J. P. Hansen and I. R. Mcdonald, Theory of Simple Liquids, 2013.

G. Battimelli, G. Ciccotti, and P. Greco, The New Frontier of Molecular Simulation, 2020.

R. Abel, R. A. Friesner, T. Young, B. Kim, and B. J. Berne, Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding, Proc. Natl. Acad. Sci, vol.104, pp.808-813, 2007.

I. Altan, D. Fusco, P. V. Afonine, and P. Charbonneau, Learning about Biomolecular Solvation from Water in Protein Crystals, J. Phys. Chem. B, vol.122, pp.2475-2486, 2018.

M. E. Wall, G. Calabró, C. I. Bayly, D. L. Mobley, and G. L. Warren, Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations, J. Am. Chem. Soc, vol.141, pp.4711-4720, 2019.

J. Segura, A. Elbourne, E. J. Wanless, G. G. Warr, K. Voïtchovsky et al., Adsorbed and near surface structure of ionic liquids at a solid interface, Physical Chemistry Chemical Physics, vol.15, pp.3320-3328, 2013.

C. Merlet, D. T. Limmer, M. Salanne, R. Van-roij, P. A. Madden et al., The Electric Double Layer Has a Life of Its Own, J. Phys. Chem. C, vol.118, pp.18291-18298, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968897

A. A. Kornyshev and R. Qiao, Three-Dimensional Double Layers, J. Phys. Chem. C, vol.118, pp.18285-18290, 2014.

A. Elbourne, S. Mcdonald, K. Voïchovsky, F. Endres, G. G. Warr et al., Nanostructure of the Ionic Liquid-Graphite Stern Layer, ACS Nano, vol.9, pp.7608-7620, 2015.

F. Dommert, J. Schmidt, B. Qiao, Y. Zhao, C. Krekeler et al., A comparative study of two classical force fields on statics and dynamics of [EMIM][BF4] investigated via molecular dynamics simulations, The Journal of Chemical Physics, vol.129, p.224501, 2008.

D. T. Limmer and A. P. Willard, Nanoscale heterogeneity at the aqueous electrolyte-electrode interface, Chemical Physics Letters, vol.620, pp.144-150, 2015.

S. W. Coles, C. Park, R. Nikam, M. Kandu?, J. Dzubiella et al., Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02869799

A. M. Smith, A. A. Lee, and S. Perkin, The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration, The Journal of Physical Chemistry Letters, vol.7, pp.2157-2163, 2016.

C. N. Nguyen, T. Young, and M. K. Gilson, Grid inhomogeneous solvation theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril, J. Chem. Phys, vol.137, pp.973-980, 2012.

J. G. Kirkwood and F. P. Buff, The Statistical Mechanical Theory of Solutions. I, The Journal of Chemical Physics, vol.19, pp.774-777, 1951.

N. Yoshida, T. Imai, S. Phongphanphanee, A. Kovalenko, and F. Hirata, Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids, J. Phys. Chem. B, vol.113, pp.873-886, 2009.

M. C. Stumpe, N. Blinov, D. Wishart, A. Kovalenko, and V. S. Pande, Calculation of local water densities in biological systems: A comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation, J. Phys. Chem. B, vol.115, pp.319-328, 2011.

L. Ding, M. Levesque, D. Borgis, and L. Belloni, Efficient molecular density functional theory using generalized spherical harmonics expansions, J. Chem. Phys, vol.147, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01564512

G. Jeanmairet, B. Rotenberg, M. Levesque, D. Borgis, and M. Salanne, A molecular density functional theory approach to electron transfer reactions, Chemical Science, vol.10, pp.2130-2143, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02055678

S. Zhao, R. Ramirez, R. Vuilleumier, and D. Borgis, Molecular density functional theory of solvation: From polar solvents to water, J. Chem. Phys, vol.134, 2011.

G. Jeanmairet, M. Levesque, R. Vuilleumier, and D. Borgis, Molecular density functional theory of water, J. Phys. Chem. Lett, vol.4, pp.619-624, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01308802

A. P. Lyubartsev and A. Laaksonen, Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach, Physical Review E, vol.52, pp.3730-3737, 1995.

A. Chaimovich and M. S. Shell, Coarse-graining errors and numerical optimization using a relative entropy framework, The Journal of Chemical Physics, vol.134, p.94112, 2011.

R. Assaraf and M. Caffarel, Zero-variance principle for monte carlo algorithms, Physical review letters, vol.83, p.4682, 1999.

J. Toulouse, R. Assaraf, and C. J. Umrigar, Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density, The Journal of Chemical Physics, vol.126, p.244112, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00979441

R. Assaraf, M. Caffarel, and A. Scemama, Improved Monte Carlo estimators for the one-body density, Physical Review E, vol.75, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00875613

A. J. Schultz, S. G. Moustafa, W. Lin, S. J. Weinstein, and D. A. Kofke, Reformulation of Ensemble Averages via Coordinate Mapping, Journal of Chemical Theory and Computation, vol.12, pp.1491-1498, 2016.

A. B. Adib and C. Jarzynski, Unbiased estimators for spatial distribution functions of classical fluids, The Journal of Chemical Physics, vol.122, p.14114, 2005.

D. Borgis, R. Assaraf, B. Rotenberg, and R. Vuilleumier, Computation of pair distribution functions and three-dimensional densities with a reduced variance principle, Molecular Physics, vol.111, pp.3486-3492, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01078958

D. De-las-heras and M. Schmidt, Better Than Counting: Density Profiles from Force Sampling, Phys. Rev. Lett, vol.120, p.218001, 2018.

A. Purohit, A. J. Schultz, and D. A. Kofke, Force-sampling methods for density distributions as instances of mapped averaging, Molecular Physics, vol.0, pp.1-8, 2019.

S. W. Coles, D. Borgis, R. Vuilleumier, and B. Rotenberg, Computing three-dimensional densities from force densities improves statistical efficiency, The Journal of Chemical Physics, vol.151, p.64124, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02285093

E. Mangaud and B. Rotenberg, Sampling mobility profiles of confined fluids with equilibrium molecular dynamics simulations, The Journal of Chemical Physics, vol.153, p.44125, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02923702

A. J. Schultz and D. A. Kofke, Current Opinion in Chemical Engineering Frontiers of Chemical Engineering: Molecular Modeling, vol.23, pp.70-76, 2019.

A. Trokhymchuk, A. J. Schultz, and D. A. Kofke, Alternative ensemble averages in molecular dynamics simulation of hard spheres, Molecular Physics, pp.1-20, 2019.

J. L. Lebowitz and J. K. Percus, Long-Range Correlations in a Closed System with Applications to Nonuniform Fluids, Physical Review, vol.122, pp.1675-1691, 1961.

L. Belloni, Finite-size corrections in numerical simulation of liquid water, The Journal of Chemical Physics, vol.149, p.94111, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01873866

G. Ciccotti, R. Kapral, and E. Vanden-eijnden, Blue Moon Sampling, Vectorial Reaction Coordinates, and Unbiased Constrained Dynamics, ChemPhysChem, vol.6, pp.1809-1814, 2005.

J. E. Basner and C. Jarzynski, Binless Estimation of the Potential of Mean Force, The Journal of Physical Chemistry B, vol.112, pp.12722-12729, 2008.

C. Zhang and J. Ma, Estimating statistical distributions using an integral identity, The Journal of Chemical Physics, vol.136, p.204113, 2012.

G. Ciccotti and M. Ferrario, Holonomic Constraints: A Case for Statistical Mechanics of Non-Hamiltonian Systems, Computation, vol.6, p.11, 2018.

P. Krüger, S. K. Schnell, D. Bedeaux, S. Kjelstrup, T. J. Vlugt et al., Kirkwood-Buff Integrals for Finite Volumes, The Journal of Physical Chemistry Letters, vol.4, pp.235-238, 2013.

P. Ganguly, N. F. Van-der, and . Vegt, Convergence of Sampling Kirkwood-Buff Integrals of Aqueous Solutions with Molecular Dynamics Simulations, Journal of Chemical Theory and Computation, vol.9, pp.1347-1355, 2013.

E. Wajnryb, A. R. Altenberger, and J. S. Dahler, Uniqueness of the microscopic stress tensor, The Journal of chemical physics, vol.103, pp.9782-9787, 1995.

T. W. Lion and R. J. Allen, Computing the local pressure in molecular dynamics simulations, Journal of Physics: Condensed Matter, vol.24, p.284133, 2012.

Z. Zhang and W. Kob, Revealing the three-dimensional structure of liquids using four-point correlation functions, Proceedings of the National Academy of Sciences, vol.117, pp.14032-14037, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02904329

K. R. Glaesemann and L. E. Fried, An improved thermodynamic energy estimator for path integral simulations, The Journal of Chemical Physics, vol.116, pp.5951-5955, 2002.

R. Korol, J. L. Rosa-raíces, N. Bou-rabee, and T. F. Miller, Dimensionfree path-integral molecular dynamics without preconditioning, The Journal of Chemical Physics, vol.152, 2020.

S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle-site et al., Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir, Physical Review Letters, vol.108, p.170602, 2012.

J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. V. Duijvendijk et al., First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories, Journal of Physics A: Mathematical and Theoretical, vol.42, p.75007, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00364938