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Abstract 20 

The oldest traces for planktonic lifestyle have been reported in ca. 3.4 billion years old silicified 21 

sediments from the Strelley Pool Formation in Western Australia. Observation of flange appendages 22 

suggests that Archean life motility was passive and driven by drifting of microorganisms in their 23 

surrounding environment. Until now, the oldest traces for active motility are ca. 2.1 billion years old. 24 

Whether or not active motility already existed during the Archean eon remains an open question. Here 25 

we report the discovery of new 3.4 billion years old tailed microfossils. These microfossils exhibit a 26 

lash-like appendage that likely provided them with movement capabilities. This suggests that these 27 

microfossils are the oldest remains of active motile life forms. With the ability to move in liquids and 28 

on organic and/or mineral surfaces, these microorganisms were capable of escaping from harsh 29 

environments and/or colonizing new ecological niches as early as 3.4 billion years ago. The existence 30 

of these deep-rooted Archean motile life forms offers a new picture of the Archean biodiversity, with 31 

unanticipated evolutionary innovative morphological complexities. 32 

 33 

Introduction 34 



Archean carbonaceous microfossils illustrate the widespread presence of life on Earth as early as ca. 3.4 35 

billion years ago (Westall et al., 2006; Sugitani et al., 2010; Wacey et al., 2011; Alleon et al., 2018; 36 

Delarue et al., 2020). However, the interpretation of the Archean palaeobiological record is fraught with 37 

difficulties pertaining to fossilization and burial-induced degradation processes, as illustrated by intense 38 

debates over the past couple of decades (Schopf et al., 2002; Brasier et al., 2002; Wacey et al., 2016)). 39 

Remnants of early life forms all have experienced burial and thermal alteration for billions of years, 40 

which led to the degradation of many pristine biological traits (Javaux et al., 2019). Therefore, Archean 41 

putative microfossils tend to exhibit simple morphological shapes (e.g., spheroidal, filamentous, film, 42 

and lenticular forms) that can also be abiotically produced (Garcia-Ruiz et al., 2003; Cosmidis et al., 43 

2016), precluding, in turn, any simple morphological distinction between genuine biological remnants 44 

and mineral/organic biomorphs. Because of the lack of taxonomically informative features (Javaux et 45 

al., 2019), morphological criteria alone are generally considered as insufficient to assess the biological 46 

nature of ancient traces of life in the Archean geological record (Brasier et al., 2006). As a result, the 47 

ancient fossil record has not yet conveyed a complete picture of ancient biodiversity. Here, we report 48 

the discovery of 3.4 billion years old organic microfossils from the Strelley Pool Formation (SPF) from 49 

Western Australia exhibiting exceptionally preserved morphological traits indicative of active motility.  50 

 51 

Results and Discussion 52 

Observations of thin sections of SPF reveal the existence of tailed organic-walled microfossils (Fig. 1a, 53 

b). These tailed organic-walled microfossils are exclusively observed within the main siliceous 54 

sedimentary matrix precluding their introduction during hydrothermal fluid circulation post 3.4 Ga.  55 

Raman spectra of tailed specimens chemically isolated from the mineral matrix are typical of those of 56 

disordered carbonaceous materials having undergone a low-grade metamorphism (Fig. 2a; Pasteris and 57 

Wopenka, 2003; Delarue et al., 2016). Their Raman line shapes suggest that these microfossils 58 

experienced peak temperatures of approximately 250-300 °C (Lahfid et al., 2010).  Raman first-order 59 

spectra of studied SPF tailed microfossils are similar to those previously determined on syngenetic 60 

microfossils from the same geological formation observed in thin sections (Lepot et al., 2013; Sugitani 61 

et al., 2013), on freshly fractured faces (Alleon et al., 2018), and in acid maceration residue (Delarue et 62 

al., 2020). Therefore, these tailed organic-walled microfossils should be regarded as syngenetic as they 63 

were subjected to the maximum metamorphic temperature registered by their host rock. 64 

 65 

If Raman spectroscopy is a useful tool to assess syngeneity, it is not sufficient to determine the 66 

biogenicity of putative remains of ancient life (Pasteris and Wopenka, 2003). Energy-dispersive X-ray 67 

spectroscopy data show that the studied specimens essentially contain C and O (Fig. 2b), confirming 68 

their organic nature, while nanoscale secondary ion mass spectrometry reveals significant levels of 69 

nitrogen and, in one specimen, phosphorus (Figs. 2d, f-g). The presence of these key elements of cell 70 

walls, proteins, and nucleic acids are consistent with a biological origin. Spatially resolved chemical 71 



investigations exploiting X-ray absorption confirm the heterogeneous chemical nature of the 72 

investigated organic-walled microfossils as at least three different chemical structures could be 73 

distinguished in a given specimen (Fig. 3). Specimens contain some highly graphitic organic materials 74 

with almost no nitrogen and a X-ray absorption spectrum exhibiting a broad peak of conjugated aromatic 75 

groups (285.5 eV) and the excitonic absorption feature of planar domains of highly conjugated π systems 76 

(291.7 eV; Bernard et al., 2010). Closely associated are N-poor materials with XANES spectra similar 77 

to those of thermally-altered kerogen with an intense absorption peak at 285 eV (aromatic or olefinic 78 

groups), a relatively broad absorption feature at 287.5 eV (aliphatic carbons), and an absorption feature 79 

at 286.6 eV (imine, nitrile, carbonyl and/or phenol groups; Bernard et al., 2010; Le Guillou et al., 2018). 80 

Specimens also contain N-rich compounds (N/C ~ 0.22) with XANES spectra that exhibit clear 81 

contributions of quinones or cyclic amides (284.5 eV), aromatic or olefinic carbons (285.1 eV), imine, 82 

nitrile, carbonyl and/or phenol groups (286.6 eV), aliphatics (287.7 eV) and amides (288.2 eV). 83 

Altogether, the chemical structure of the SPF specimen investigated here is consistent with the 84 

preservation of partially degraded biomolecules. 85 

 86 

From a morphological point of view, the organic-walled microfossils are leaf-shaped vesicles ranging 87 

from 30 to 84 µm in length and from 16 to 37 µm in width (Fig. 1). They exhibit classic taphonomical 88 

degradation features, including folds and tears (Figs. 1c-g). The preparation of ultrathin foils using 89 

focused ion beam illustrates their relative limited thickness, ranging from 200 to 500 nm (Fig. 3). Some 90 

specimens also exhibit a specific morphological feature, a lash-like appendage protruding from the leaf-91 

shaped cell (Figs. 1c, d).  92 

 93 

Based on analogous morphological traits observed in past and in modern microorganisms, several 94 

origins/functions may be hypothesised to explain the occurrence of this lash-like appendage. A number 95 

of extant microorganisms exhibit a micrometric tube-like appendage called prostheca, which can be 96 

involved in anchoring cells to organic and mineral surfaces, in nutrient uptake or in asexual reproduction 97 

by budding at its tip (Curtis, 2017). To assess whether the observed lash-like appendage is a remnant of 98 

an ancient prosthecum, we propose an Appendage Shape Index (ASI) based on the ratio between the 99 

width of the appendage and of the parent cell (Fig. 4). Compilation of morphometric data on extant 100 

microorganisms suggests that ASI ranges between 15 and 45% in prostheca, while the lash-like 101 

appendages observed in SPF microfossils are characterized by ASI ranging between 2.2 and 5.8 %, 102 

consistently with those observed on modern archaella, flagella and cilia (Fig. 4). In addition, a 103 

prosthecum consists in an extension of the cellular membrane, implying a structural continuity between 104 

the microorganism body and the base of the prosthecum (Javaux et al., 2003). On the studied SPF 105 

specimens, we observed an anchoring attachment point and a filament-like appendage, indicative of two 106 

distinct structural subunits (Fig. 1). Based on these morphometric and structural features, the lash-like 107 

appendages observed in SPF microfossils cannot be considered as remnants of a prosthecum. As far as 108 



we are aware, and in accordance with their ASI (Fig. 4), such distinct external and functional subunits 109 

can only be assigned to locomotory organelles. However, the lash-like appendages observed in SPF 110 

microfossils are between 0.7 and 1.2 µm in diameter, which is much larger than those reported for 111 

archaella, flagella, and cilia reaching ca. 10, 20, and 200 nm, respectively (Jarell and McBride, 2008; 112 

Beeby et al., 2020). Large cell dimensions (Ø > 10 µm) is a morphological feature commonly observed 113 

in Precambrian organic-walled microfossils (Javaux et al., 2010; Sugitani et al., 2010; 2015; Balidukay 114 

et al., 2016; Loron et al., 2019). Overall, the consistency of ASI values for SPF microfossils compared 115 

to those for archaella, flagella and cilia suggests that proportions between cell size and functional 116 

morphological traits/organelles may have persisted over the Earth's history. However, the SPF 117 

microfossils’ lash-like appendages do not meet standard structural features (for instance, a curved hook 118 

connecting the filament to the basal body in flagella) observed on locomotory organelles from any 119 

organism of the three extant domains of life (see Khan and Scholey, 2018). Therefore, we propose that 120 

the lash-like appendage observed in some SPF microfossils may be a remain of a proto-locomotory 121 

organelle from a common ancestor or, alternatively, of an unknown and extinct domain of life.  122 

 123 

Previous observations of 3.4-3.0 billion years-old flanged microfossils implied passive motility, 124 

microbial planktons drifting depending on its surrounding environment to engender movement (House 125 

et al., 2013; Sugitani et al., 2015; Oehler et al., 2017; Kozawa et al., 2019). To date, the oldest evidence 126 

for active motility was recorded as tubular sedimentary structures in 2.1 billion years old Francevillian 127 

sedimentary series (Gabon, El Albani et al., 2019). The preservation of lash-like appendages in some 128 

SPF microfossils suggests that some microorganisms were capable of active motility - a mechanism 129 

whereby microorganisms can direct where they go (Pollitt and Diggle, 2017) - as early as 3.4 Gyr ago. 130 

Since it likely provided them with the ability to move in the water column or at the surface of organic 131 

and/or mineral surfaces, this evolutionary morphological innovation marks a major step in the history 132 

of life on Earth, and provide a more complex picture of the Archean biodiversity. It suggests that 133 

microorganisms were already able to escape harsh environments, adapt their feeding strategies moving 134 

towards more favorable nutrient sources, and colonize new ecological niches less than a billion years 135 

after the Earth became habitable (Javaux et al., 2019). 136 

 137 

Methods 138 

Chemical isolation of microfossils 139 

Organic-walled microfossils were isolated from the SPF carbonaceous black chert sample using a 140 

modified version of the classical acid maceration procedure (Delarue et al., 2020). A ‘soft’ acid 141 

maceration procedure was applied in order to minimize both potential physical and chemical 142 

degradations of organic microstructures. Prior to acid maceration, about 30 g of rock samples were 143 

fragmented into ~3 g rock chips rather than crushed into finer grains. Rock chips were cleaned using 144 

ultrapure water and a mixture of dichloromethane/methanol (v/v: 2/1). Rock chips were then directly 145 



placed in a Teflon vessel filled with a mixture of HF (40%, reagent grade) /HCl (37%; reagent grade; 146 

v/v: 9/1) at room temperature. After 48 hours, successive centrifugation and rinsing steps using ultrapure 147 

water were performed until reaching neutrality. The residual material was suspended in ethanol and 148 

filtered on polycarbonate filters (pore Ø = 10 µm). After ethanol evaporation, polycarbonate filters were 149 

fixed on carbon tape and coated with 20 nm of gold to prevent further contamination by atmospheric 150 

deposits and further analyses with SEM-EDXS and NanoSIMS 151 

 152 

Scanning electron microscopy and Energy Dispersive X-Ray Spectroscopy (SEM-EDXS) 153 

SEM-EDXS imaging and analysis were performed on gold-coated filters using a TESCAN VEGA II at 154 

the French National Museum of Natural History (MNHN) operated with an accelerating voltage of 15 155 

kV. 156 

 157 

Raman spectroscopy 158 

Raman microspectroscopy was carried out using a Renishaw InVIA microspectrometer equipped with 159 

a 532 nm green laser. The laser was focused on the sample by using a DMLM Leica microscope with a 160 

50× objective. The spectrometer was first calibrated with a silicon standard before the analytical session. 161 

For each target, we determined the Raman shift intensity in the 1000 to 2000 cm-1 spectral window that 162 

includes the first-order defect (D) and graphite (G) peaks. A laser power below 1 mW was used to 163 

prevent any thermal alteration during spectrum acquisition. Spectra acquisition was achieved after three 164 

iterations using a time exposure of 10 seconds. Raman microspectroscopy was performed on gold-coated 165 

organic surfaces implying a slight lowering of the D bands in comparison to the G one (see Delarue et 166 

al. 2020 for details) 167 

 168 

Nanoscale secondary ion mass spectrometry 169 

Isolated microfossils were analyzed using a CAMECA NanoSIMS 50 ion probe using a Cs+ primary 170 

ion beam. Before measurements, pre-sputtering was performed over 30 × 30 µm2 areas for ca. 8 minutes 171 

using a 500 pA primary current (750 µm aperture diaphragm) to avoid surficial contamination, and 172 

achieve Cs+ saturation fluence and constant secondary ion count rates. Analyses were then carried out 173 

using a 10 pA primary current (200 µm aperture diaphragm) on smaller areas to avoid pre-sputtering 174 

edge artifacts. The secondary molecular species 12C14N- and 31P- were collected simultaneously in 175 

electron multipliers. The NanoSIMS raw data were corrected for a 44 ns dead time on each electron 176 

multiplier and processed using the Limage software. 177 

 178 

Focused ion beam (FIB)  179 

FIB ultrathin sections were extracted from the organic microfossils using an FEI Strata DB 235 (IEMN, 180 

Lille, France). Milling at low gallium ion currents minimizes common artefacts including: local gallium 181 

implantation, mixing of components, creation of vacancies or interstitials, creation of amorphous layers, 182 



redeposition of the sputtered material on the sample surface and significant changes in the speciation of 183 

carbon-based polymers. 184 

 185 

Scanning transmission X-ray microscopy 186 

XANES investigations were conducted using the HERMES STXM beamline at the synchrotron 187 

SOLEIL (Gif-sur-Yvette, France). Carbon contamination on beamline optics was constantly removed 188 

thanks to a continuous flow of pure O2. The well-resolved 3p Rydberg peak of gaseous CO2 at 294.96 189 

eV was used for energy calibration. Collecting image stacks at energy increments of 0.1 eV with a dwell 190 

time of ≤ 1 ms per pixel prevented irradiation damage. The estimations of N/C values and the 191 

normalization of the C-XANES spectra shown here were done using QUANTORXS (Bernard et al., 192 

2010). 193 
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Figure 1: Thin section micrographs and scanning electron microscopy images of tailed organic 376 

microfossils. (a-b) Micrographs presenting two specimens embedded in the main mineral matrix of the 377 

studied SPF chert.  (c-f) SEM images of tailed organic microfossils isolated by acid maceration. (c,d) 378 

Exceptionally-well preserved leaf-shaped vesicles presenting a locomotory organelle composed of an 379 

attachment point and of a lash-like appendage (e-g) Corresponding degraded organic-walled 380 

microfossils. A taphonomic degradation gradient is observed from the left to the right. Classic 381 

taphonomical degradation features, including folds and tears, are observed. 382 
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Figure 2: Raman spectra, energy-dispersive X-ray spectra and nanoscale secondary ion mass 385 

spectrometry images. (a) First-order Raman spectra determined on isolated tailed-organic walled 386 

microfossils and (b) corresponding energy-dispersive X-ray spectra. Green and purple lines indicate that 387 

spectra were acquired on specimens shown in panels c and e, respectively. (c, e) SEM images of organic-388 

walled microfossils investigated by EDX, Raman spectroscopy and NanoSIMS. Green and purple 389 

squares indicate areas probed by NanoSIMS. (d, f) the 12C14N- ion images illustrate the presence of 390 

nitrogen. (g) the 31P- image illustrates significant levels of phosphorus. No significant level of 31P- was 391 

recorded on the second specimen shown in panel c. 392 

 393 
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Figure 3: Scanning transmission X-ray microscopy -based X-ray absorption near edge structure 395 

characterization. (a) SEM image of the specimen from which a focused ion beam foil has been 396 

extracted (green line). (b) SEM image of the focused ion beam foil evidencing the low thickness of the 397 

specimen. The green square indicates the area investigated using STXM. c, Carbon - X-ray absorption 398 

near edge structure spectra of the organic materials composing the investigated specimen. 399 

 400 
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Figure 4: Compilation of Appendage Shape Indices determined on extant microorganisms. ASI 402 

was computed according to the ratio between the width of appendage (archaellum, flagellum, cilium and 403 

prosthecum) and of its parent cell (×100). Each width of appendage and of its parent cell was determined 404 

graphically following micrographs and images previously published in Southam et al. (1990), 405 

Poindexter and Staley (1996), Furuno et al. ( 1997), Wustman et al. (1997), Qintero et al. (1998), Wang 406 

et al. (2001), Miller et al. (2004), Bergholtz et al. (2006), Vasilyeva et al. (2006), Wagner et al. (2006), 407 

Kanbe et al. (2007), Abraham et al. (2008), Nge et al. (2008), Pyatibratov et al. (2008), Siano et al. 408 

(2009), Craveiro et al. (2010), Wang et al. (2011), Abraham and Rohde (2014), Chang Lim et al. (2014), 409 

Albers and Jarrell (2015), Deng et al. (2016), Kinosita and Nishizaka (2016), Sugitomo et al. (2016), 410 

Curtis (2017), Leander et al. (2017) . ASI determined on archaella, flagella and cilia are indicated in 411 

green while those determined on prostheca are indicated in pink. The area delimited by dotted lines 412 

indicate ASI determined on four lash-like appendages observed on tailed SPF organic-walled 413 

microfossils. ASI ranges from 4.8 to 5.8 % and from 2.2 to 3.3 % in organic-walled microfossil observed 414 

in thin sections (n = 2) and in the acid maceration residue (n = 2), respectively. ASI is likely 415 

overestimated in thin sections as a consequence of shadows occurring at the edge of organic-walled 416 

microfossils. 417 
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