N
N

N

HAL

open science

Analyzing the Impact of Refactoring Variants on
Feature Location

Amine Benmerzoug, Lamia Yessad, Tewfik Ziadi

» To cite this version:

Amine Benmerzoug, Lamia Yessad, Tewfik Ziadi. Analyzing the Impact of Refactoring Variants
on Feature Location. International Conference on Software and Systems Reuse (ICSR), Dec 2020,

Hammamet, Tunisia. hal-02970318

HAL Id: hal-02970318
https://hal.sorbonne-universite.fr /hal-02970318
Submitted on 18 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-02970318
https://hal.archives-ouvertes.fr

Analyzing the Impact of Refactoring Variants on
Feature Location

1{0000-0003—3770-8339]* [amia Yessad!l
and Tewfik Ziadi2[0000—0001-9241-8276]

Amine Benmerzoug 00000001 -5457—6425]

! Ecole Nationale Supérieure d’Informatique, LCSI, Algiers, Algeria
{a_benmerzoug,l_yessad}Qesi.dz
2 Sorbonne Université, LIP6, Paris, France
tewfik.ziadi@lip6.fr

Abstract. Due to the increasing importance of feature location process,
several studies evaluate the performance of different techniques based on
IR strategies and a set of software variants as input artifacts. The pro-
posed techniques attempt to improve the results obtained but it is often
a difficult task. None of the existing feature location techniques considers
the changing nature of the input artifacts, which may undergo series of
refactoring changes. In this paper, we investigate the impact of refac-
toring variants on the feature location techniques. We first evaluate the
performance of two techniques through the ArgoUML SPL benchmark
when the variants are refactored. We then discuss the degraded results
and the possibility of restoring them. Finally, we outline a process of
variant alignment that aims to preserve the performance of the feature
location.

Keywords: Software Product Line - Feature Location - Refactoring.

1 Introduction

Software Product Lines (SPL) represent one of the most exciting paradigm shift
in software development in the last two decades [14]. The main idea is to imple-
ment at the same time a family of similar applications rather than implementing
a single system. The SPL engineering framework introduces into the general pro-
cess of software development new activities related to software variability man-
agement and product derivation based mainly on the concept of features [1].
A feature refers to a specific functionality or characteristic of a software [10].
During these decades, many concrete approaches have been proposed (ex. Sven
et al. [1]). However, adopting an SPL approach and designing SPL variabil-
ity is still a major challenge and represents a risk for a company [12]. Berger
et al. [3] showed, in a survey with industrial companies, which participated in
industrial SPLE, that around 50% of them cannot adopt SPL proactively [3].
Indeed, instead of adopting an SPL, these companies clone an existing product

* Corresponding author.

2 A. Benmerzoug et al.

and modify it to fit customer requirements. This approach, called clone-and-own,
is widely used because it is faster and more efficient to start with an already de-
veloped and tested set of variants. Thereby, the extractive approach for SPL
adoption or SPL Reengineering is gaining ground. It consists in migrating, au-
tomatically or semi-automatically, the existing variants into an SPL. One of the
main steps in the extractive approach is what is referred to as Feature Loca-
tion (FL). FL is a traceability recovery task for identifying the implementation
elements associated to each feature among the family variants that are created
using clone-and-own [16].

However, all FL techniques are built on the same assumption that the input
variants only differ in term of features and do not consider the situation where
some changes are applied on some variants, without a complete propagation to
all variants. This kind of evolution is only introduced to improve the quality
of the source code without introducing any variation in terms of features. Code
Refactoring 9] is an example of such evolution.

This paper presents a study to investigate the impact of the evolution related
to code refactoring of the variants on the process of feature location and preform
experiments to quantify the impacts introduced by refactorings. We particularly
consider the following Research Questions:

e (RQ1): Does refactoring affect feature location results?

e (RQ2): How to cover the negative impact of refactoring on feature location
techniques?

¢ (RQ3): What is the new vision to implement for preserving the performance
of a feature location technique?

To answer these questions, we have conducted a study on two feature location
techniques through the ArgoUML SPL benchmark [15]. The study consists of
forty-two experiments:

— The first twenty-two experiments aim to observe and analyze if the two loca-
tion techniques performed are impacted by refactorings (RQ1). Two hundred
fifty refactorings are applied to analyse this impact.

— The rest of experiments aims to confirm the possibility of restoring perfor-
mance of the same techniques when propagating the changes to all variants
(RQ2 and RQ3). It means that unchanged variants must be modified ac-
cording to the existing refactorings.

The contributions of this paper can be summarized as follows:

— We use the ArgoUML SPL benchmark to do further experiments measuring
the negative impact of refactoring variants on feature location techniques.

— We identify that the negative impact represented by the distance we called
Degraded Degree evolves linearly based on the number of the applied refac-
torings.

— We outline a preliminary process that aims to align the variants, i.e. propa-
gate refactorings to all variants before performing the feature location.

Analyzing the Impact of Refactoring Variants on Feature Location 3

The rest of the paper is organized as follows. Section 2 presents the feature
location (FL) and refactoring techniques as well as the problem statement. Sec-
tion 3 describes our study design and section 4 discusses the results. This section
also outlines the main activities towards an alignment process. Finally, section
5 presents related work before concluding the paper in section 6.

2 Background and Problem Statement

2.1 Feature Location for Software Product Line Reengineering

As shown by Martinez et al. [16], feature location in the extractive approach
of SPLE can be illustrated by the Fig. 1. It takes as input a set of variants
created using clone-and-own. For each of the variants, there are implementation
elements (represented as a set diamonds in Fig. 1) and the information of which
features are implemented. For example, Variant 1 implements features F1, F2
and F3 whereas Variant 2 implements F1 and F3. In this context of feature-
based variants, a specific FL technique takes as inputs the information of all
the variants (features and implementation elements) and finds, for each feature,
which are the associated implementation elements as shown at the bottom of
Fig. 1.

Variant 1 Variant 2 Variant 3 Variant 4

F1,F2,F3 F1, 3, F5 ‘

Fig. 1. Feature location in feature-based variants [16].

Rubin and Chechik [20] and Assuncao et al. [2] conducted surveys about the
state-of-the-art in FL. domain with a large variety of approaches. For instance,
many approaches use techniques from the field of Information Retrieval (IR)
such as Formal Concept Analysis (FCA) [25], Document Vectors (DVs) [13] and
Latent Semantic Indexing (LSI) [8].

2.2 Problem Statement

As mentioned above, feature location techniques for feature-based variants are
built on the same assumption that the input variants are very similar, and they
only differ in terms of features. However, the variants created using clone-and-
own can evolve independently. Many evolutions that are not related to features

4 A. Benmerzoug et al.

can be applied without a complete propagation to all variants. An example of
such evolutions is related to code refactoring that can be introduced to improve
the quality of the source code of a specific variant without adding or removing
features [9]. Fowler [9] proposed a refactoring catalog! that contains from a
simple Rename field to more complex operations such as FEztract method or
Mowve method.

To illustrate the impact of refactoring applied on variants created using clone-
and-own, let us consider the example of the banking system [26]. Fig. 2 shows
the source code of the Account class of two variants denoted Product1Bank and
Product2Bank. Product1Bank implements the Base and Limit features whereas
Product2Bank implements the Base, Limit and CurrencyEzrchange features. The
Base feature represents the mandatory part in all possible variants and the Limit
feature is mainly implemented with the 1imit property and its associated getter.

Fig. 2 (a) shows a simple type of refactoring called Rename field, where the
limit field in Account class in Producti1Bank is changed into a more meaning-
ful name 1imitOnAccount (all the updated references are highlighted in green).
Another example of refactoring illustrated in Fig. 2 (b) is Extract method, where
the condition statement in withdraw method in Product2Bank is extracted into
the new method isSufficient, which returns a boolean. Thus, the condition state-
ment is replaced with the call to the new method (both the call and the new
method are highlighted in yellow).

ProductiBank
package bs; package bs;
public class Account { public class Account {
private String id; private String id;
private double balance; private double balance;
public void deposit{double asount) { public void deposit(double asount) {

this.balance += amount; this.balance += amount;

1 1
public void withdraw(double amount} { public void withdraw(double amuunti i

if(amount <= balance + limit) if(amount ¢= balance +
balance -= amount; balance -= amount;
1 1
public double getlimit(} { public double getlimit
return limit; return H
1 1
} }
Before Refactoring After Refactoring
(a) Rename Refactoring.
Product2Bank
package bs; package bsj
public class Account { public class Account {
private String id; private String id;
private double balance; private double balance;
private double limit; private double limit;
private double currency; private double currency;
public void deposit{ double amount) { public void deposit(double amount) {
this.balance += amount; this.balance += amount;

} 1
public void withdraw(double amount) { public void withdraw{double amount) {
if(amount <= balance + limit){ |:> if(issufficient(amount)) {
balance -= amount; balance -- amount;
¥
Public boolean isSufficient(double amount) {
public double getlimit() { return amount <= balance + limit;
return limit; b
3 public double getlimiz(} {
3 return limit;
¥
}

Before Refactoring After Refactoring
(b) Extract Method Refactoring.

Fig. 2. Rename field and Extract method refactorings in the “Banking System”.

! Refactoring.com [online]. [date of reference: July 3rd of 2019]. Available at:
https://refactoring.com/catalog/

Analyzing the Impact of Refactoring Variants on Feature Location 5

Applying refactoring by renaming the 1imit field only in Product1Bank may
have an impact on FL. Indeed, the implementation of the Limit Feature only
considers one identifier and not both. The extraction of the new method in
Product2Bank may also impact the results of FL because the change is not
propagated to ProductiBank.

In this simple example and even if we only applied two refactoring operations
on a single class, FL results can be significantly impacted. This paper aims
presenting a deeper study to evaluate systematically this impact according to
the number of refactoring operations. The next sections present the design of
this study using the ArgoUML SPL benchmark and highlight the results.

3 Study Design

3.1 ArgoUML SPL Benchmark for FL

To evaluate FL in feature-based variants, the ArgoUML SPL benchmark was
proposed as a facto platform for evaluating FL techniques [15]. This benchmark
is based on the ArgoUML SPL which is extracted as a product line from an
open-source tool for UML modeling [4]. Fig. 3 presents the feature model of the
ArgoUML SPL where variability is mainly related to the support of the different
UML diagrams. For instance, the feature State is the functionality related to
the UML state diagrams and it is defined as optional whereas the class diagram
is mandatory. The implementation of ArgoUML SPL is coded in Java using an
annotative approach based on the well-known #ifdef directives.

ArgoUML-SPL

| D 0O
Diagrams | Cognitive_Support | Logging

., — 7 7.' o o = O — =
Class State = Activity Use-case Collaboration Deployment | Sequence

Fig. 3. ArgoUML SPL feature model [4].

The ArgoUML SPL benchmark was initially proposed as a challenge at Sys-
tem and Software Product line Conference (SPLC 2018) [15]. The idea is to
propose for the research community a benchmark to implement and evaluate
FL techniques. The benchmark provides scenarios, ground-truth, and metrics
calculation:

e There are 15 scenarios helping to generate up to 256 different variants.

e The ground-truth contains 24 text files corresponding to each feature and its
combinations. These files contain traceability information to classes, meth-
ods, and their refinements.

6 A. Benmerzoug et al.

e The three traditional metrics precision, recall, and F-score are computed to
evaluate the retrieval effectiveness of traceability information.

The results format of any feature location techniques that uses the benchmark
should be adapted to the same format as the ground-truth where the text file
name is the name of the features or their combination or feature negation.

3.2 Data Preparation Procedure

In this study, we used ArgoUML SPL to generate a data set of five variants using
predefined Random scenario (one of the 15 scenarios). Our study is divided into
three steps: Before Refactoring, After Refactoring and After Alignment.

Data Preparation Before Refactoring In this step, we consider the gener-
ated five variants without modification as input artifacts of the location tech-
nique. This latter locates the source code of each feature knowing that the set
of features in each variant product is already identified.

We perform the experiment #1 using the DVs location technique and the
experiment #2 with the LSI technique. The results are the same obtained by
Cruz et al. [5] and are taken as a point of comparison.

Data Preparation After Refactoring In this step, we apply several types
of refactoring on each variant. Here, it is important to consider the number of
refactorings applied on variants, denoted NREFACT. For that, we perform 20 ex-
periments (10 for each technique) starting with 25 refactorings of several types
(Rename class/method/field, Extract class/method). Then, the number of refac-
torings is increased by 25 until it reaches 250 different refactorings (see Table 1).

Table 1. Refactorings variation

Experiment (DVs)| #3 | #4 | #5 | #6 | #7 | #8 | #9 |#10|#11|#12
Experiment (LSI) |7 13|714|715|#16|7#17|#18|#19|#20|#21|#22
NREFACT 25 | 50 | 75 [100|125 | 150|175 (200 | 225 | 250

For applying the refactorings, we use two automatic refactoring tools: Jex-
tract? [21] and JDeodorant? [17]. The Jextract tool is based on the similarity
structure of the system to identify refactoring opportunities whereas JDeodor-
ant identifies code smells in software and outputs the appropriate refactorings to
resolve them. We use the two tools for extracting methods and classes. However,
the rename is performed by reviewing source code and giving meaningful names
to fields, methods and classes using the Eclipse rename functionality.

2 https://github.com/aserg-ufmg/jextract
3 https://github.com /tsantalis/JDeodorant

Analyzing the Impact of Refactoring Variants on Feature Location 7

Data Preparation After Alignment It is the third and final step of our study.
It also contains 20 experiments (10 for each location technique). We keep track
of all refactoring operations for each variant using Eclipse refactoring history,
which provides the needed information to create refactoring scripts. So, we use
these scripts to automatically propagate the applied refactorings (in one or many
variants) to all variants. For each experiment, the input artifacts still the five
variants but with additional refactorings.

In the experiment #12 (see Table 1), we have a priori five refactored variants
with 250 refactorings in total. Five scripts are then created where each script
capitalizes the refactorings applied on one variant. Then, scripts are used to
propagate the refactorings to all variants. Table 2 presents the number of refac-
torings applied successfully. The objective of alignment is to respond to the RQ2
and RQ3 research questions.

Table 2. Number of refactorings after Alignment

Experiment (DVs)|#23|#24|#25|#26 | #27|#28|#29|#30|#31|#32
Experiment (LSI) |#33|#34|#35|#36|#37|#38| #39|#40| #41| #42
NREFACT 103|198 | 284 | 332 | 386 | 427 | 503 | 608 | 646 | 687

Unfortunately, as we see in Table 2, not all refactorings can be applied be-
cause of conflicts. A conflict arises when two or more separate refactoring op-
erations should be applied into the same code element (field, class, method,
package), or when the element has been deleted.

3.3 Feature Location Workflows

As previously mentioned, we use two automatic IR-based feature location tech-
niques DVs and LSI. Both extract from input artifacts (the five variants) meth-
ods and classes, then generate for each of them a document. Each variant is
treated separately and have a set of characteristics such as number of features,
number of LOCs (NLOCs) and number of generated documents (see Table 3).
Furthermore, they give as results the code source of features in the same ground-
truth’s format. In that way, the ground-truth can be used to calculate the per-
formance metrics: precision, recall and F-score.

Table 3. Variant characteristics

Variant | Features | NLOCs | Documents

1 05 305,970 15,563
2 05 308,821 15,475
3 05 295,927 14,881
4 05 327,311 16,168
5 05 337,940 16,730

8 A. Benmerzoug et al.

3.4 Degradation-based Evaluation

We define a new evaluation metric Degradation Degree, denoted DD to measure
the performance degradation of a feature location technique. This metric is a dis-
tance between two F-score values (obtained from ArgoUML SPL benchmark).
Thus, it is based on F-Score metric and defined by the following formula:

DD (Experiment #n) = F'Scorey — FScore (Experiment #n) (1)

Where DD refers to the Degradation Degree qualifying each experiment after
alignment. F'Sorey denotes the F-score obtained before refactoring depending
on what technique we use, and #n denotes the experiment number.

4 Results for Answering the Research Questions

e RQ@Q1: Does refactoring affect feature location results?

To answer RQ1, we perform for each technique 10 experiments by varying the
number of refactoring operations. The ArgoUML SPL benchmark provides the
values of precision (P), recall (R) and F-score (F). However, DD values are
calculated using the precedent formula (1). The results are shown in Table 4.

Table 4. Evolution of DD depending on the number of refactorings using DVs and LSI

DVs LSI
NREFACT| P R F DD P R F DD
0 0.04470{0.04292{0.04379{0.00000{0.16083|0.19439{0.17602|0.00000
25 0.04309{0.03954(0.04124]0.00256 |0.16020|0.18254|0.17143|0.00459
50 0.03788(0.03206(0.03473(0.00907|0.15384|0.16955(0.16131{0.01471
75 0.03109{0.02446|0.02738|0.01642|0.15084|0.15955|0.15507{0.02095
100 0.02847(0.02107{0.02422]0.01957|0.14189|0.12956|0.13544|0.04058
125 0.02147(0.01611{0.01841]0.02539|0.13124|0.10196|0.11476|0.06126
150 0.01502{0.01410{0.01454{0.02925|0.08608|0.07436|0.07979|0.09623
175 0.00645(0.00735[0.00687]0.03692|0.05908|0.04744|0.05262{0.12340
200 0.00375{0.00430{0.00400{0.03979|0.02096|0.02981|0.02461{0.15141
225 0.00170{0.00295{0.00216{0.04164|0.00811|0.00930|0.00866|0.16736
250 0.00044{0.00064{0.00052]0.04327|0.00073|0.00085{0.00153|0.17450

In both techniques, we observe that DD increase when NREFACT increase. Fur-
thermore, the two variables are correlated with a coefficient of correlation equal
to 9.90E-01 (=1) for DVs (resp. 9.81E-01 for LSI). Thus, we apply a linear regres-
sion, which is a technique of machine learning used to obtain a mathematical
model. This latter allows developers to make predictions for (or extrapolate)
the value of DD depending on the different values of NREFACT (see Fig. 4). The
regression equations ((2) for DVs and (3) for LSI) obtained are:

DD = 0.000187 x NREFACT + 0.000555 (2)

Analyzing the Impact of Refactoring Variants on Feature Location 9

DD = 0.000798 x NREFACT — 0.022011 (3)
0050 0200
[]
| DVs e LSI g
oo o W 0150 [
0030 (o o A
2 e 0100 v
a : n .
0020 o a -y
A 0050 o
0010 K o
! ' [}
0000 #° ! 0000 #- B
0 5 10 1% 20 2% W L 50 100 150 20 % 30
NREFACT NREFACT

Fig. 4. Regression lines to predict degradation degree based on NREFACT.

For example, in our context, if the value of NREFACT is equal to 500, the
expected value of the degradation degree DD will be equal to 0.094289 for DVs
(resp. 0.376943 for LSI).

e RQ2: How to cover the negative impact of refactoring on feature location
techniques?

To answer RQ2, we align the variants. As we mentioned before, we keep track of
all refactoring operations in script files. Then, we perform the scripts to apply
the possible refactorings on all variants. Our objective is to reduce the negative
impact of refactoring variants on the feature location techniques. Fig. 5 shows
that the alignment allows slightly improving the precision and the recall metrics
(and thus F-score). The results indicate that the alignment of variants could
restore the performance for both techniques.

DVs LSI

005 02
0045 018
0.04 016
0035 014

o 003 o 012
8 0025 g o1
<oom i 008
0015 0.06
001 I 004
0.005 002

, ol ; | n
mAfter refactoring W After alignment mAfterrefactoring W After alignment

Fig. 5. Slightly improvement of F-score after Alignment.

10 A. Benmerzoug et al.

e RQ3: What is the new vision to implement for preserving the performance of
a feature location technique?

Our study shows that the refactoring of variants has a negative impact on the
feature location processes and the alignment of variants could deal with this
problem (see Fig. 5). The alignment performed in our study is not suitable be-
cause of increasing conflictual refactorings. Therefore, we are currently working
to propose a new Alignment process, which can include the following three ac-
tivities:

1. Refactoring identification that aims to automatically identify refactoring op-
erations by analyzing source code related to the variants to be inputted.

2. Refactoring selection that has the role of selecting the suitable set of refac-
torings to be propagated to all variants in a systematic way avoiding conflicts
as much as possible.

3. Alignment that propagates automatically the selected refactorings to all vari-
ants.

5 Related Work

Existing feature location techniques can be mainly grouped into two categories:
Static and Dynamic [5, 7]. None of these feature location techniques consider the
changes of refactorings. There are a number of benchmarks [16, 15, 6] that have
been used to evaluate FL techniques performance [5,24, 18], while we used one
of them to estimate the performance of FL techniques with refactored variants.
We have previously presented the ArgoUML SPL benchmark, which have been
used to evaluate many FL techniques [5,18,19]. In addition, Martinez et. al [16]
have proposed the use of eclipse variants to evaluate feature location techniques.
This benchmark is mainly based on the assumption that eclipse features can
be mapped to SPL features and proposes a generation of the ground-truth of
the benchmark from a specific eclipse distribution. Many techniques have been
evaluated using this benchmark. This benchmark is also useful to evaluate FL
but, without considering the noises introduced by refactoring operations. As we
presented in our study, our objective is to identify the impact of refactoring
variants on the FL process.

Many approaches have also been proposed to identify refactorings in the
source code [11,22,23]. Unfortunately, these approaches only identify refactor-
ings from the source code of a single application. As we discussed in our Align-
ment Process, one interesting direction is to extend these existing approaches by
first identifying refactorings from many variants and then, applying a systematic
alignment process to make the refactoring activities transparent during the FL
process.

6 Conclusion

In this paper, we have presented a study on the impact of refactorings on fea-
ture location techniques using ArgoUML SPL benchmark. We apply Document

Analyzing the Impact of Refactoring Variants on Feature Location 11

Vectors (DVs) and Latent Semantic indexing (LSI), automatic feature location
approaches based on textual information retrieval techniques. We find that refac-
torings of a variant subset reduce the techniques performance and propagating
these refactorings to all variants (alignment) slightly improves the results.

Our study provides a set of experiments to show the negative impact of
refactorings on the feature location techniques by calculating the degradation
degree (DD). The value of DD increases linearly based on the number of the
applied refactorings. Thus, the value of DD can be extrapolated.

However, the experimental results obtained after alignment are not good
because the use of an ad-hoc technique. As future work, we will implement
the outlined alignment process and experiment it with other feature location
techniques using different benchmarks.

References

1. Apel, S., Batory, D.S., Kastner, C., Saake, G.: Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer, heidelberg, Berlin (2013)

2. Assuncao, W.K., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.:
Reengineering legacy applications into software product lines: a systematic map-
ping. Empirical Software Engineering 22(6), 2972-3016 (2017)

3. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wa-
sowski, A.: A survey of variability modeling in industrial practice. In: Proceed-
ings of the Seventh International Workshop on Variability Modelling of Software-
intensive Systems. pp. 1-7. ACM, Pisa, Italy (2013)

4. Couto, M.V., Valente, M.T., Figueiredo, E.: Extracting software product lines: A
case study using conditional compilation. In: 15th European Conference on Soft-
ware Maintenance and Reengineering. pp. 191-200. IEEE Computer Society, Old-
enburg, Germany (2011)

5. Crug, D., Figueiredo, E., Martinez, J.: A literature review and comparison of three
feature location techniques using argouml-spl. In: Proceedings of the 13th Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems. pp. 1-10.
ACM, Leuven, Belgium (2019)

6. Dit, B., Holtzhauer, A., Poshyvanyk, D., Kagdi, H-H.: A dataset from change
history to support evaluation of software maintenance tasks. In: Proceedings of
the 10th Working Conference on Mining Software Repositories. pp. 131-134. IEEE
Computer Society, San Francisco, USA (2013)

7. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw. Evol. Process. 25, 53-95 (2013)

8. Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S., Harshman, R.: Using
latent semantic analysis to improve access to textual information. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. pp. 281-285.
Association for Computing Machinery, New York, USA (1988)

9. Fowler, M.: Refactoring Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

10. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.S.: Feature-oriented do-
main analysis (foda) feasibility study. software engineering institute. Universitas
Carnegie Mellon, Pittsburgh, Pennsylvania (1990)

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Benmerzoug et al.

Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-finder: a refactoring recon-
struction tool based on logic query templates. In: Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. pp.
371-372. ACM, Santa Fe, NM, USA (2010)

Krueger, C.W.: Variation management for software production lines. In: Interna-
tional Conference on Software Product Lines. pp. 37-48. Springer, San Diego, CA,
USA (2002)

Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
In: Proceedings of the 31th International Conference on Machine Learning. pp.
1188-1196. JMLR.org, Beijing, China (2014)

Linden, F.J.v.d., Schmid, K., Rommes, E.: Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer-Verlag, Berlin, Hei-
delberg (2007)

Martinez, J., Ordonez, N., Térnava, X., Ziadi, T., Aponte, J., Figueiredo, E., Va-
lente, M.T.: Feature location benchmark with argouml SPL. In: Proceeedings of
the 22nd International Systems and Software Product Line Conference. vol. 1, pp.
257-263. ACM, Gothenburg, Sweden (2018)

Martinez, J., Ziadi, T., Papadakis, M., Bissyandé, T.F., Klein, J., Traon, Y.L.:
Feature location benchmark for extractive software product line adoption research
using realistic and synthetic eclipse variants. Information and Software Technology
pp. 46-59 (2018)

Mazinanian, D., Tsantalis, N., Stein, R., Valenta, Z.: Jdeodorant: clone refactoring.
In: Proceedings of the 38th International Conference on Software Engineering. pp.
613-616. ACM, Austin, TX, USA (2016)

Michelon, G.K., Linsbauer, L., Assun¢do, W.K.G., Egyed, A.: Comparison-based
feature location in argouml variants. In: Proceedings of the 23rd International Sys-
tems and Software Product Line Conference. pp. 1-5. ACM, Paris, France (2019)
Miiller, R., Eisenecker, U.: A graph-based feature location approach using set the-
ory. In: Proceedings of the 23rd International Systems and Software Product Line
Conference. pp. 88-92. Association for Computing Machinery, NY, USA (2019)
Rubin, J., Chechik, M.: A survey of feature location techniques. In: Domain Engi-
neering, pp. 29-58. Springer (2013)

Silva, D., Terra, R., Valente, M.T.: Jextract: An eclipse plug-in for recommending
automated extract method refactorings. CoRR pp. 1-8 (2015)

Silva, D., Valente, M.T.: Refdiff: detecting refactorings in version histories. In:
Proceedings of the 14th International Conference on Mining Software Repositories.
pp. 269-279. IEEE Computer Society, Buenos Aires, Argentina (2017)

Tan, L., Bockisch, C.: A survey of refactoring detection tools. In: 6th Collaborative
Workshop on Evolution and Maintenance of Long Living Systems. pp. 100-105.
CEUR-WS.org, Stuttgart, Germany (2019)

Thiim, T., Kéastner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Featureide:
An extensible framework for feature-oriented software development. Science of
Computer Programming pp. 70-85 (2014)

Wille, R.: Formal concept analysis as mathematical theory of concepts and concept
hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis,
Foundations and Applications. vol. 3626, pp. 1-33. Springer (2005)

Ziadi, T., Henard, C., Papadakis, M., Ziane, M., Traon, Y.L.: Towards a language-
independent approach for reverse-engineering of software product lines. In: Sym-
posium on Applied Computing, SAC 2014, Gyeongju, Republic of Korea - March
24 - 28, 2014. pp. 1064-1071. ACM (2014)

