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Use the force! Reduced variance estimators for densities, radial
distribution functions and local mobilities in molecular simulations

Benjamin Rotenberg1

Sorbonne Universités, CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris,
Francea)

(Dated: September 28, 2020)

Even though the computation of local properties, such as densities or radial distribution functions, remains one of the
most standard goals of molecular simulation, it still largely relies on straighforward histogram-based strategies. Here
we highlight recent developments of alternative approaches leading, from different perspectives, to estimators with a
reduced variance compared to conventional binning. They all make use of the force acting on the particles, in addition
to their position, and allow to focus on the non-trivial part of the problem in order to alleviate (or even remove in some
cases) the catastrophic behaviour of histograms as the bin size decreases. The corresponding computational cost is
negligible for molecular dynamics simulations, since the forces are already computed to generate the configurations,
and the benefit of reduced-variance estimators is even larger when the cost of generating the latter is high, in particular
with ab initio simulations. The force sampling approach may result in spurious residual non-zero values of the density
in regions where no particles are present, but strategies are available to mitigate this artefact. We illustrate this approach
on number, charge and polarization densities, radial distribution functions and local transport coefficients, discuss the
connections between the various perspectives and suggest future challenges for this promising approach.

I. INTRODUCTION

Molecular Dynamics (MD) and Monte Carlo (MC) algo-
rithms allow to sample configurations from a statistical en-
semble and to numerically compute observable properties as
averages over configurations for realistic models of interacting
atoms or molecules, when analytical theories are usually lim-
ited to cruder models1. Since the early days of simulations,
the tremendous development of accurate quantum and clas-
sical descriptions and of efficient sampling algorithms, sup-
ported by the ever growing availability of computational re-
sources, established molecular simulation as an essential tool
and, more fundamentally, a new scientific approach to inves-
tigate the properties of Matter2.

The determination of the local properties in condensed mat-
ter has always been one the main applications of molecu-
lar simulation. To mention but a few examples in Biology,
Chemistry and Physics, one can cite the characterization of
the local structure: of water around solutes such as biologi-
cal molecules by 3D densities3–5; of interfacial number and
charge densities at electrochemical interfaces involving aque-
ous electrolytes or room temperature ionic liquids (RTIL)6–9;
of the complex solvation structure in RTILs10 or of aqueous
solutes near an electrode surface11; of the radial distribution
in concentrated electrolytes12 in order to understand the in-
triguing behavior of the correlation length reported in these
systems13. These structural properties are also used to infer
thermodynamic quantities, such as local solvation entropies,
energies or free energies around proteins14, or Kirkwood-Buff
integrals in mixtures15. Finally, the densities or radial dis-
tribution functions obtained from molecular simulations are
often used as reference data to test and/or parameterize liq-
uid state theories such as 3D-RISM16,17 or molecular density

a)Electronic mail: benjamin.rotenberg@sorbonne-universite.fr

functional theory18–21 as well as coarse-grained models22,23

for mesoscale simulations.

Compared to the development of models to describe the
systems and of algorithms to sample statistical ensembles, sur-
prizingly little effort has been devoted to the improvement of
estimators to compute local properties such as densities or ra-
dial distribution functions from the available configurations.
In practice, one generally relies on histograms couting the
number of particles in a voxel of finite size hd (in d = 1, 2
or 3 dimensions) around a given point or of pairs separated
by a distance comprised between r and r+∆r. As discussed
in more detail below, these straightforward estimators provide
the correct expectation value, but behave poorly when increas-
ing the resolution, with a diverging variance as h or ∆r→ 0.
The benefit of estimators with a reduced variance would be
even larger when the computational cost to generate configu-
rations is high, for example for ab initio MD.

Here we highlight recent developments of alternative ap-
proaches leading, from different perspectives (e.g. inspired
from zero-variance estimators developed in Quantum Monte
Carlo24–26, or directly rooted in Statistical Mechanics27), to
estimators with a reduced variance compared to conventional
binning for densities or radial distribution functions28–32, or
even local transport coefficients33. A common point of all the
resulting expressions is to use the force acting on the parti-
cles, in addition to their position. In Section II, we introduce
the main problem of histogram-based estimators and the idea
behind force sampling strategies. Section III then illustrates
the variance reduction obtained from force-based estimators
on local number densities in several dimensions, and exten-
sions to charge and polarization densities, or to take into ac-
count constraints for rigid molecules. Sections IV and V are
devoted to radial distribution functions and local transport co-
efficients, respectively. The link between these and related ap-
proaches is further discussed in Section VI, while Section VII
offers some suggestions of future challenges.
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II. FORCE SAMPLING

A. What’s wrong with binning?

The computation of local densities or radial distribution
functions (rdf) from molecular simulations is based on their
statistical mechanical definitions as ensemble averages over
microscopic configurations. Let us first consider for simplic-
ity a system of N independent atoms, without distance or an-
gular constraints to define rigid molecules (see section III C).
A point in phase space is defined by the set of all positions
rN = {r1, . . . ,rN} and momenta pN = {p1, . . . ,pN}. The po-
tential energy of the system, U(rN), includes the interactions
between atoms and the effect of external potentials. In the
canonical ensemble, with fixed volume V and temperature T ,
the local number density in particles of type a is defined as1

ρa(r) =

〈
Na

∑
i=1

δ (ri− r)

〉
, (1)

where the sum runs over atoms of type a, δ is the (3D) Dirac
delta function and 〈. . .〉 denotes an average in the canonical
ensemble. Specifically, the average of an observable f is

〈 f 〉= 1
Z

∫
drNdpN f (rN ,pN)e−βH (rN ,pN) , (2)

where β−1 = kBT is the thermal energy, H (rN ,pN) =
U(rN)+K(pN), with K(pN) the kinetic energy, is the Hamil-
tonian of the system, and Z is the partition function. Ex-
pressions similar to Eq. 1 can be written for the 1D- and 2D-
densities in cartesian coordinates, using e.g. δ (zi − z) and
δ (xi− x)δ (yi− y). In addition, rdfs can be defined as

gab(r) =
V

NaNb

1
4πr2

〈
Na

∑
i=1

Nb

∑
′

j=1
δ (ri j− r)

〉
, (3)

where ri j is the distance between particles i and j and the
prime in the second sum indicates that j = i should be ex-
cluded when b = a.

These expressions lead straightforwardly to algorithms
based on a discretization of space into a grid of voxels with
size hd , with h the grid spacing and d ∈ {1,2,3}, for the den-
sity and similarly of distances, with a bin width ∆r, for the
rdfs. Histograms are obtained by simply counting the num-
ber of particles in a given voxel (for densities) or of particle
pairs separated by a distance comprised between r and r+∆r
(for rdfs) for each configuration, summing over particles or
pairs, and averaging over a collection of configurations gener-
ated according to their weight in the canonical ensemble using
MD or MC simulations.

In order to illustrate the limitations of this histogram ap-
proach, which remains the most commonly used to date, let
us consider a system of identical non-interacting particles in
3 dimensions. In the absence of an external potential, one
expects the density to be uniform and equal to the average
density ρ = N/V . If the bin size h is small, each voxel of
the grid discretizing space will be either empty or contain

1 particle, leading to an instantaneous estimate of the den-
sity ρ̃ in this voxel of 0/h3 or 1/h3, respectively. In addi-
tion, the fraction of occupied voxels for each configuration,
which for a sufficiently large number of configurations is also
the fraction of configurations in which a given voxel is occu-
pied, is α = ρh3 � 1. The estimator ρ̃ of the local density
provides the correct average over many configurations, since
〈ρ̃〉 = α × h−3 + (1−α)× 0 = ρ . The quality of this esti-
mator can be measured by computing its variance:

〈
δ ρ̃2

〉
=

α× (h−3−ρ)2 +(1−α)× (0−ρ)2 = α(1−α)h−6 ≈ ρ/h3.
As a result, the variance diverges as the bin size h decreases.

(b) (a) 

Figure 1. Contribution of a microscopic configuration, with orange
disks representing atoms in a simulation box, to the number density
on a grid, estimated using histograms with bins of width h (a) and
h′ = h/2 (b). The colors indicate the instantenous estimate of the
local density, from the number of atoms present in each cell and the
volume of the latter.

This problem of histogram-based estimates of the density
is illustrated in Figure 1: When the bin size is small, most
voxels are empty and the estimate of the local density is given
by the fraction of configurations in which a given bin is oc-
cupied, which is small and therefore requires a large number
of configurations to converge. Since the computational cost
essentially comes from generating the configurations (and not
from the estimate of microscopic properties from these config-
urations), improved estimators with a reduced variance would
decrease the number of samples necessary to converge the re-
sults. The advantage would be even greater for computation-
ally intensive approaches, based e.g. on ab initio calculations,
with which data is usually scarce.

B. The idea behind force sampling

The previous discussion shows that the variance issue with
histograms arises essentially from the ideal gas contribution.
Fortunately, this contribution is known: It is simply the aver-
age density ρ = N/V . However, what really matters are the
variations in density with respect to the position (or in rdfs
with distance), which result from the interactions between the
particles and from external potentials. The idea behind force-
sampling strategies is to sample these variations (the gradi-
ents) using estimators involving the force acting on the atoms
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– a strategy well summarized in the title of Ref. 30: “Bet-
ter than counting: density profiles from force sampling”. In
some cases, determining the density (or rdf) from its gradi-
ent numerically requires introducing some discretization. In
others, this can be done analytically, so that the density or rdf
can be determined with arbitrary resolution – in strong con-
trast with the conventional histogram-based methods. Before
turning to the presentation and discussion of force-based es-
timators, we note that they fundamentally differ from a sim-
ple data-smoothing approach (e.g. with splines) of histogram-
based ones, as they make use of additional information per-
taining to the gradient of the property of interest, rather than
combining values of this property computed at different posi-
tions.

III. DENSITY

We begin our survey of improved estimators using force
sampling on the case the number density in Section III A,
highlighting some pitfalls and how to mitigate them in Sec-
tion III B, before turning to recent extensions to rigid bodies
or generic densities in Section III C.

A. Variance reduction from force sampling

Starting from the definition of the density as an ensemble
average, Eq. 1, and by differentiating with respect to the posi-
tion r, one obtains (omitting the species type a)

∇ρ(r) = βF(r) = β

〈
N

∑
i=1

δ (ri− r)fi

〉
, (4)

where we have introduced the force density F(r) expressed
as an ensemble average of the force fi acting on the particles,
including external potentials and the interactions with other
particles. The appearance of the force is due to the gradient of
the Boltzmann weight, since ∇rie

−βH = e−βH (−β∇riU) =

e−βH β fi in the average Eq. 2, and the properties of the Dirac
delta function. The force sampling approach hence consists in
first sampling the force density from the trajectory, and then
computing the density from its gradient. More precisely, this
“inversion of the gradient” provides the density up to a con-
stant, which can be taken as the average density ρ0 to ob-
tain the excess density ∆ρ(r) = ρ(r)−ρ0. Such an approach
avoids the computation of the ideal gas contribution and fo-
cuses on the non-trivial contribution from interactions. In 2 or
3 dimensions, the gradient can formally inverted as30

∇
−1 ·F(r) = 1

cd

∫
dr′

r− r′

|r− r′|d ·F(r
′) (5)

with cd = 4π if d = 3 and cd = 2π if d = 2. In practice,
this integration of the gradient can also be done efficiently in
reciprocal space, using Fast Fourier Transforms (FFT), from
the force density discretized on a grid (see Refs 29,32).

Figure 2. (a) 2D density for Lennard-Jones particles in an external
potential Vext(r) = V0 sin(2πnwx/L)sin(2πnwy/L) with V0 = ε , the
LJ energy, nw = 5 and L = 10σ , with σ the LJ diameter. Simulations
are performed with 25 particles and only the central region of the
box is shown. Results are obtained from 106 configurations using
histograms (left) and force sampling (right); bins are squares of side
length 0.025σ . (b) Density profile as a function of x at constant y =
5σ from histograms (left) and force sampling (right). Reprinted with
permission from de Las Heras and Schmidt, Phys. Rev. Lett. 2018,
120, 218001. Copyright (2020) by the American Physical Society.

Figure 2 illustrates the benefit of the force sampling ap-
proach on a 2D system of Lennard-Jones particles in an exter-
nal potential, from de Las Heras and Schmidt30. Both panels,
showing respectively a 2D density map and a 1D cut through
the latter, clearly demonstrate that using data from the same
configurations from MC simulations and the same grid, the
force-based estimator displays much less noise than the di-
rect histogram approach. As expected from the discussion of
Section II, the error with respect to the converged result with
many configurations diverges as the bin size decreases and
behaves much better with force scaling (see Ref. 30 for a dis-
cussion of the scaling on a 1D example, and Ref. 32 on a 3D
example). While force sampling provides a clear reduction of
variance compared to histograms for small bins, the benefit is
less obvious for larger ones (a more precise statement would
have to be system specific), in particular because the numeri-
cal integration of the gradient on a coarse grid also introduces
some discretization errors.

B. Pitfalls and mitigation

Another point deserving the attention of the reader is that
the force sampling approach may result in non-zero values of
the density in regions where no particles are present. This
is illustrated on a 1D example in Figure 3, from Purohit et
al.31, which compares the conventional binning approach to
force sampling as described above and to mapped averaging,
which is a more general framework that can be applied to re-
cover force sampling methods for density distributions (see
below). All three methods provide similar results everywhere,
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Figure 3. Density profile for a Lennard-Jones fluid in an external po-
tential ε(z/σ)2, with σ and ε the LJ diameter and energy. The results
obtained from Monte Carlo simulations are shown in units σ = 1
with three estimators: conventional histograms, force sampling and
mapped-averaging (see Eq. 6 for the latter). The inset shows the same
data on a scale allowing a better visualization of the tails of the dis-
tributions. Reproduced from Purohit et al.; Molecular Physics 2019,
117, 2822, with permission of Taylor & Francis Ltd.

but the inset shows that they differ in the tails of the distri-
bution. While with histograms the density falls to zero when
the external potential diverges, this is not exactly the case for
methods based on the force (which, on the positive side, dis-
play a lower variance): by integrating the density gradient as
described above, the density starts from 0 on the left but inte-
grates to a finite plateau on the right; mapped averaging pro-
vides a symmetrized but non-vanishing result. Fortunately,
this spurious residual density, which comes from inaccuracies
in the force density, can be reduced simply by increasing the
number of configurations used to sample the latter.

Despite the above limitation (which also applies in higher
dimensions), the 1D case also offers an example where the
gradient can be integrated analytically. The above-mentioned
mapped averaging framework provides a way to introduce ap-
proximate theoretical results (such as an a priori estimate of a
density) and obtain an exact expression of the error in the the-
ory34,35. In the present 1D geometry, introducing a uniform
density as a prior guess, Purohit et al. obtained the following
expression31

ρ(z) =
N
V
−
〈

1
S

N

∑
i=1

(
1
2
−H(z− zi)−

zi− z
L

)
β fz,i ,

〉
(6)

with L the length of the system in the z direction and S =V/L
the area of system in the lateral directions, H the Heaviside
function, and fz,i the z-component of the force acting on par-
ticle i. It is probably also possible, using a different prior
estimate, to recover from this formalism another expression
obtained in Ref. 33 from a different perspective, namely to
combine a position-based and a force-based estimator. To that
end, one can introduce appropriate weights wN(z) and w f (z),
where the subscripts refer to number and force, respectively,
such that w′f (z) = δ (z)−wN(z) and that w f (z) vanishes when

|z| is large, in order to write the 1D number density as:

ρ(z) =
1
S

〈
N

∑
i=1

δ (zi− z)

〉

=
1
S

〈
N

∑
i=1

wN(zi− z)

〉
− β

S

〈
N

∑
i=1

fz,iw f (zi− z)

〉
(7)

The function wN(z) can be seen as a coarse-graining kernel
for the contribution of each particle to the number density
and should therefore vanish beyond a coarse-graining length
ξ . Families of estimators can be obtained by choosing vari-
ous forms for wN(z) and corresponding w f (z), and varying ξ

(see Ref. 33 for an example of weight functions and a discus-
sion of the choice of ξ ). This provides a handle to mitigate
the artefact of non-zero density in empty regions predicted by
integrating the force density. The possible connection with
mapped averaging can be hypothesized from the observation
that Eq. 7 reduces to Eq. 6 (which is a particular case of a
more general expression31) for wN(z) = 1/L (which strictly
speaking does not satisfy the criteria to be interpreted as a
coarse-graining kernel, since every particle would contribute
to the density everywhere). In practice, the estimator defined
in Eq. 7 can be computed efficiently by convoluting a poste-
riori the histogram-based estimators of the number and force
densities with their corresponding weight functions.

C. Extensions: rigid bodies, generic densities

The force sampling approach to number density has re-
cently been extended in several directions by Coles et al.32.
From the practical point of view, it is important to consider
the case of molecules described as rigid bodies using dis-
tance constraints, which includes popular water models such
as SPC/E or the TIPnP family. Even though the derivation is
not straightforward, the final result is particularly simple32:

∇ρ(r) = βF(r) = β

〈
N

∑
i=1

δ (ri− r)f∗i

〉
constr.

, (8)

where f∗i is the sum of forces acting on particle i and all par-
ticles participating in a constraint with i (in particular those
belonging to the same rigid molecule as i) and where the av-
erage is made over configuration satisfying all constraints. In
practice, the gradient of the water oxygen (resp. hydrogen)
density is computed by assigning the total force acting on each
molecule to the position of the O atom (resp. H atoms).

Another generalization was to consider other local quan-
tities such as the charge or polarization densities. Such an
extension is trivial for combinations of the type

A(r) =

〈
N

∑
i=1

δ (ri− r)ai

〉
constr.

(9)

when the microscopic property ai does not depend on the co-
ordinates rN , which is the case for the charge density. Follow-
ing the same derivation as for the number density, one readily
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obtains:

∇A(r) = β

〈
N

∑
i=1

δ (ri− r)aif∗i

〉
constr.

(10)

Unlike the charge density, the polarization density depends on
the orientation of the molecules, hence their atomic coordi-
nates. For rigid polar molecules, it is nevertheless possible to
use a different set of coordinates, namely the positions of their
centers of mass RNr and orientations ΩNr , with Nr the num-
ber of rigid molecules. The result for the α component of the
polarization density P(r) is:

∇Pα(r) = β

〈
Nr

∑
l=1

δ (Rl− r)µl,α f∗l

〉
(11)

where the sum runs over molecules l and µl,α is the α com-
ponent of their molecular dipole. In that case there is no need
to include constraints explicitly in the average since there are
no additional degrees of freedom.

ρ
Pz

Histogram Method Force Method

z zz zz

ρ
Pz

Histogram Method Force Method

z zz zz(b) (a) 

(d) (c) 

Figure 4. Water structure around a fixed water molecule, from
simulations with the rigid SPC/E water model. (a) Number den-
sity; the isosurface bounds the regions where the density is greater
than 0.07 Å−3 and illustrates the position of water molecules in
the first solvation shell. The blue line indicates the position of the
axis along which the data of panels (c) and (d) are shown. (b)
z-component of the polarization density; blue and red isosurfaces
bound regions where the z-component of the polarization density is
less than −0.035 D Å−3 and greater than +0.035 D Å−3, respec-
tively. The remaining panels show the z-component of the polariza-
tion density for the single line of voxels illustrated in panel (a), us-
ing histograms (red) or force sampling (black), using a grid spacing
h = 0.2 Å (c) or h′ = h/3 (d). The insets are close-ups on the rising
edge highlighted in blue on the main figures. Adapted from J. Chem.
Phys. 2019, 151, 064124, with the permission of AIP Publishing.

Figure 4 illustrates results on the 3D organization of water,
around a fixed water molecule from simulations with the rigid
SPC/E water model, with results from Ref. 32. Panel 4a shows

the regions of large number density of O atoms, computed us-
ing Eq. 8 on a grid and integrating the gradient numerically
using FFT. One can identify the position of the first solva-
tion shell, with different basins corresponding to molecules
donating (top) or receiving (bottom, only one is visible from
this angle) H-bonds to/from the central molecule. Panel 4b
then shows the z component of the polarization density, com-
puted using Eq. 11 and FFT to integrate the gradient. This
allows clarifiying the orientation of the molecular dipole of
water molecules in the different basins of panel 4a, consistent
with the donation/reception of H-bonds, and shows in partic-
ular that Pz vanishes in the plane of the central molecule, as
expected from the symmetry of the system.

In order to demonstrate the benefit of force sampling com-
pared to histograms to determine the 3D number and polar-
ization densities, panels 4c and 4d finally show a 1D trace
through the 3D polarization density along the blue line shown
in panel 4a. Both methods display two peaks of opposite
sign in the vicinity of the molecule, corresponding to the two
basins for H-bond donating molecules of panel 4b. For a rel-
atively large bin size, both methods give comparable results.
As the bin size decreases, the quality of the histogram-based
estimator deteriorates much faster than the force-based esti-
mator: This is visible in the larger amplitude of the noise far
from the solute, as well as near the rising edge close to the
latter (see the insets) and the growing asymmetry between the
two sides of the molecule.

ρ
ρ q

Force Method

Histogram Method Force Method

Figure 5. Isosurfaces for the number density ρ (top) and the charge
density ρq (bottom) around a lysozyme protein in water, as obtained
from histograms (left) or force sampling (right). The green surfarces
bound the region where the number density is greater than 0.1 Å−3,
while the blue (negative) and red (positive) surfaces bound regions
where the magnitude of the charge density exceeds ±0.1 e Å−3.
Reprinted from J. Chem. Phys. 2019, 151, 064124, with the per-
mission of AIP Publishing.

As a final illustration on a more complex system, Figure 5,
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also from Ref. 32, compares the number and charge densities
around a small protein, lysozyme. Following Eq. 10, the posi-
tion and charge qi of each atom is considered when computing
the gradient, but the relevant force is the total force acting on
the rigid molecule. The advantage of force sampling over his-
tograms is again clearly visible in the reduction of the noise
away from the solute, as well as in a better resolved solvation
structure near its surface. Among other features, the positive
and negative lobes of the charge density allow one to identify
molecules donating or receiving H-bonds.

IV. RADIAL DISTRIBUTION FUNCTION

While the previous section only considered one-body den-
sities, other statistical tools exist to quantify the structure of
a system. We now turn to the force sampling approach to ra-
dial distribution functions, which reflect correlations between
particles.

A. Virial-like estimator

Inspired by ideas for the electron density in Quantum
Monte Carlo24–26, Borgis et al.29 proposed an expression al-
ternative to the definition Eq. 3. Starting from the latter, they
used Poisson’s equation to rewrite δ (r) =− 1

4π
∆

1
r , with ∆ the

Laplace operator. Integration by parts in the canonical aver-
age, symmetrization beteween particles i and j, and finally
Gauss’s law then lead to:

gab(r) = 1+
β

4π

V
NaNb

〈
Na

∑
i=1

Nb

∑
′

j=1

1
2
(fi− f j) ·

r j− ri

r3
i j

H(ri j− r)

〉
(12)

with H the Heaviside function. The origin of the forces fi and
f j acting on the particles is again the gradient of the Boltz-
mann weight with respect to the particles positions, which
comes from integrating by parts. This expression displays nat-
urally the separation between the ideal gas contribution, which
as described in Section II A is detrimental to the convergence
of the histogram-based estimator, and a virial-like correction
arising from interactions between particles and external poten-
tials. It is worth emphasizing here that the above expression
holds even with many-body potentials, since no assumption of
pairwise additivity was needed in the derivation.

One can further note that it involves a Heaviside instead of
a Dirac delta in Eq. 3. This results from the integration by
parts in the canonical average, which can be seen as a way
to “integrate the gradient” of g analytically, and has impor-
tant practical consequences. While in the histogram approach
each pair only contributes to the estimate of the rdf in the bin
corresponding to r = ri j and symmetrically the estimate at r
only benefits from pairs such that ri j = r, with Eq. 12 each
pair contributes to the estimate of the rdf for all values r ≤ ri j
and symmetrically the estimate of g(r) benefits from all pairs
separated by a distance larger than r. In addition, bins are not

necessary anymore and one can comptute the rdf with arbi-
trary resolution in r.
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canonical ensemble. The pair distribution function (or ra-
dial distribution function, RDF) between molecules of type
a and b is defined as

gab(r) = ϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (1)

where ϵab = (1 − 1
2δab) V

NaNb
, rij = rj − ri , and rij = |rij|.

The prime in the second sum indicates that i = j should
be excluded in the case a = b. This function is generally
computed through histograms with bins of finite width, $r,
replacing the δ-function by 1

$r
h$r (r), where h$r(r) is the

characteristic function equal to 1 between r and r + $r
and 0 otherwise. This statistical estimation is of infinite
variance as $r → 0 since the instantaneous density in each
bead oscillates between 0 and O(1/4πr2$r).

Accounting for the rotational invariance of Equation
(1), the pair distribution can be also expressed as

gab(r) = ϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (2)

with ! = r/r . Following the ideas of Assaraf et al. for
electron densities [14,15], use can be made of the Poisson
equality to replace the 3D δ-function

δ(r − rij) = − 1
4π

$ri

1∣∣∣r − rij
∣∣∣
. (3)

Insertion of the Laplacian with respect to either ri or rj in
the canonical average and integration by part yields (after
symmetrisation)

hab(r) = −βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

rij − r

|rij − r|3
· 1

2
(Fj − Fi)

〉

,

(4)
where hab = gab − 1.

Using the Gauss theorem for the electric field cre-
ated by a uniformly charged sphere of radius r at the
location rij,

∫
d!

rij − r!

|rij − r!|3
=

rij
r3
ij

H (rij − r), (5)

with H the Heaviside function, we get from Equation (4)

hab(r) = −βϵab

4π

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
r3
ij

H (rij − r)

〉

.

(6)

This is a key formula of this work. Compared to the standard
histogram procedure, it now involves the force acting on the
particles in addition to their positions. It also implies a quite

Figure 1. Radial distribution function obtained for a single equi-
librated configuration of a Lennard-Jones liquid composed of 864
particles using either the force approach, Equation (6), or the
standard histogram technique, with a grid spacing $r = 0.005σ .
The dashed blue line indicates the converged result after 10,000
simulation steps.

different numerical procedure. Here, for each configuration,
every particle pair contributes to all distances r < rij instead
of just to r = rij. Furthermore, application of the formula
requires a pre-defined grid but does not necessarily imply
the limit of infinitely small grid separation, $r → 0. The
only requirement is that the chosen grid, not necessarily
regular, is adapted to cope with the variations of the pair
distribution at all distances.

The new procedure is illustrated in Figure 1 for the
RDF, g(r), of a pure Lennard-Jones fluid composed of
864 particles at a reduced density ρ∗ = 0.8 and reduced
temperature T ∗ = 1.35, computed by molecular dynamics
simulation. We have displayed the RDF computed from one
single equilibrated configuration using either histograms or
Equation (6) and we compare those ‘instantaneous’ curves
to the converged result after 10,000 time steps. In both ap-
proaches, we used the same regular grid with $r = 0.005σ .
It can be seen that the curve obtained by Equation (6) is al-
ready very smooth and quite close to the final converged
result. The histogram curve does contain the converged one
within its fluctuations but appears very noisy. This is further
illustrated in Figure 2 where we plot the variances

v(r) = 1
T

∑

t

gt (r)2 −
(

1
T

∑

t

gt (r)

)2

(7)

obtained after T = 1000 simulation steps; gt(r) is the ‘instan-
taneous’ pair distribution function measured at step num-
ber t. It can be verified that the variance measured with the
‘force’ approach is indeed much reduced with respect to the
histogram approach and appears independent of the chosen
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Figure 2. Variance on the value of the radial distribution function
depicted in Figure 1 after 1000 simulation steps using either the
force approach, Equation (6), or the standard histogram technique,
with a grid spacing !r = 0.01σ (black and blue lines, respectively)
or !r = 0.005σ (cyan and red lines, respectively). The black and
cyan lines appear superimposed, as they should.

Figure 3. Oxygen–oxygen radial distribution function averaged
over 100 configurations extracted from a DFT–MD trajectory with
128 water molecules at ambient liquid conditions. The dashed
blue line indicates the converged result obtained by averaging
over 36,800 configurations.

grid size; the histogram method leads to a variance that is
inversely proportional to !r.

In Figure 3 is displayed the oxygen–oxygen radial dis-
tribution obtained from 100 configurations of a density-
functional-theory molecular dynamics (DFT-MD) simula-
tion of 128 water molecules at ambient thermodynamic
conditions with the Becke-Lee-Yang-Parr functional, after
preliminary equilibration. It can be seen that, even for the
relatively fine grid chosen and with a very limited number
of steps, the ‘force RDF’ is very smooth. It should also be
noted that, even if the agreement with the converged RDF is
already and overall very good after such a short trajectory,
one observes slight discrepancies, in particular in the height
of the first peak. At this stage, the force method is able to

improve the variance of the RDF, but does not correct for
the lack of statistics. Nonetheless, Figure 3 is meant to show
that it is certainly in the field of ab initio studies, where the
generation of the trajectories themselves is computation-
ally very expensive, that the force method described here to
compute the RDFs reveals its full potential, given that the
forces on the nuclei at each time step are readily available
from the simulations.

In order to gain some physical insight into the above
formula, one can write

H (rij − r) =
∫ ∞

r

dr ′δ(r ′ − rij). (8)

Replacing into Equation (6) and inverting integral and
canonical average, we get

ρbhab(r) = −β

∫ ∞

r

dr ′F (r ′) (9)

with the mean force density defined by

F (r) = ρbϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
rij

δ(r − rij)

〉

.

(10)

We are back to a histogram procedure, but for F(r) instead
of gab(r) directly.

Denoting by F̄ (r) the constrained (or conditional) mean
force at a given distance, F̄ (r) = F (r)/ρbgab(r), we get by
differentiation of Equation (9), and division by gab(r),

1
gab(r)

dgab

dr
= F̄ (r) = −β

dwab(r)
dr

, (11)

which is the definition of the potential of mean force (PMF),
gab(r) = exp (−βwab(r)). A fundamental difference of the
present approach with respect to standard PMF calculations
is the use of the force density F(r) instead of the mean
force F̄ (r). Equation (9) is thus reminiscent of the usual
PMF formula but not equivalent to it in practice. Here, the
integration of the force density F(r) yields gab(r) directly
rather than its logarithm, and this quantity is computed in
its integrality during the simulation, rather than step by
step using constraints or restraints on the a − b distance
as in usual PMF calculations. Note also that Equations (6),
(9) and (10) are rigorously equivalent only in the limit of
infinitely small grid size.

We note in passing that after Equation (4), a second
integration by part can be performed, yielding

ρbhab(r) = βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

1
2

( (i + (j )
1

|r − rij|

〉

(12)
with (i = βF2

i − !ri
U .
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canonical ensemble. The pair distribution function (or ra-
dial distribution function, RDF) between molecules of type
a and b is defined as

gab(r) = ϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (1)

where ϵab = (1 − 1
2δab) V

NaNb
, rij = rj − ri , and rij = |rij|.

The prime in the second sum indicates that i = j should
be excluded in the case a = b. This function is generally
computed through histograms with bins of finite width, $r,
replacing the δ-function by 1

$r
h$r (r), where h$r(r) is the

characteristic function equal to 1 between r and r + $r
and 0 otherwise. This statistical estimation is of infinite
variance as $r → 0 since the instantaneous density in each
bead oscillates between 0 and O(1/4πr2$r).

Accounting for the rotational invariance of Equation
(1), the pair distribution can be also expressed as

gab(r) = ϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (2)

with ! = r/r . Following the ideas of Assaraf et al. for
electron densities [14,15], use can be made of the Poisson
equality to replace the 3D δ-function

δ(r − rij) = − 1
4π

$ri

1∣∣∣r − rij
∣∣∣
. (3)

Insertion of the Laplacian with respect to either ri or rj in
the canonical average and integration by part yields (after
symmetrisation)

hab(r) = −βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

rij − r

|rij − r|3
· 1

2
(Fj − Fi)

〉

,

(4)
where hab = gab − 1.

Using the Gauss theorem for the electric field cre-
ated by a uniformly charged sphere of radius r at the
location rij,

∫
d!

rij − r!

|rij − r!|3
=

rij
r3
ij

H (rij − r), (5)

with H the Heaviside function, we get from Equation (4)

hab(r) = −βϵab

4π

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
r3
ij

H (rij − r)

〉

.

(6)

This is a key formula of this work. Compared to the standard
histogram procedure, it now involves the force acting on the
particles in addition to their positions. It also implies a quite

Figure 1. Radial distribution function obtained for a single equi-
librated configuration of a Lennard-Jones liquid composed of 864
particles using either the force approach, Equation (6), or the
standard histogram technique, with a grid spacing $r = 0.005σ .
The dashed blue line indicates the converged result after 10,000
simulation steps.

different numerical procedure. Here, for each configuration,
every particle pair contributes to all distances r < rij instead
of just to r = rij. Furthermore, application of the formula
requires a pre-defined grid but does not necessarily imply
the limit of infinitely small grid separation, $r → 0. The
only requirement is that the chosen grid, not necessarily
regular, is adapted to cope with the variations of the pair
distribution at all distances.

The new procedure is illustrated in Figure 1 for the
RDF, g(r), of a pure Lennard-Jones fluid composed of
864 particles at a reduced density ρ∗ = 0.8 and reduced
temperature T ∗ = 1.35, computed by molecular dynamics
simulation. We have displayed the RDF computed from one
single equilibrated configuration using either histograms or
Equation (6) and we compare those ‘instantaneous’ curves
to the converged result after 10,000 time steps. In both ap-
proaches, we used the same regular grid with $r = 0.005σ .
It can be seen that the curve obtained by Equation (6) is al-
ready very smooth and quite close to the final converged
result. The histogram curve does contain the converged one
within its fluctuations but appears very noisy. This is further
illustrated in Figure 2 where we plot the variances

v(r) = 1
T

∑

t

gt (r)2 −
(

1
T

∑

t

gt (r)

)2

(7)

obtained after T = 1000 simulation steps; gt(r) is the ‘instan-
taneous’ pair distribution function measured at step num-
ber t. It can be verified that the variance measured with the
‘force’ approach is indeed much reduced with respect to the
histogram approach and appears independent of the chosen
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Figure 2. Variance on the value of the radial distribution function
depicted in Figure 1 after 1000 simulation steps using either the
force approach, Equation (6), or the standard histogram technique,
with a grid spacing !r = 0.01σ (black and blue lines, respectively)
or !r = 0.005σ (cyan and red lines, respectively). The black and
cyan lines appear superimposed, as they should.

Figure 3. Oxygen–oxygen radial distribution function averaged
over 100 configurations extracted from a DFT–MD trajectory with
128 water molecules at ambient liquid conditions. The dashed
blue line indicates the converged result obtained by averaging
over 36,800 configurations.

grid size; the histogram method leads to a variance that is
inversely proportional to !r.

In Figure 3 is displayed the oxygen–oxygen radial dis-
tribution obtained from 100 configurations of a density-
functional-theory molecular dynamics (DFT-MD) simula-
tion of 128 water molecules at ambient thermodynamic
conditions with the Becke-Lee-Yang-Parr functional, after
preliminary equilibration. It can be seen that, even for the
relatively fine grid chosen and with a very limited number
of steps, the ‘force RDF’ is very smooth. It should also be
noted that, even if the agreement with the converged RDF is
already and overall very good after such a short trajectory,
one observes slight discrepancies, in particular in the height
of the first peak. At this stage, the force method is able to

improve the variance of the RDF, but does not correct for
the lack of statistics. Nonetheless, Figure 3 is meant to show
that it is certainly in the field of ab initio studies, where the
generation of the trajectories themselves is computation-
ally very expensive, that the force method described here to
compute the RDFs reveals its full potential, given that the
forces on the nuclei at each time step are readily available
from the simulations.

In order to gain some physical insight into the above
formula, one can write

H (rij − r) =
∫ ∞

r

dr ′δ(r ′ − rij). (8)

Replacing into Equation (6) and inverting integral and
canonical average, we get

ρbhab(r) = −β

∫ ∞

r

dr ′F (r ′) (9)

with the mean force density defined by

F (r) = ρbϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
rij

δ(r − rij)

〉

.

(10)

We are back to a histogram procedure, but for F(r) instead
of gab(r) directly.

Denoting by F̄ (r) the constrained (or conditional) mean
force at a given distance, F̄ (r) = F (r)/ρbgab(r), we get by
differentiation of Equation (9), and division by gab(r),

1
gab(r)

dgab

dr
= F̄ (r) = −β

dwab(r)
dr

, (11)

which is the definition of the potential of mean force (PMF),
gab(r) = exp (−βwab(r)). A fundamental difference of the
present approach with respect to standard PMF calculations
is the use of the force density F(r) instead of the mean
force F̄ (r). Equation (9) is thus reminiscent of the usual
PMF formula but not equivalent to it in practice. Here, the
integration of the force density F(r) yields gab(r) directly
rather than its logarithm, and this quantity is computed in
its integrality during the simulation, rather than step by
step using constraints or restraints on the a − b distance
as in usual PMF calculations. Note also that Equations (6),
(9) and (10) are rigorously equivalent only in the limit of
infinitely small grid size.

We note in passing that after Equation (4), a second
integration by part can be performed, yielding

ρbhab(r) = βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

1
2

( (i + (j )
1

|r − rij|

〉

(12)
with (i = βF2

i − !ri
U .
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(a) 

Figure 6. Radial distribution function (rdf) for a Lennard-Jones (LJ)
fluid at reduced density ρ∗ = 0.8 and reduced density T ∗ = 1.35,
from a simulation with 864 particles. (a) rdf obtained from a sin-
gle microscopic configuration with histograms (red) with a small bin
width ∆r = 0.005σ , with σ the LJ diameter, and with force sampling
(black); the latter is indistinguishable from the converged result with
histograms averaged over 104 configurations (blue). (b) Variance
of the estimators, for each distance r, over 103 configurations: his-
tograms with ∆r = 0.005σ (red) and ∆r = 0.01σ (blue), and force
sampling (black). Reproduced from Borgis et al., Molecular Physics
2013, 111, 3486, with permission of Taylor & Francis Ltd.

The benefit of the force sampling approach to estimate
rdfs is illustrated in Figure 6, which reproduces results from
Ref. 29 for a Lennard-Jones fluid. Panel 6a shows that the
estimate obtained on a single configuration with histograms
(using a very small bin width) is much noisier than with
force sampling, the latter being indistinguishable from the
converged histogram-based estimate from 104 configurations.
Panel 6b then shows the variance of the estimator over Ncon f =

103 configurations as a function of r, defined by

v(r) =
1

Ncon f

Ncon f

∑
k=1

gk(r)2−
(

1
Ncon f

Ncon f

∑
k=1

gk(r)

)2

(13)

The shape of v(r) is the same for all methods, in particu-
lar it vanishes inside the core (where g should vanish) and
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at long distance (where g ≈ 1). However, the variance of
the force-based estimator is significantly reduced compared
to histograms, even more so that the bin size is small for the
latter.

B. Alternative derivations and expressions

As mentioned earlier, Eq. 12 can be seen as an integration
of g′(r) = dg/dr from r → ∞ where g = 1, leading to two
difficulties. Firstly, in a finite box the limiting value of g is
never reached exactly. In fact for simulations in the canonical
ensemble, the plateau value differs from 1 by a O(N−1) cor-
rection36,37. Secondly, this expression does not guarantee a
priori that g will vanish inside the core, which is the case for
r = 0 only if

β

4π

V
NaNb

〈
Na

∑
i=1

Nb

∑
′

j=1

1
2
(fi− f j) ·

r j− ri

r3
i j

〉
=−1 . (14)

In practice, this is almost the case (hence it is hard to see the
small but finite value in Figure 6a), but only approximately.
For systems with sufficiently hard repulsion at short range,
one can enforce that g(0) = 0 and integrate from r = 0 to ob-
tain an alternative expression

gab(r) =
β

4π

V
NaNb

〈
Na

∑
i=1

Nb

∑
′

j=1

1
2
(fi− f j) ·

r j− ri

r3
i j

H(r− ri j)

〉
.

(15)

A similar expression was obtained for the two-body density by
Purohit et al. using mapped averaging (already discussed for
the one-body density in Section III)31. Compared to Eq. 12,
each pair now contributes to the estimate of the rdf for all
values r ≥ ri j and symmetrically the estimate of g(r) benefits
from all pairs separated by a distance smaller than r.

It is worth noting that another similar expression had in fact
been introduced earlier by Adib and Jarzynski28 as an unbi-
ased estimator first for the density around a fixed solute, then
for the rdf. Starting from the expression of a local (surface)
quantity in terms of a volume average, using Gauss’s theorem
and introducing an appropriate vector field u, they obtained an
expression of the rdf (Eq. 20 of Ref. 28) valid for pairwise ad-
ditive potentials – while the above expressions do not rely on
such an approximation and can be used also with many-body
potentials such as in ab initio simulations. The vector field
u introduced in this work is similar to the ∇

1
r = − r

r3 in the
above expressions, but also accounts for the possible presence
of a hard sphere solute at the origin and introduces the largest
sphere that fits in the simulation box (Rmax = L/2 with L the
box length). It might therefore be useful to consider a similar
quantity in the derivation of Ref. 29.

As a final remark on rdfs, we also mention that the idea of
integrating by parts in the canonical average can be pushed
even further. In the same study29, Borgis et al. obtained by
performing a second integration by parts another expression

of the rdf:

gab(r) = 1+
β

4π

V
NaNb

〈
Na

∑
i=1

Nb

∑
′

j=1

1
2
(Φi +Φ j)min(

1
r
,

1
ri j

)

〉
(16)

with Φi = β f2
i −∆riU . Unlike Eq. 12 in which only the force

enters, this one requires the Laplacian of the energy (trace of
the force gradient) with respect to ri, which is usually not
computed in molecular dynamics simulations. In addition,
preliminary numerical tests in this study proved disappoint-
ing. However, this illustrates the fact that there are many pos-
sibilities to obtain alternative estimators (even though not al-
ways practically useful, at least immediately).

V. LOCAL TRANSPORT COEFFICIENTS

Beyond structural properties, the force sampling strategy
has also been explored recently for the computation of local
transport coefficients in confined fluids33, such as the system
illustrated in Figure 7a. Due to the external potential from
the walls, the fluid adopts a layered structure, shown in Fig-
ure 7b. In the presence of an external perturbation parallel
to the walls, such as a pressure gradient −∇P or a chemical
potential gradient −∇µ (or an electric field −∇ψ , e.g. for
an electrolyte solution) the various components of the fluid
will respond differently and the local steady-state flux of each
species will depend on the type of perturbation. For suffi-
ciently small perturbations, the response is linear and fully
characterized by a mobility matrix M (z) relating local fluxes
to the external forces. For the binary fluid of Figure 7, this can
be written as(

q(z)
jA(z)− c∗Aq(z)

)
= M (z)

(
−∇P
−∇µ

)
, (17)

where q and jA are the local volume fluxes and solute fluxes,
respectively, and c∗A is a reference concentration related to
the composition in the bulk part of the fluid. For example,
the element M11(z) of this 2× 2 matrix predicts the flux of
all species under a pressure gradient (Poiseuille flow), while
M12(z) corresponds to diffusio-osmosis.

A. Mobility profiles from equilibrium molecular dynamics

For illustration purposes, we will only consider here
M11(z), but the other cases can be found in Ref. 33. Using
linear response theory, it is possible to derive expressions of
the mobility profiles Mi j(z) as integrals of correlation func-
tions (Green-Kubo approach, GK)

M GK
11 (z) =

V
kBT

∫ +∞

0
dt CqQ(t,z) , (18)

with CqQ(t,z) = 〈q(z, t)Q(0)〉 is a time-correlation function
(for each z) between the local volume flux

q(z, t) =
H
N

N

∑
i=1

vx,i(t)δ (zi(t)− z) , (19)
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a) 

b) 

x 

z 

H 

S S 

(b) 

(a) 

(c) 

Figure 7. (a) Binary Lennard-Jones (LJ) fluid confined between walls
consisting of LJ particles. The solute A (black) and solvent B (red)
are identical but the solute has a stronger interaction with the wall.
(b) Density profiles; the position and density are given in units σ and
σ−3, respectively, with σ the LJ diameter common to all species.
(c) Mobility profile M11(z) describing the linear response of the to-
tal flux to a pressure gradient (see Eq. 17), obtained from equilib-
rium simulations using force sampling with Green-Kubo (GK) and
Einstein-Helfand (EH), as well as from non-equilibrium molecular
dynamics (NEMD). The inset shows that M11(z)/ρ(z) exhibits the
parabolic shape expected from continuum hydrodynamics for the ve-
locity profile in this case (Poiseuille flow). Adapted from J. Chem.
Phys. 2020, 153, 044125 , with the permission of AIP Publishing.

with vx,i the x-component of the velocity of particle i, N =
NA +NB the total number of particles and H the distance be-
tween the wall, and the global flux averaged over the fluid slab

Q(t) =
1
H

∫ H

0
dzq(z, t) =

1
N

N

∑
i=1

vx,i(t) . (20)

Alternatively, the integrals can be computed as (Einstein-
Helfand approach, EH)

M EH
11 (z) =

V
kBT

lim
t→+∞

〈∫ t
0 dt ′′ q(z, t ′′)

∫ t
0 dt ′Q(t ′)

〉
2t

. (21)

B. Force sampling for time correlation functions

Since the time correlations are defined as canonical aver-
ages of observables involving a Dirac delta, one can follow
the ideas developed for static properties. From the definition

CqQ(t,z) =

〈
Q(0)

H
N

N

∑
i=1

vx,i(t)δ (zi(t)− z)

〉
, (22)

one can introduce a force-weighted observable,

FqQ(t,z) =

〈
Q(0)

H
N

N

∑
i=1

vx,i(t) fz,i(t)δ (zi(t)− z)

〉
, (23)

and form, in the spirit of Eq. 7, the mixed estimator

C̃qQ(t,z) =
∫ H

0
dz′
[
wN(z′− z)CqQ(t,z′)−w f (z′− z)βFqQ(t,z′)

]
=(wN ∗CqQ)(t,z)+β (w f ∗FqQ)(t,z) , (24)

where the convolution products are in space only, not time. A
similar construction can be followed for the EH approach.

Figure 7c compares the predictions from equilibrium MD
simulations with the GK and EH approaches, both using the
mixed estimators introduced above, for the M11(z) element of
the mobility matrix, corresponding to a Poiseuille flow. The
results are found to be in excellent agreement with the more
direct non-equilibrium MD approach. The inset further shows
that when considering the velocity profile, i.e. the flux divided
by the density, one recovers the parabolic shape expected from
continuum hydrodynamics. The fact that the NEMD results
are recovered validates the relevance of the approach. This
is particularly important because the derivation leading to the
exact result for the density is complicated for time-correlation
functions by the fact that observables are considered at two
times: The canonical average corresponds to points in phase
space at the initial time 0, where the global flux is also con-
sidered, while the local fluxes are computed from the po-
sitions and velocities at subsequent time t (it is possible to
write a symmetric expression). The integration by parts over
the initial positions zi(0) then introduces an additional term,〈

Q(0)H
N ∑

N
i=1

∂vx,i(t)
∂ zi(0)

w f (zi− z)
〉

, which involves the derivative
of the x component of the velocity at time t with respect to the
initial position in the z direction. Although this term might not
vanish in principle, it would be very difficult to evaluate from
the trajectories. It was found numerically that it was sufficient
to neglect it, but a formal derivation would be desirable.

The improvement of the forced-based estimator compared
to histograms is discussed in detail in Ref. 33, together with
results for the other elements of the mobility matrix. We
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only emphasize here that such an improvement is essential,
because determining the mobility profiles is computationally
much more demanding than static properties: It requires con-
verging, for all positions, the time correlation functions with
sufficient accuracy to compute the integral in Eq. 18 (GK) or
the slope in Eq. 21 (EH). To conclude this discussion of local
transport properties, we note that for the determination of a
single mobility profile NEMD remains more efficient than the
above equilibrium MD route. However, the latter can provide
all elements of the mobility matrix simultaneously, whereas
NEMD requires separate simulations with the different pertur-
bations, and to consider different magnitudes in order to check
the validity of the linear response. Therefore, one can expect
that the equilibrium approach will be particularly helpful for
multicomponent systems, e.g. for the response of electrolyte
solutions to pressure, chemical potential or electric potential
gradients (hence a 3×3 mobility matrix). The force based es-
timator, with a reduced variance compared to histograms, will
contribute to decreasing the number and length of trajectories
necessary to obtain reliable results.

VI. DISCUSSION

In the previous sections, we have mentioned several ap-
proaches arriving from different perspectives to similar ex-
pressions for estimators with a reduced variance compared
to histograms, which involve the forces acting on the parti-
cles. The examples making use of the Poisson equation to
rewrite the Dirac delta and/or using Gauss’s theorem involve
integration by parts in the definitions as canonical averages,
very much in the spirit of the Yvon theorem for averages of
the derivative of an arbitrary function of the particle coordi-
nates A(rN) with respect to the position zi of one particle1:〈

∂A(rN)

∂ zi

〉
= β

〈
A(rN)

∂U(rN)

∂ zi

〉
=−β

〈
A(rN) fz,i

〉
.

(25)

They are also directly related to the notion of potential of
mean force (PMF), as discussed for the rdf in Ref. 29 or the
derivation of Ref. 32 for the density gradient in the presence
of constraints, which makes use of the fundamental result of
Ciccotti et al. for the mean force associated with generic col-
lective variables38, by choosing the 3 spatial coordinates as
collective variables. The same strategy could be used to ex-
tend Eq. 12 in the presence of constraints, using the distance
between particles as collective variable. One should keep in
mind, however, that the force density F(r) = kBT ∇ρ(r) (see
Eq. 4) and the mean force, derived from the PMF, differ by a
factor ρ(r). A more detailed discussion of this difference and
the practical consequences for their computation in molecular
simulations, in the case of the rdf, can be found in Ref. 29.

The separation between the ideal gas reference and the con-
tribution from interactions and external potentials is natural in
the framework of mapped averaging, which provides the ex-
act correction to a theory (e.g. uniform density). This idea
of using a reference distribution, leading to estimators involv-
ing forces, had also been proposed by Basner and Jarzynski

to compute binless PMFs, with an illustration on an angular
distribution39, or Zhang and Ma to compute rdfs or angular
distributions40. One could envision for example to apply it
also in the case of the local transport properties illustrated in
Section V, using the theoretical prediction from continuum
hydrodynamics as reference.

Since in molecular dynamics simulations the forces are
computed to generate the trajectory, the force-based estima-
tor does not entail a larger computational cost compared to
histograms. As a result, one can only recommend the use
force-based estimators to compute local densities or radial dis-
tribution functions. For Monte Carlo, the additional cost of
computing the forces in addition to the energy should be com-
pared to that of generating enough configurations to achieve
the same variance reduction with histograms, which depends
in particular on the bin width. Another issue related to the
computation of forces is the case of particles described by
hard cores. Indeed, the expressions reported here cannot be
used directly. However, the effect of excluded volume can
be treated separately from other interactions, which allows to
apply the ideas of force sampling even in this case28,35.

VII. SUMMARY AND FUTURE CHALLENGES

Even though the determination of local properties, such as
densities or radial distribution functions, remains one of the
most standard goals of molecular simulation, it seems that
the community still essentially relies on histogram-based al-
gorithms to estimate them. The main objective of the present
work was to highlight recent developments of alternative ap-
proaches leading, from different perspectives, to estimators
with a reduced variance compared to conventional binning.
They all make use of the force acting on the particles, in addi-
tion to their position, and allow to focus on the non-trivial part
of the problem in order to alleviate (or even remove in some
cases) the catastrophic behaviour of histograms as the bin size
decreases. The corresponding computational cost is negligi-
ble for molecular dynamics simulations, since the forces are
already computed to generate the configurations, and the ben-
efit of reduced-variance estimators will be even larger when
the cost of generating the latter is high, in particular with ab
initio simulations. The force sampling approach may result
in spurious residual non-zero values of the density in regions
where no particles are present, but strategies are available to
mitigate this artefact.

Up to now, the variance reduction via force sampling has
mainly been demonstrated numerically – even though the
methods themselves were of course derived as rigorously as
possible and good reasons were proposed to explain the obser-
vations. Since variance reduction is a field of research by it-
self, computational physicists, chemists and biologists would
certainly benefit from insights from the Mathematics commu-
nity in order to obtain analytical predictions of the gain to
be expected with respect to binning, in particular the scaling
with the bin size (when the force density is first sampled on a
grid, then integrated numerically) and the number of config-
urations. Other directions could include improved or optimal
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methods to “integrate the gradient”, in order to reconstruct the
density from the force density, in particular in 3D, or the for-
mal derivations in the case of transport (see the discussion of
the “missing term” in Section V), including in the presence of
constraints for rigid bodies41.

The potential of these force sampling strategies could also
be investigated for other thermodynamic conditions, e.g. the
isothermal-isobaric (NPT ) or the grand-canonical (µV T ) en-
sembles, or for quantities derived from the ones considered
here, e.g. to improve the convergence of Kirkwood-Buff in-
tegrals, which involve rdfs42,43. Other local properties might
also benefit from the ideas behind force sampling, in particu-
lar the local stress tensor44,45. However, one should keep in
mind that this might require quantities that are not computed
in typical simulations, such as the force gradient, and that the
additional computational cost should not exceed that of reduc-
ing the variance by the same amount using histograms simply
by generating more configurations. Another possible direction
for the short-term development of force sampling, in particu-
lar following the approach of Ref. 32 based on the results of
Ref. 38, is the extension to non-cartesian coordinates and/or
multidimensional collective variables, which can be used to
characterize the 3D structure of liquids (see e.g. Ref. 46 for a
recent example).

Finally, it would be interesting to explore the connections
with other simulation contexts where the strategies discussed
in the present work could also provide alternative expressions
for observables of interest. For example, improved estimators
involving the force have already been proposed in path inte-
gral molecular dynamics to estimate thermodynamic quanti-
ties, based on a virial form (see e.g. Refs. 47,48). In the other
direction, the ability to reduce errors in the computation of
densities/PMFs would also be useful for coarse-graning strate-
gies based e.g. on Boltzmann inversion22 or on the relative
entropy23, or for simulations with adaptive resolution intro-
ducing a thermodynamic force density in the hybrid region49.
As for dynamic properties, beyond the equilibrium route pre-
sented in Section V, it could be useful to extend the force-
sampling approach to non-equilibrium steady state, as sug-
gested in Ref. 30, or even to path sampling methods50. We
hope that the present perspective will motivate others to em-
bark on this promising path.
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canonical ensemble. The pair distribution function (or ra-
dial distribution function, RDF) between molecules of type
a and b is defined as

gab(r) = ϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (1)

where ϵab = (1 − 1
2δab) V

NaNb
, rij = rj − ri , and rij = |rij|.

The prime in the second sum indicates that i = j should
be excluded in the case a = b. This function is generally
computed through histograms with bins of finite width, $r,
replacing the δ-function by 1

$r
h$r (r), where h$r(r) is the

characteristic function equal to 1 between r and r + $r
and 0 otherwise. This statistical estimation is of infinite
variance as $r → 0 since the instantaneous density in each
bead oscillates between 0 and O(1/4πr2$r).

Accounting for the rotational invariance of Equation
(1), the pair distribution can be also expressed as

gab(r) = ϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (2)

with ! = r/r . Following the ideas of Assaraf et al. for
electron densities [14,15], use can be made of the Poisson
equality to replace the 3D δ-function

δ(r − rij) = − 1
4π

$ri

1∣∣∣r − rij
∣∣∣
. (3)

Insertion of the Laplacian with respect to either ri or rj in
the canonical average and integration by part yields (after
symmetrisation)

hab(r) = −βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

rij − r

|rij − r|3
· 1

2
(Fj − Fi)

〉

,

(4)
where hab = gab − 1.

Using the Gauss theorem for the electric field cre-
ated by a uniformly charged sphere of radius r at the
location rij,

∫
d!

rij − r!

|rij − r!|3
=

rij
r3
ij

H (rij − r), (5)

with H the Heaviside function, we get from Equation (4)

hab(r) = −βϵab

4π

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
r3
ij

H (rij − r)

〉

.

(6)

This is a key formula of this work. Compared to the standard
histogram procedure, it now involves the force acting on the
particles in addition to their positions. It also implies a quite

Figure 1. Radial distribution function obtained for a single equi-
librated configuration of a Lennard-Jones liquid composed of 864
particles using either the force approach, Equation (6), or the
standard histogram technique, with a grid spacing $r = 0.005σ .
The dashed blue line indicates the converged result after 10,000
simulation steps.

different numerical procedure. Here, for each configuration,
every particle pair contributes to all distances r < rij instead
of just to r = rij. Furthermore, application of the formula
requires a pre-defined grid but does not necessarily imply
the limit of infinitely small grid separation, $r → 0. The
only requirement is that the chosen grid, not necessarily
regular, is adapted to cope with the variations of the pair
distribution at all distances.

The new procedure is illustrated in Figure 1 for the
RDF, g(r), of a pure Lennard-Jones fluid composed of
864 particles at a reduced density ρ∗ = 0.8 and reduced
temperature T ∗ = 1.35, computed by molecular dynamics
simulation. We have displayed the RDF computed from one
single equilibrated configuration using either histograms or
Equation (6) and we compare those ‘instantaneous’ curves
to the converged result after 10,000 time steps. In both ap-
proaches, we used the same regular grid with $r = 0.005σ .
It can be seen that the curve obtained by Equation (6) is al-
ready very smooth and quite close to the final converged
result. The histogram curve does contain the converged one
within its fluctuations but appears very noisy. This is further
illustrated in Figure 2 where we plot the variances

v(r) = 1
T

∑

t

gt (r)2 −
(

1
T

∑

t

gt (r)

)2

(7)

obtained after T = 1000 simulation steps; gt(r) is the ‘instan-
taneous’ pair distribution function measured at step num-
ber t. It can be verified that the variance measured with the
‘force’ approach is indeed much reduced with respect to the
histogram approach and appears independent of the chosen
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Figure 2. Variance on the value of the radial distribution function
depicted in Figure 1 after 1000 simulation steps using either the
force approach, Equation (6), or the standard histogram technique,
with a grid spacing !r = 0.01σ (black and blue lines, respectively)
or !r = 0.005σ (cyan and red lines, respectively). The black and
cyan lines appear superimposed, as they should.

Figure 3. Oxygen–oxygen radial distribution function averaged
over 100 configurations extracted from a DFT–MD trajectory with
128 water molecules at ambient liquid conditions. The dashed
blue line indicates the converged result obtained by averaging
over 36,800 configurations.

grid size; the histogram method leads to a variance that is
inversely proportional to !r.

In Figure 3 is displayed the oxygen–oxygen radial dis-
tribution obtained from 100 configurations of a density-
functional-theory molecular dynamics (DFT-MD) simula-
tion of 128 water molecules at ambient thermodynamic
conditions with the Becke-Lee-Yang-Parr functional, after
preliminary equilibration. It can be seen that, even for the
relatively fine grid chosen and with a very limited number
of steps, the ‘force RDF’ is very smooth. It should also be
noted that, even if the agreement with the converged RDF is
already and overall very good after such a short trajectory,
one observes slight discrepancies, in particular in the height
of the first peak. At this stage, the force method is able to

improve the variance of the RDF, but does not correct for
the lack of statistics. Nonetheless, Figure 3 is meant to show
that it is certainly in the field of ab initio studies, where the
generation of the trajectories themselves is computation-
ally very expensive, that the force method described here to
compute the RDFs reveals its full potential, given that the
forces on the nuclei at each time step are readily available
from the simulations.

In order to gain some physical insight into the above
formula, one can write

H (rij − r) =
∫ ∞

r

dr ′δ(r ′ − rij). (8)

Replacing into Equation (6) and inverting integral and
canonical average, we get

ρbhab(r) = −β

∫ ∞

r

dr ′F (r ′) (9)

with the mean force density defined by

F (r) = ρbϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
rij

δ(r − rij)

〉

.

(10)

We are back to a histogram procedure, but for F(r) instead
of gab(r) directly.

Denoting by F̄ (r) the constrained (or conditional) mean
force at a given distance, F̄ (r) = F (r)/ρbgab(r), we get by
differentiation of Equation (9), and division by gab(r),

1
gab(r)

dgab

dr
= F̄ (r) = −β

dwab(r)
dr

, (11)

which is the definition of the potential of mean force (PMF),
gab(r) = exp (−βwab(r)). A fundamental difference of the
present approach with respect to standard PMF calculations
is the use of the force density F(r) instead of the mean
force F̄ (r). Equation (9) is thus reminiscent of the usual
PMF formula but not equivalent to it in practice. Here, the
integration of the force density F(r) yields gab(r) directly
rather than its logarithm, and this quantity is computed in
its integrality during the simulation, rather than step by
step using constraints or restraints on the a − b distance
as in usual PMF calculations. Note also that Equations (6),
(9) and (10) are rigorously equivalent only in the limit of
infinitely small grid size.

We note in passing that after Equation (4), a second
integration by part can be performed, yielding

ρbhab(r) = βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

1
2

( (i + (j )
1

|r − rij|

〉

(12)
with (i = βF2

i − !ri
U .
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canonical ensemble. The pair distribution function (or ra-
dial distribution function, RDF) between molecules of type
a and b is defined as

gab(r) = ϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (1)

where ϵab = (1 − 1
2δab) V

NaNb
, rij = rj − ri , and rij = |rij|.

The prime in the second sum indicates that i = j should
be excluded in the case a = b. This function is generally
computed through histograms with bins of finite width, $r,
replacing the δ-function by 1

$r
h$r (r), where h$r(r) is the

characteristic function equal to 1 between r and r + $r
and 0 otherwise. This statistical estimation is of infinite
variance as $r → 0 since the instantaneous density in each
bead oscillates between 0 and O(1/4πr2$r).

Accounting for the rotational invariance of Equation
(1), the pair distribution can be also expressed as

gab(r) = ϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

δ(r − rij)

〉

, (2)

with ! = r/r . Following the ideas of Assaraf et al. for
electron densities [14,15], use can be made of the Poisson
equality to replace the 3D δ-function

δ(r − rij) = − 1
4π

$ri

1∣∣∣r − rij
∣∣∣
. (3)

Insertion of the Laplacian with respect to either ri or rj in
the canonical average and integration by part yields (after
symmetrisation)

hab(r) = −βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

rij − r

|rij − r|3
· 1

2
(Fj − Fi)

〉

,

(4)
where hab = gab − 1.

Using the Gauss theorem for the electric field cre-
ated by a uniformly charged sphere of radius r at the
location rij,

∫
d!

rij − r!

|rij − r!|3
=

rij
r3
ij

H (rij − r), (5)

with H the Heaviside function, we get from Equation (4)

hab(r) = −βϵab

4π

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
r3
ij

H (rij − r)

〉

.

(6)

This is a key formula of this work. Compared to the standard
histogram procedure, it now involves the force acting on the
particles in addition to their positions. It also implies a quite

Figure 1. Radial distribution function obtained for a single equi-
librated configuration of a Lennard-Jones liquid composed of 864
particles using either the force approach, Equation (6), or the
standard histogram technique, with a grid spacing $r = 0.005σ .
The dashed blue line indicates the converged result after 10,000
simulation steps.

different numerical procedure. Here, for each configuration,
every particle pair contributes to all distances r < rij instead
of just to r = rij. Furthermore, application of the formula
requires a pre-defined grid but does not necessarily imply
the limit of infinitely small grid separation, $r → 0. The
only requirement is that the chosen grid, not necessarily
regular, is adapted to cope with the variations of the pair
distribution at all distances.

The new procedure is illustrated in Figure 1 for the
RDF, g(r), of a pure Lennard-Jones fluid composed of
864 particles at a reduced density ρ∗ = 0.8 and reduced
temperature T ∗ = 1.35, computed by molecular dynamics
simulation. We have displayed the RDF computed from one
single equilibrated configuration using either histograms or
Equation (6) and we compare those ‘instantaneous’ curves
to the converged result after 10,000 time steps. In both ap-
proaches, we used the same regular grid with $r = 0.005σ .
It can be seen that the curve obtained by Equation (6) is al-
ready very smooth and quite close to the final converged
result. The histogram curve does contain the converged one
within its fluctuations but appears very noisy. This is further
illustrated in Figure 2 where we plot the variances

v(r) = 1
T

∑

t

gt (r)2 −
(

1
T

∑

t

gt (r)

)2

(7)

obtained after T = 1000 simulation steps; gt(r) is the ‘instan-
taneous’ pair distribution function measured at step num-
ber t. It can be verified that the variance measured with the
‘force’ approach is indeed much reduced with respect to the
histogram approach and appears independent of the chosen
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Figure 2. Variance on the value of the radial distribution function
depicted in Figure 1 after 1000 simulation steps using either the
force approach, Equation (6), or the standard histogram technique,
with a grid spacing !r = 0.01σ (black and blue lines, respectively)
or !r = 0.005σ (cyan and red lines, respectively). The black and
cyan lines appear superimposed, as they should.

Figure 3. Oxygen–oxygen radial distribution function averaged
over 100 configurations extracted from a DFT–MD trajectory with
128 water molecules at ambient liquid conditions. The dashed
blue line indicates the converged result obtained by averaging
over 36,800 configurations.

grid size; the histogram method leads to a variance that is
inversely proportional to !r.

In Figure 3 is displayed the oxygen–oxygen radial dis-
tribution obtained from 100 configurations of a density-
functional-theory molecular dynamics (DFT-MD) simula-
tion of 128 water molecules at ambient thermodynamic
conditions with the Becke-Lee-Yang-Parr functional, after
preliminary equilibration. It can be seen that, even for the
relatively fine grid chosen and with a very limited number
of steps, the ‘force RDF’ is very smooth. It should also be
noted that, even if the agreement with the converged RDF is
already and overall very good after such a short trajectory,
one observes slight discrepancies, in particular in the height
of the first peak. At this stage, the force method is able to

improve the variance of the RDF, but does not correct for
the lack of statistics. Nonetheless, Figure 3 is meant to show
that it is certainly in the field of ab initio studies, where the
generation of the trajectories themselves is computation-
ally very expensive, that the force method described here to
compute the RDFs reveals its full potential, given that the
forces on the nuclei at each time step are readily available
from the simulations.

In order to gain some physical insight into the above
formula, one can write

H (rij − r) =
∫ ∞

r

dr ′δ(r ′ − rij). (8)

Replacing into Equation (6) and inverting integral and
canonical average, we get

ρbhab(r) = −β

∫ ∞

r

dr ′F (r ′) (9)

with the mean force density defined by

F (r) = ρbϵab

4πr2

〈
Na∑

i=1

N ′
b∑

j=1

1
2

(Fj − Fi) ·
rij
rij

δ(r − rij)

〉

.

(10)

We are back to a histogram procedure, but for F(r) instead
of gab(r) directly.

Denoting by F̄ (r) the constrained (or conditional) mean
force at a given distance, F̄ (r) = F (r)/ρbgab(r), we get by
differentiation of Equation (9), and division by gab(r),

1
gab(r)

dgab

dr
= F̄ (r) = −β

dwab(r)
dr

, (11)

which is the definition of the potential of mean force (PMF),
gab(r) = exp (−βwab(r)). A fundamental difference of the
present approach with respect to standard PMF calculations
is the use of the force density F(r) instead of the mean
force F̄ (r). Equation (9) is thus reminiscent of the usual
PMF formula but not equivalent to it in practice. Here, the
integration of the force density F(r) yields gab(r) directly
rather than its logarithm, and this quantity is computed in
its integrality during the simulation, rather than step by
step using constraints or restraints on the a − b distance
as in usual PMF calculations. Note also that Equations (6),
(9) and (10) are rigorously equivalent only in the limit of
infinitely small grid size.

We note in passing that after Equation (4), a second
integration by part can be performed, yielding

ρbhab(r) = βϵab

4π

∫
d!

〈
Na∑

i=1

N ′
b∑

j=1

1
2

( (i + (j )
1

|r − rij|

〉

(12)
with (i = βF2

i − !ri
U .

D
ow

nl
oa

de
d 

by
 [B

en
ja

m
in

 R
ot

en
be

rg
] a

t 0
2:

31
 0

4 
Ja

nu
ar

y 
20

14
 

Histogram (Δr = 0.005σ) 
Converged after 104 steps 
Force sampling 

Histogram (Δr = 0.005σ) 
Histogram (Δr = 0.01σ) 
Force sampling 

(b) 

(a) 



a) 

b) 

x 

z 

H 

S S 

(b) 

(a) 

(c) 


