reasoning process they implement, the three decision support
modules are articulated around a common knowledge model, the
BCKM, represented as an ontology including both the clinical in-
formation model and the termino-ontological aspects of the domain to
describe data semantics and allow for reasoning at different levels of
abstraction. This requires that patient data that feeds decision support
modules be consistent with the BCKM.

On the DESIREE platform, the DESIREE information management
system (DESIMS) acts as an electronic patient record where patient data
is stored in a dedicated database. Through the user interface, it enables
patient data entry and output visualization, as well as the control of all
DESIREE components implemented as web services. The outputs of the
different components are displayed in the user interface using dedicated
display presentations. Internally, patient-related data are provided to
the different decision support modules using the FHIR exchange format
[35] where DESIMS internal data encoding is transformed into a BCKM-
consistent representation. Fig. 1 depicts the main interactions between
the three decision support modules.

2.2. One ontological model to represent both data and knowledge

The originality of our approach is to represent in the same ontolo-
gical framework both the clinical information model, i.e., the data
model, and the termino-ontological model for the characterization of
the application domain concepts. Thus, the BCKM is an explicit speci-
fication of all entities and concepts considered as necessary for the
management of breast cancer patients. It is a static central resource
allowing for interoperability in terms of data structure and semantics. It
is also a practical resource to be used by all decision support modules
and according to which all data structures and concepts used for the
application should be consistently defined. The BCKM is represented as
a formal ontology coded in OWL. This allows for the combination of
two types of inferences: subsumption-based inferences, i.e., ontological
reasoning based on description logic (DL), and arbitrary application of
domain-dependent deductions based on production rules.

The structuring of the BCKM ontology replicates the entity-attri-
bute-value (EAV) generic model for data modeling and the integration
of concepts related to the breast cancer domain [34]. Thus, the BCKM is
not intended to constitute a reference ontology that would cover all
aspects of breast cancer, but it rather gathers the body of knowledge
required for the computer-based therapeutic management of breast
cancer patients. This involves allowing for (i) the representation of
patient data collected using an electronic patient record developed
outside the DESIREE project, as well as (ii) the formalization and the
operationalization of the knowledge embedded within CPGs to provide
decision support.

2.2.1. Ontological representation of the EAV data model
Unlike information models dedicated to the biomedical field that

offer specific predefined objects for hospital information systems or
electronic health records (OpenEHR, FHIR…), the EAV model is a
generic model, considered flexible enough to model biomedical data
[36–38]. From a logical point of view, data models, whether relational
or object-oriented, can be translated into the EAV model. We therefore
structured the ontology through the prism of EAV model components
and chose to explicitly represent the three elements of the EAV model as
classes: entities, attributes, and values.
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- ModelEntity subclasses are used to define the components of the
data model. In our application, they correspond to entities that de-
scribe a patient case and are relevant in the decision-making pro-
cess, e.g., anatomical entities to characterize the disease, the patient
(PatientEntity), the side (SideEntity), and the lesion (LesionEntity)
(see Fig. 2). Other entities are associated to the patient and char-
acterize her context such as her relatives, prior treatments, and
examinations carried out, but also the outcomes issued by the de-
cision support module like recommended care plans or alert mes-
sages.

- ModelAttribute subclasses list the attributes of different entities,
e.g., the age for the patient (Age), the presence of lymphadeno-
pathies for a side (ClinicalLymphNodes), or the histological type of a
lesion (HistologicType). Internally, each class of an attribute is de-
clared to belong to an entity using the object property isAttributeOf.

- ModelValue subclasses represent the different value types declared
for attributes. These subclasses correspond to classic primitive types
such as integers, floats, booleans, dates, strings. HierarchicalValue is
a separate subclass which subclasses are made of discrete value sets
structured as hierarchies organized by the subsumption relation. For
instance, the two sex values, male and female, are grouped in a flat
set of exclusive values, but the types of breast cancer
(BreastCarcinoma) are described hierarchically by the set of in-
vasive cancer, in situ cancer, and Paget's disease, each one being
refined by more specific subclasses. The interest of these subsump-
tion-structured sets of values is to allow the collection of informa-
tion at different levels of abstraction and to reason at these different
levels. In the ontology, the specification of the value type of an at-
tribute is done by the object property hasRange linking the attribute
class and the class of the value type, e.g., the Age attribute of a

Fig. 1. General architecture and information flows between the different DESIREE decision support modules and the DESIMS.

Fig. 2. Excerpt from the UML class diagram representing the three main clinical entities (Patient, Side, and Lesion) used to describe a breast cancer clinical case, and
their relationships.
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patient is linked by hasRange to IntegerValue, the
ClinicalLymphNodes attribute to BooleanValue, and the
HistologicType attribute of a lesion to the BreastCarcinoma class.

- Relationships between entities are represented by object properties
between classes of entities. For instance, a LesionEntity is linked to
the SideEntity by the object property hasSide. These data model
relationships are sub-object properties of the isRelatedTo object
property. This allows for distinguishing between internal object
properties and the relationships specific to the data model.

2.2.2. Building the breast cancer knowledge model
Within the DESIREE project, one of the first tasks was to build the

application domain model. The elicitation of relevant data elements
and their collection were done by combining the expertise of different
project partners, such as breast cancer clinicians, electronic health re-
cord software developers, guidelines and knowledge representation
experts. Among the collected data elements, a subset was referenced as
the minimum data set necessary to enable state-of-the-art decision-
making in the management of primary breast cancer. This information
has been formalized to comply with the BCKM core framework pre-
sented above (2.2.1). Four periods of interest or “scenarios” have been
identified in the breast cancer management clinical pathway: scenario
A when the cancer has just been diagnosed and the decision may be
surgery or neoadjuvant therapy, scenario B when a neoadjuvant
therapy has been administered and TB clinicians have to decide the
surgery or the radiotherapy protocol if the patient is non-operable,
scenario C when neoadjuvant therapy and surgery have been ad-
ministered, and scenario D when surgery has been first performed and
adjuvant treatment modalities have to be decided.

The set of concepts related to the application domain is represented
as subclasses of the core concepts. Among the introduced concepts, we
identified those corresponding to the entities of the data model, such as
the patient, the sides, the lesions, the procedures, and the re-
commendations. We also identified the different attributes character-
izing each entity (e.g., age, histological type, tumor size, etc.). Finally,
the set of hierarchical values specific to the application domain was
integrated into the ontology. As previously said, these sets include both
unstructured sets of simple values (sex with male and female values,
grade with low grade, intermediate grade, and high grade), and sets of
values hierarchically structured by subsumption offering different
characterization levels (histological types of breast cancer, TNM clas-
sification, breast cancer stages, and all the different therapeutic pro-
cedures like surgeries, chemotherapies, and so on). To collect domain-
specific value sets, we reused available existing resources, e.g., the
National Cancer Institute thesaurus (NCI thesaurus, or NCIt). The NCIt
provides a reference terminology for many aspects of cancer manage-
ment: "it covers vocabulary for clinical care, translational and basic
research, and public information and administrative activities."2. It in-
cludes for each concept textual definitions, several synonyms, re-
lationships with other NCIt concepts including subsumption relation-
ships, and mappings with concepts in other resources like SNOMED CT.
Moreover, it is available as an OWL ontology so that some concepts or
subclass hierarchies can be reused. Finally, using reference terminolo-
gies to build the BCKM is a step towards semantic interoperability with
external data sources. On the technical side, we used a tabular ontology
tool, named Flat OWL Editor [39], to populate the BCKM. The tool
allows to extract concepts and sub-hierarchies from existing ontologies,
edit them when necessary, and then insert the updated or new addi-
tional sub-hierarchies into the BCKM.

Fig. 3 illustrates the organization of the resulting ontology by dis-
tinguishing the core ontology, dedicated to the data model, and the sub-
hierarchies of domain concepts stricto sensu.

Fig. 4 displays an extract of the BCKM in Protégé, a popular Open

Source OWL Editor [40]. For instance, the concept HistologicType is an
attribute (isAttributeOf) of the SideEntity entity and has a value type
(hasRange) BreastCarcinoma. The HistologicType concept exists in the
NCIt and the information originating from the NCIt is recorded as an-
notations, like the NCI label, the NCI code, the NCI definition, or the
UMLS CUI. Fig. 4 also shows that BreastCarcinoma is a subclass of
HierarchicalValue and has subclasses structured as a hierarchy.

2.3. Rule-based knowledge representation

2.3.1. A data model-driven rule language
We used the Natural Rule Language (NRL) [41] as the formalism to

specify rules in order to represent guideline knowledge. The IF part of
rules checks various constraints on the values of different attributes of
the selected entities, including equality tests, numerical comparisons, or
subsumption checking with the “is a kind of” operator. Specific logical
constructs allow for the negation in rules by checking the existence of
complex expressions. The THEN part of rules contains actions that build
recommendations (the model of which is described in Section 2.3.2).
Fig. 5 provides an example of an NRL decision rule. This rule matches
two entities, a side (theSide) of a patient (thePatient). The THEN part is
made of the disjunction of two recommended actions. Other NRL con-
structs in the THEN part allow for the creation of data model compo-
nents (see Fig. 9).

2.3.2. The recommendation model
The therapeutic management of breast cancer patients is made of a

care plan including one or several actions to be performed synchro-
nously or in an ordered sequence. These actions may correspond to
different therapeutic modalities (surgery, oncology protocols, radio-
therapy plans, etc.) or to any other relevant action like examination,
surveillance, referral to a specialist, etc., e.g., ‘mastectomy and axillary
lymph node dissection’ is a care plan made of two synchronous actions,
‘systemic chemotherapy, then radiotherapy and endocrine therapy’ is a
care plan made of sequential actions. Moreover, when a care plan is
decided by TB clinicians, the different actions may be described at
different levels of abstraction, for instance ‘endocrine therapy’ or, more
specifically, ‘tamoxifen therapy’, depending on the information avail-
able at the moment the clinical case is discussed.

In DESIREE, a recommendation is formally specified in the BCKM
and is represented as a care plan. A Recommendation (RecoEntity) is
composed of one or several orders (OrderEntity), and each order is
linked to one action (ActionEntity). An action is mainly characterized
by a BreastCancerProcedure which is the super class for the hierarchy of
breast cancer procedures in the BCKM. In addition to the action, an
order is characterized by several important attributes or relationships as
displayed in Fig. 5:

- The step to specify the rank of the action in the ordered sequence. In
Fig. 5, the step is ‘1’ to represent the first action of a sequence.

- The entity on which the action has to be performed, for instance a
chemotherapy is performed on the patient, whereas mastectomy and
re-excision are performed on the side.

- The evidence level of the action as provided in CPGs. For instance,
NCCN guidelines propose categories of evidence where the highest
level is 1, the default is 2A, and the lowest is 3 [42].

- The conformance level to indicate what is the expected conformance
of end-users with the action. We adopted a classical qualitative six-
value scale with SHALL when the action is required, SHOULD when
the action is recommended, MAY when the action is possible, along
with their negative counterparts SHALLNOT, SHOULDNOT, and
MAYNOT.

As previously said, clinical knowledge, including guideline knowl-
edge, can be described at varying levels of abstraction based on the
information available on a patient. For example, CPGs recommend that2 https://ncithesaurus.nci.nih.gov/ncitbrowser/
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Fig. 3. Structuration of the top of the core ontology with domain concepts integrated at the bottom.

Fig. 4. Extract of the BCKM ontology in Protégé.
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a surgical axillary exploration be performed for invasive breast cancers.
If axillary lymph nodes are not invaded, the surgical axillary explora-
tion is a sentinel lymph node biopsy, otherwise it is an axillary lymph
nodes dissection. Formal rules have been built following the same
pattern. We have proposed to enrich recommendations produced under
a given context by the provision of two types of dependencies between
an order and a new recommendation, a “refinement” relationship and a
“complement” relationship. In the first case, the new recommendation
includes an order with a more specific action, whereas in the second
case, the action is complemented by another recommendation. Fig. 6
illustrates the two dependencies, with the example of lumpectomy
complemented (noted with a ‘+’) with clips on the tumor bed, and the
systemic therapy refined as a systemic chemotherapy, itself refined by
two chemo protocols, paclitaxel and doxorubicin-cyclophosphamide.

Two operators have been added in the THEN part of the rule lan-
guage to create recommendations that depend on an order of a re-
commendation (AddComplementReco and AddRefinementReco). Fig. 7
provides two rules used to generate some dependent recommendations
according to the two variants of the example provided in Fig. 6.

2.4. Clinical practice guidelines modeling

2.4.1. Formalization of CPG knowledge
The preliminary step was to select international breast cancer

management CPGs to cover the worldwide state of the art as well as the
“local guidelines” currently implemented by DESIREE clinical partners.

This step resulted in the selection of several CPGs among which three
were encoded in an executable format: NCCN© guidelines published by
the network of 27 cancer centers in the United States [42], inter-
nationally considered as reference guidelines, and two local guidelines,
the French recommendations published by the Assistance Publique -
Hôpitaux de Paris (AP-HP) [43], and the recommendations published
by Onkologikoa, both being clinical partners of the DESIREE project.
Thus, we encoded the three CPGs to be used as knowledge bases for
decision support, with (i) the chance to reduce the decision support
silence when CPGs are complementary and some CPGs may provide
recommendations to fill in the knowledge gaps of the others, and (ii)
the risk to increase decisional conflicts when CPGs are inconsistent and
recommendations provided by the ones are in contradiction with re-
commendations provided by the others.

In a way similar to the DeGel approach [44], the translation from
free-text CPGs to computer-interpretable guidelines was performed in
several steps, from free text (original CPGs), to semi-structured text,
semi-formal text, and a formal, machine-executable representation.
These different steps are listed below using the example of re-excision
in the case of an in-situ breast cancer as displayed in Fig. 8.

- The first step aims at building a human-readable semi-structured
version of CPG contents as IF-THEN statements keeping the re-
ference to where the recommendation was quoted in free-text
guidelines, the evidence level (EL) when available, and the expected
conformance level. This step was performed by a medical oncologist
specialized in the management of breast cancer (CP). Then, rules
were validated by clinical partners (CN, LT). In the example dis-
played in Fig. 8, we obtained:

"IF In situ breast cancer AND prior Tumorectomy performed AND
there is a lesion with margins smaller than 2mm THEN re-excision
by Tumorectomy is recommended (EL=3, p13) OR Mastectomy is
possible (EL=2A, p13)”

- The second step is based on the completion and standardization of
the notions used in the rules according to concepts defined in the
knowledge model to reach a semi-formal version of CPGs. This led to
rewriting the rules in a pseudo-logical language that remained
nevertheless understandable by clinicians. This step was performed
by a medical computer scientist with a good knowledge of the
management of breast cancer (BS). The previous statement was re-
written as follows with BCKM concepts:

Fig. 5. Example of an NRL decision rule to exemplify the consistency with the BCKM.

Fig. 6. Illustration of complement and refinement dependencies between re-
commendations.
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“IF InSituBreastCarcinoma AND PriorBreastConservationSurgery AND
InSituCarcinomaMarginWidth< =2 THEN BreastReExcisionFor
PositiveMargins using 'SHOULD' with 3 OR Mastectomy using ‘MAY’
with 2A”

- The third and last step aims at encoding the rule in a way that
guarantees that the rule description is consistent with the BCKM, the
NRL syntax, and DESIREE workflow. This requires to identify the
relevant attributes and entities for describing the IF part of the rule
and to check the correct object argument for specifying the re-
commended actions. The resulting formal NRL rule encoding the
recommendation presented in the first two steps is the rule given in
Fig. 5. A condition about the patient scenario has been added
(thePatient.BUScenario= ScenarioD). The other conditions are ex-
pressed with attributes of the side entity. For instance, the Breas-
tHistologicType attribute indicates the histologic type of the cancer
at the side level, an information which is not provided from raw
patient data but was inferred from the anatomopathological de-
scription of all lesions in the side (in case of multiple lesions). This
pattern is used in many rules to synthetize or abstract information
which is required at a high level of abstraction to match guideline
knowledge but not directly available in raw patient data. Fig. 9 il-
lustrates a rule that performs abstraction at the side level of raw data
given at the lesion level. Moreover, it exemplifies the use of ex-
istential quantifiers. The rule reads: “IF the histologic type at the
side level is not known, AND there exists at least one lesion of the
same side which histologic type is a kind of in situ cancer, AND
there is no lesion of the same side which histologic type would be
invasive cancer, THEN the histologic type at the side level is in situ
cancer”.

2.4.2. Structure and organization of rule bases
For each CPGs, e.g., NCCN CPGs, AP-HP CPGs, or ONK CPGs, we

have built a structured knowledge base formalized as NRL rules. If the
NRL syntax allows for grouping sets of rules, this aims at structuring the
authoring process and has no impact on rules execution. However, we
needed to distinguish two kinds of rules, which implicitly yields two
subsets: a set of generic rules, independent from CPGs, and a set of

guideline-specific rules.
Generic rules describe common knowledge of the breast cancer

domain. Most of these rules abstract or synthesize information from raw
data at the same entity level, for instance by inferring a new categorial
value for an attribute from an existing numerical value of another at-
tribute of the same entity, or by inferring a new entity-attribute-value
triple from a more complex situation involving different entities as
exemplified in the rule displayed in Fig. 9. The role of these rules is to
infer a synthetic representation of the clinical case to enable guideline-
specific knowledge to be triggered. This is especially used in the case of
entities linked with a part-of relationship, like a lesion, part of a side,
part of a patient, to raise the information from one level to the upper
ones, e.g., raise the in situ histologic type of a lesion to the in situ
histologic type of a side (if there is no other invasive lesion in the side)
(see Fig. 9). Such rules are necessary to properly handle the cases of
multifocal cancers (with multiple lesions in the same side) and/or of
bilateral cancers (when both sides have the disease). These common
rules can be used with the rule bases that represent the different CPGs.

On the contrary, guideline-specific rules encode specific guideline
contents and mostly generate recommendations when conditions ex-
pressed on the synthetic clinical case are satisfied, as the rule in Fig. 5
exemplifies: “theSide.BreastHistologicType is a kind of In-
SituBreastCarcinoma AND theSide.PriorBreastConservationSurgery =
true AND theSide.InSituCarcinomaMarginWidth< = 2” means that
the patient is suffering from an in situ breast cancer (there is no invasive
lesion) managed by a breast conservative surgery and that there is at
least a margin lower than 2 cm (or exactly one if there is only one
lesion). In this case, according to AP-HP CPGs, surgical re-excision is
recommended, mastectomy is possible.

2.5. Implementation

2.5.1. Execution engine
Combining ontological reasoning and custom rules has been studied

for long (e.g., [45]) and there exist many tools that enables the two
types of inferences with different approaches. In our case, since the
rules are written in NRL, one requirement was to be able to implement
the source NRL constructs we used in the destination rule language of

Fig. 7. Two examples of rules that generate dependent recommendations in the context of an existing recommendation (complement on the left side, refinement on
the right side).

Fig. 8. Excerpt from the AP-HP textual CPGs – March 2016, p.
13 (translated).
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the tool. Basically, rule-based reasoning relies on the closed world as-
sumption where negation is treated by negation as failure. This is not
the case with pure DL-based reasoning based on the open world as-
sumption. We needed to use both reasoning types to deal with rules and
data as required by the project. Especially, the first type was required to
handle an NRL operator like “there is no”, as used in the rule displayed
in Fig. 9. We chose to use the EYE semantic reasoner [46] which, unlike
SWRL, allows constructs like “not exist” or “for all”. EYE is written in
Prolog and is able to deal natively with triples in the N3 notation [47].
Data and rules are provided to EYE in N3. Considering ontological
reasoning, the OWL DL semantics in EYE is managed by explicit rules
which are executed together with custom rules in an homogeneous

integration framework. Moreover, according to the authors, EYE is re-
ported to be quite efficient on several benchmarks.

Using EYE as the execution engine for the GL-DSS required that
patient data, NRL rules, and the BCKM be expressed in N3 to feed the
engine. N3 being through the Turtle syntax just another serialization
format for the OWL ontology, transforming the BCKM in N3 was quite
straightforward. However, the transformations of data and rules re-
quired dedicated and consistent parsing. From the user point of view,
NRL custom rules corresponding to some given CPGs are executed in a
forward-chaining mode by saturation and generate patient-centered
recommendations.

Fig. 9. Example of a rule abstracting information: the histologic type is abstracted at the side level from data given at the lesion level.

Fig. 10. General scheme and visualization of knowledge and data flows within the GL-DSS engine.
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Fig. 11. Time-line display of the different events of the patient clinical pathway.

Fig. 12. Screenshot of DESIMS showing a summary of patient data.
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2.5.2. Rule management
A rule manager component has been developed to handle and store

the different rule bases. A rule base usually corresponds to the formal
version of CPGs, but in DESIREE, a rule base could also originate from
the experience-based decision support (EXP-DSS) that learns rules from
decisions made in a given clinical site that do not comply with CPGs
[32]. Fig. 10 provides a schema of the rule manager workflow. Since
NRL is a data model-driven language, the NRL parser requires an ex-
plicit data model specification to check the syntax of NRL rules. This
reference data model is an XSD model which is automatically derived
from the BCKM. The parser can then validate the rules when they are
consistent with the BCKM. Once correctly parsed, rules are transformed
into an intermediate XML representation similar to the Knowledge
Artifacts specification proposed by the HL7 organization [48]. The
principle promoted by this approach is to propose a shared knowledge
representation independent of the source rule expression language
(NRL in our case) and independent of the rule execution language (N3
in our case). The XML representation is also used to exchange rules with
the EXP-DSS which generates EXP-based rules in this format that are
stored in the rule manager [32]. Finally, the XML rule representation is
transformed into N3, the target internal representation of rules, in order
to be executed by EYE. The rule manager is implemented as a web
service, a tomcat servlet, and its internal rule repository is a basic
SQLite database.

2.5.3. Generation of recommendations
The recommendation provider is the main component of the GL-DSS

and its role is to deliver the recommendations issued for a given patient
case following some given CPGs. The recommendation provider is im-
plemented as a tomcat servlet. Data flows generating guideline

recommendations are displayed in Fig. 10.
Patient data is stored in the DESIMS in a proprietary database. For

interoperability reasons, the DESIMS provides patient data to the dif-
ferent decision support modules through FHIR bundles using a limited
number of FHIR resources (Patient, Observation, Body Site, Specimen,
Careplan, etc.). For a given patient, all patient-related entities, their
attributes, and their values are transferred with a coding scheme con-
sistent with the BCKM in a FHIR message which is stored temporarily
on a HAPI FHIR server. The semantic interoperability between the
DESIMS and the BCKM is implemented through DESIMS-BCKM code
mappings. When the recommendation provider is called with a patient
ID, a FHIR decoder is responsible for fetching and parsing the patient’s
bundle from the HAPI FHIR server. Then the FHIR transcoder translates
patient data into N3 triples consistent with the BCKM organization.

From the guideline ID provided as an argument to the re-
commendation provider call, a rule selector requests the rule manager
for the corresponding rule base in the N3 format. Depending on the call
arguments, different guidelines can be used (NCCN, AP-HP, or ONK), as
well as different sets of experience-based rules. Then the inference
engine is executed using these selected N3 rules, the N3 representation
of the patient, the N3 representation of the BCKM, and the OWL DL
rules provided by EYE.

As a result, the engine produces a set of new triples inferred by the
application of the selected rules. This set of triples is transferred to the
recommendation builder which extracts from the triple graph the list of
structured recommendations as described in 2.3.2 and generates an
XML output which, besides the recommendations, also includes the list
of triggered rules and the new inferred facts. This output is then re-
turned to the caller, in practice the DESIMS. The whole process is de-
scribed with a clinical case in the next section.

Fig. 13. Graph-based representation of the instantiated data model for the described clinical case.
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3. Results

3.1. Qualitative and quantitative information about the BCKM and the rule
bases

In the current state, the conceptual model built for DESIREE relies
on 22 entities and a total of 394 attributes. Attributes are distributed
according to their value type as follows: 49 % Booleans, 9 % integers, 4
% floats, 5 % strings, 4 % dates, and 33 % refer to hierarchical values.
The resulting BCKM ontology contains 1445 classes, 2305 axioms, 25
object properties, 15 data properties. A total of 658 classes are derived
from the NCI thesaurus.

NCCN CPGs for breast cancer are among the most utilized com-
prehensive breast cancer guidelines. The 2017 version of NCCN CPGs is
made of a comprehensive document of 199 pages, 75 pages of "blocks"
describing decisional algorithms, and 124 pages of narrative guidelines.
The more recent breast cancer CPGs from AP-HP (France) have been
published in 2016 as a 36 page-long document describing both diag-
nostic and therapeutic recommendations making the difference be-
tween surgery, chemotherapy, and endocrine therapy procedures.
Onkologikoa CPGs appear as a set of eight blocks displaying the re-
commended management of the most frequent breast cancer pre-
sentations. The three CPGs have been first structured as a set of human-
readable decision rules, then encoded in NRL. The whole process re-
sulted in three rule bases made of a total of 386 rules for NCCN CPGs,
305 for AP-HP CPGs, and 494 for ONK CPGs. Rule bases share the same

subset of common generic rules made of 12 rules.

3.2. Using DESIREE on a clinical case

3.2.1. Case description and data entry
We consider the case of a 50-year-old woman, in pre-menopause,

with a left breast lesion of 25 mm at palpation and a left axillary
lymphadenopathy. Mammography has revealed a lesion in the upper
inner quadrant of the left breast, 26 mm, BI-RADS 5. Ultrasound con-
firmed a 26 mm lesion, the biopsy of which diagnosed a ductal invasive
carcinoma, grade 2, estrogen receptor 100 %, progesterone receptor 80
%, HER2 negative, Ki67 at 14 %. The fine needle aspiration of the
axillary lymph node retrieved positive tumor cells. Cancer is classified
as cT2N1M0, stage IIB. Data has been entered using DESIMS, (the EHR
of the DESIREE project). The different procedures already performed
can be visualized on a time line as depicted on Fig. 11.

Fig. 12 shows a screen shot of the DESIMS interface summarizing
the status of the patient with a focus on the most important data to be
reminded before decision is made by TB clinicians.

Fig. 13 shows the graph based on the triple representation of the
instantiated data model that describes the clinical case and which is
used as input for the decision support modules after patient data has
been transmitted from the DESIMS via FHIR.

3.2.2. Production of recommendations
The GL-DSS is launched from the DESIMS user interface. The user

Fig. 14. Visualization of the recommendations produced by the GL-DSS for the described clinical case.

J. Bouaud, et al. Artificial Intelligence In Medicine 108 (2020) 101922

11



may interactively choose the CPGs she wants the GL-DSS to consider for
the decision support (NCCN, AP-HP, ONK). A number of re-
commendations are then returned and displayed to TB clinicians which
may either decide to follow one of the suggestions or, if not, enter their
final decision. For instance, when the GL-DSS is launched on the clinical
case described above with NCCN CPGs, several different concurrent
therapeutic options are provided, basically two surgeries and multiple
options of systemic neo-adjuvant therapies. Fig. 14 provides an illus-
tration of the XML recommendation nested structure returned by the
GL-DSS and made of:

- At the first level, a recommended lumpectomy (with a conformance
level “SHOULD”) associated with a recommended axillary explora-
tion, refined as an axillary lymph node dissection while the lum-
pectomy is complemented by the placement of clips on the tumor bed;

- At the first level, a recommended mastectomy (SHOULD) associated
with a recommended axillary exploration, refined as an axillary
lymph node dissection, and complemented with an optional breast
reconstruction (conformance level “MAY”), which can be refined
into either an immediate breast reconstruction or a delayed breast
reconstruction;

- The third option for this patient is a neo-adjuvant systemic therapy,
which is refined into several recommended (SHOULD) or optional
(MAY) chemotherapy protocols along with endocrine therapy,
which can be refined as Tamoxifen therapy.

Finally, recommendations are displayed in the DESIMS user inter-
face (see Fig. 15) at the most specific level by flattening the initial
nested recommendation structure. From our example, the first surgery
option is made of a block tagged with the guideline ID, i.e., “NCCN”,
where procedures (lumpectomy, clips on the tumor bed, and axillary
lymph node dissection) are listed with their evidence level and con-
formance level.

Fig. 15. Display of the recommended care plans in the DESIMS.

Table 1
Preliminary results of the clinical assessment of the GL-DSS by the three clinical
pilot sites.

# TB
clinicians

# TB
sessions

# Decisions Compliance
of Dwithout

Compliance
of Dwith

ONK 3 6 86 98.8 % 96.5 %
ERE 3 3 17 100.0 % 100.0 %
AP-HP (GPEH) 3 5 (+ 3) 35 100.0 % 97.1 %
Total 9 14 (+

3)
138 99.3 % 97.1 %
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3.3. Clinical evaluation

A clinical evaluation of the DESIREE platform was performed in
July 2019 by all the clinical partners of the project, Onkologikoa (ONK,
a cancer center located in San Sebastian, Spain), ERESA (ERE, pro-
viding diagnostic imaging and radiotherapy, Valencia, Spain), and
Assistance Publique – Hôpitaux de Paris (AP-HP, the first cancer care
institution in Paris region and France, with the Georges Pompidou
European Hospital, GPEH, as the pilot site). We report in this paper the
preliminary results of the clinical evaluation of the sole GL-DSS pro-
totype.

The GL-DSS was evaluated by three clinical pilot sites (ONK, ERE
and GPEH). All sites selected a sample of past retrospective clinical
cases previously discussed in real TBs without the GL-DSS and for which
Dwithout decisions were recorded. The past clinical cases used were
different from one clinical site to the other. For the evaluation, the past
clinical cases were anonymized and re-discussed in close to real (si-
mulated) TBs (meetings involved at least the three mandatory medical
specialties for breast cancer decisions, a radiotherapist, a medical on-
cologist, and a surgeon) and Dwith decisions were collectively made
using the GL-DSS (each pilot site worked on its own past clinical cases).
Prior to the beginning of the evaluation, a short user training video has
been presented to TB clinicians to describe (i) the main functionalities
of the whole DESIREE platform, with a focus on (ii) how to register a
patient for a TB, (iii) how data describing clinical cases are organized in
the DESIMS, and (iv) how the GL-DSS should be used.

Seventeen simulated TBs were organized (among which three en-
countered technical problems such as delays in response times for dif-
ferent reasons), each one included three clinicians, and a total of 138
Dwith decisions were recorded for 110 different patients. The com-
pliance rate of Dwithout decisions with GL-DSS recommendations was
very high, i.e., 99.3 % and the compliance rate of Dwith decisions with
GL-DSS recommendations remained at the same very high level (97.1
%). The few non-compliant decisions with the GL-DSS were mainly
explained by some flaws in the interface (i.e., the DESIMS was actually
displaying the recommendation finally decided by TB clinicians, but
because there were too many recommendations, clinicians did not
manage to retrieve them from the interface, or TB clinicians wanted to
choose two recommendations but this was not allowed). The compar-
ison of Dwithout and Dwith decisions showed that clinicians modified
their prescriptions 24 times out of 138 decisions when using the GL-DSS
(i.e., in 17.4 % of the cases). An external expert in the domain of breast
cancer management assessed the quality of Dwithout and Dwith decisions
and established that Dwith decisions were strictly better decisions than
Dwithout decisions in 18 cases out of 24 (in 75 % of the cases), e.g.,
“Endocrine therapy” without the GL-DSS and “Tamoxifen therapy” with
the GL-DSS. A summary of the results is displayed in Table1.

At the end of the simulated TBs, we performed a qualitative ana-
lysis. TB clinicians were asked to complete the User Experience
Questionnaire [49] and to answer some questions about the added
value of the system, what they especially appreciated, what they
especially disliked, what would be the barriers and the facilitators for
using the system in the future during TBs. Qualitative data was also
extracted from the recordings of TB sessions. Results showed a very
positive evaluation of the GL-DSS from the clinicians regarding the
attractiveness and ease of use of the system. For instance, Fig. 16 il-
lustrates with a word cloud the clinicians' answers to the question
"What did you especially appreciate in the GL-DSS and why?". Per-
ceived as promising and easy to learn, the GL-DSS system caught the
interest of clinicians who declared they were ready to use it in a daily
practice if the system is extended to manage more “complex” patient
cases. The current version was perceived as rather useful for non-expert
centers.

4. Discussion and conclusion

The GL-DSS of the DESIREE project is a guideline-based CDSS ap-
plied to the management of breast cancer patients. Supporting the
implementation of CPGs by CDSSs has a long history. The first CDSSs
applied to the management of breast cancer patients date back to 1986
[50]. These systems were expert systems with knowledge bases for-
malizing the expertise of clinicians engaged in decision-making tasks.
Since then, various CDSS prototypes have been developed for the
management of breast cancer. Most of them are guideline-based sys-
tems to support the decisions of TB clinicians, e.g., MATE [24], Onco-
Cure [51], and OncoDoc [52,25]. More recently, systems such as IBM’s
Watson for Oncology [53] or the Oncology Expert Advisor [54] seek to
build oncology decision support tools using artificial intelligence
components trained on data extracted from scientific literature
(querying bibliographic databases such as PubMed) and retrospective
TB decisions. However, results are controversial and IBM’s Watson for
Oncology has come under fire for not delivering on expectations to
provide state-of-the-art personalized treatment for cancer patients and
for producing advice that is “unsafe and incorrect” [55,56]. To the
authors' knowledge, if breast cancer CDSSs have been assessed on ret-
rospective real patient data with high rates of agreement between TB
decisions and the CDSS’s recommendations (93.2 %, 85.2 %, 93.4 %,
and 93 % for Mate [24], Oncocure [51], OncoDoc [25], and Watson for
Oncology [53], resp.), a few oncology CDSSs have been actually rou-
tinely used during TB meetings except OncoDoc2 [23], and only a small
number demonstrated that they did improve the compliance of TB de-
cisions with CPGs (e.g., Oncodoc2 showed to have a compliance rate of
91.7 % [25]). A recent systematic review [57] showed that few studies
have assessed the outcomes of CDSSs for oncology practice, and has
concluded on the critical need for CDSSs development and evaluation.
Aiming at developing a breast cancer CDSS improving existing systems,
the GL-DSS of the DESIREE project is in line with these two objectives.

Different formalisms have been used to represent CPG contents in
breast cancer guideline-based CDSSs. For instance, Mate [24] uses the
PROforma language based on the CREDO software platform [58]. In
Oncocure [51], CPGs are encoded using Asbru that represents clinical
guidelines and protocols as time-oriented skeletal plans [59]. OncoDoc
[25] proposes a documentary approach to breast cancer decision

Fig. 16. Word cloud synthesizing answers to the question “What did you
especially appreciate in the GL-DSS and why?”.
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support where the user may navigate through a knowledge base
structured as a decision tree to get the best patient-specific re-
commendations. Using semantic web technologies, Abidi et al. [60]
developed a web-based execution engine to combine the ontology re-
presenting CPGs and associated domain knowledge, and the patient
ontology describing the patient's state. More generally, numerous
dedicated formalisms have been proposed to translate free-text CPGs
into computer-interpretable guidelines [61,62]. In the GL-DSS of the
DESIREE project, we have used the Natural Rule Language [41] as the
formalism to specify rules in order to represent guideline knowledge.
Inspired by OCL (Object Constraint Language), and originally designed
as a language for testing the validity of data models [63], NRL provides
a syntax for writing logical expressions consistent with the data model
components, independently of the specification of an execution engine.
NRL rules are then transformed in N3 notation, the target computer-
interpretable guideline formalism to be used by the semantic inference
engine, EYE, combining ontological reasoning and rules. Using tools
from the semantic web domain as a base could have led to some kind of
solution based on SWRL rules associated to a classical OWL reasoning
engine to produce inferences. However, because of the lack of expres-
siveness of the latter, the impossibility to deal with non-monotonicity
and negation within the open world assumption and the degraded
performances obtained on real-life applications with these techniques,
we chose to adopt an alternative solution with Euler/EYE which does
not have these limitations. Besides, this approach allows a reasoning
process able to produce therapeutic treatment recommendations with
varying levels of abstraction for the patients whose clinical profiles can
also be described at varying levels of abstraction. The design of the
BCKM was done in the context of the development of a research pro-
totype with the strong constraint of representing real data from the
DESIMS (that relies on a relational model). We chose to use the EAV
data model, which is simple but generic and flexible enough to model
biomedical data [36–38]. In addition, we chose to explain each element
of the EAV model as classes and not exploit the OWL possibilities where
attributes could have been represented by DataProperties for primitive
types and ObjectProperties for hierarchical types. This class re-
presentation allows to import concepts / classes from other ontologies
and to give them any role in the BCKM: entity, attribute, or value. Thus,
we have imported many concepts and hierarchies from the NCI the-
saurus to the BCKM using the Flat OWL Editor tool [39]. It should be
noted that in this case, the link between the NCI thesaurus and its
cloned classes is not dynamically conserved as it can be the case with a
tool such as OntoFox [64] but it is static with the NCI_CODE kept as
annotation. However, we did not look for the dynamic preservation of
the import link, first because we did not consider that the structuring of
the NCI thesaurus was satisfactory for our application (the organization
of some hierarchies had to be reviewed manually), and second, the
coding of existing data for certain versions of the BCKM and its concepts
might not be able to withstand the evolutions of the BCKM, which
should be controlled. In the current state, the quality of the BCKM is
quite satisfactory since it allows to represent information, both DESIMS-
provided patient data and guideline knowledge, in a way that enables
decision-making and automatic production of recommendations with a
good level of performance, as established by the technical and clinical
validation steps of the GL-DSS.

Interoperability of medical data is essential to improve care quality
and efficiency, and there are multiple standards available for clinical
data exchange, e.g., the Consolidated Clinical Document Architecture
(C-CDA) and the Fast Health Interoperability Resources (FHIR) main-
tained by Health Level 7 (HL7). Unfortunately, the data collected in
health information tools is often in a non-standard, non-structured, or
even non-coded (text) form, resulting in a lack of interoperability. The
main issue for CDSSs is to get patient data originally input into elec-
tronic health records (EHRs). For instance, MATE [24] contains its own
data entry facilities for its stand-alone EHR. Concerning OncoDoc [25]
and Abidi’s work [59], all patient data are entered as needed in the

decision process and there is no linking with an EHR, while OncoCure
[51] is integrated into an existing EHR used at the point of care, re-
lieving the user from data entry. In the DESIREE project, the DESIREE
Information Management System (DESIMS) acts as an EHR where pa-
tient data is stored in a dedicated database. However, the DESIMS was
designed prior to the DESIREE project, with an information model
different from the one adopted in the BCKM and an equally different
terminology repository. While the use of FHIR has made it possible to
solve the syntactical dimension of interoperability, semantic inter-
operability required manual alignment between the terms used in the
DESIMS repository and the BCKM concepts. This finding calls for the
sharing of termino-ontological references, but also models of clinical
information [65], possibly dedicated to a particular area such as cancer
[66]. In addition, beyond classic semantic interoperability issues, TB
decisions are the result of collective discussions and, although based on
CPGs, they do take into account a variety of “holistic parameters” [51]
that may not be directly represented in EHRs, such as complex, implicit,
hard to codify knowledge, or individual patient preferences. No holistic
parameters were included in the DESIMS data model whereas some of
them were part of the BCKM. As a consequence, the reasoning process
performed by the GL-DSS was reduced because some holistic patient
data were missing due to the DESIMS filter. Since we chose to explain
each element of the EAV model as classes, we have started to experi-
ment another solution to reinforce interoperability between EHR-like
components used to collect patient data and the GL-DSS. Indeed, having
classes to represent each element of the EAV model makes the hasRange
relationship between a ModelAttribute class and a ModelValue class
generic and allows to process it uniformly regardless of the value type.
This feature has been exploited for the automatic construction of input
forms from the ontological BCKM, to be used as integrated EHR-like
interfaces [67]. Beyond re-enforcing interoperability, this has also been
used to explore the whole potential of the GL-DSS reasoning process on
non-simple clinical cases including holistic parameters not considered
by the DESIMS.

All published guideline-based breast cancer CDSSs rely on the
modeling and implementation of a single CPG applied to a unique pa-
thology, the management of breast cancer. Since computer-inter-
pretable CPGs are built from the translation of free-text guidelines, they
import some of the natural language weaknesses, and even with only
one disease, guideline-based decision support systems have to deal with
intra-CPGs inconsistencies. This difficulty is even more important when
handling the concurrent application of CPGs for different diseases in
order to manage patients with comorbidities. Galopin et al., [68] have
implemented an ontological reasoning process to allow for the flex-
ibility necessary to deal with patients suffering from both hypertension
and type 2 diabetes. Wilk et al. [69], have proposed a framework based
on first order logic to represent CPGs and to mitigate possible adverse
interactions (drug-drug or drug-disease) between the recommendations
provided by the different CPGs. Abidi et al., [70] proposed the CPG
integration framework COMET to manage multiple CPGs using co-
morbidity management procedures based on the input of domain ex-
perts. In these cases, CPGs are reconciled on the basis of competition
and the goal is to select the recommendations that are “best suited” to
the patient complexity. In the DESIREE project, we chose to use three
CPGs (NCCN, AP-HP, and ONK) to support the decision of the clinical
partners of the project with the provision of their local guidelines, but
also to offer to all of them the possibility to get recommendations from
international CPGs and to extend the clinical coverage of the GL-DSS
[71]. Indeed, we know that there are some knowledge gaps in CPG
contents that lead to the silence of the CDSS for the specific profiles not
covered by CPGS. Thus, the bet was that even if we used contemporary
CPGs versions (all CPGs embedded within the GL-DSS were published in
2017), knowledge gaps of some CPGs could be filled in by the others.
This has been confirmed in the special case of NCCN and AP-HP CPGs
where the silence of one CPG was resolved by the other CPG to allow
the GL-DSS to provide recommendations in 21 % of the cases [72]. As
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opposed to the management of multiple CPGs in case of polymorbid
patients, the aim was to reconcile breast cancer CPGs on the basis of
complementarity. In addition, reconciliation solutions have been de-
veloped within the decision rules (complement and refine). But we have
to develop a post treatment of the recommendations provided to solve
the conflicts and build care plans from atomic recommendations while
benefiting from the complementarity of CPGS.

The GL-DSS module of the DESIREE project aims at providing de-
cision support at different levels of abstraction, allowing for flexibility
in the reasoning process. We presented the developments we made and
justified our choice to use semantic web tools. We constructed a single
domain ontology used as a conceptual and terminological structure to
provide a data model and a knowledge model, used for reasoning and
decision support. The resulting BCKM plays a pivotal role in data and
knowledge management. Other studies aim at combining information
models and ontologies [73,74]. The GL-DSS of the DESIREE project has
been implemented in the basis of three CPGs (NCCN, AP-HP, and ONK).
It has been assessed during simulated TBs in three pilot sites on 138
decisions. It appeared that the clinical cases used for the clinical vali-
dation were simple cases with a high rate of TB decisions compliance
with CPGs. This high rate was conserved when using the system to solve
the same clinical cases. However, the quality of TB decisions was im-
proved when using the system for 18 clinical cases out of the 24 where
TB clinicians changed their decision. This result has to be confirmed
with a larger study involving complex clinical cases in AP-HP real-life
TBs. Prior to this evaluation, our future works would be to develop the
prerequisites to achieve a true interoperability between the AP-HP EHR
system (Orbis from Agfa3), to implement the reconciliation of CPGs to
solve decisional conflicts, and to build care plans from atomic re-
commendations. We especially would have to develop an algebra of
atomic recommendations conformance levels to compute the con-
formance level of the inferred care plans.
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