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1 Introduction

We present the achievements of Lewis Bowen, or, more precisely, his break-
through works after which a theory started to develop. The focus will there-
fore be made here on the isomorphism problem for Bernoulli actions of count-
able non amenable groups which he solved brilliantly in two remarkable pa-
pers. Here two invariants were introduced, which led to many developments.

2 The f-invariant

Definition 2.1. Given a countable group G and a measure space (XA, µ) an
action of G is a mapping (X×G)→ X, (x, g)→ τg(x), where τg is a measure
preserving transformation for every g ∈ G and τgh = τgτh. Given a discrete
probability space (P, π), the Bernoulli action is defined on the product space
X = PG equipped with the measure µ = π⊗G in the following way:
for x ∈ X, x = (xg), g ∈ G, and h ∈ G, (τh(x))g = (xh−1g). We shall use
the notation B(π,G) to mean the system (X,A, µ,G, τ) which has just been
constructed. We call P the partition corresponding to the coordinate 0 in X.
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We recall that if π = (p1, p2, ...pk),

h(π) =
i=k∑
i=1

pi log pi

the entropy of the distribution π, which was first introduced by Shannon.

We introduce the essential notion of isomorphism.

Definition 2.2. We say that two actions (X,A, µ,G, τ). and (Y,B, ν, G, σ)
of the same group G are isomorphic if there exists an invertible measure
preserving mapping Φ from (X,A, µ) to (Y,B, ν) such that

σgΦ = Φτg

for almost every x ∈ X, for all g ∈ G.
In case the mapping Φ is not invertible, we say that (Y,B, ν, G, σ) is a

factor of (X,A, µ,G, τ).

The theory started, for Z, with the proof, by Kolmogorov and Sinai, that
B(π1,Z) and B(π2,Z) were not isomorphic when h(π1) 6= h(π2).

Then D. Ornstein proved that if h(π1) = h(π2), B(π1,Z) is isomorphic to
B(π2,Z).

For G a countable amenable group, J Kieffer proved that, in the same way
as what was taking place for Z, B(π1, G) and B(π2, G) are not isomorphic
when h(π1) 6= h(π2). Ornstein and Weiss proved later, in complete analogy
with the Z case, that two Bernoulli actions of the same amenable group G
with the same entropies were isomorphic.

In the paper where they developed the isomorphism theory for amenable
groups, considering Bernoulli actions, D. Ornstein and B. Weiss [24] asked
the following: What happens for non amenable groups? At the same time
they provided a famous example showing that B(1/4, 1/4, 1/4, 1/4, F2) is a
factor of B(1/2, 1/2, F2). Here F2 is the free group on two generators. In
the classical theory, entropy decreases under the taking of factors, but here,
h(1/4, 1/4, 1/4, 1/4) > h(1/2, 1/2). This example happened to be for many
years a deterrent to serious investigations, as it meant that there could not
be a ”good entropy theory” for actions of the free group. In the positive
direction a nice result of Stepin [31], was that, with the only condition that
G contains as a subgroup a copy of Z, if h(π1) = h(π2), then B(π1, G) is
isomorphic to B(π2, G). However the question whether this condition was
necessary for the isomorphism of Bernoulli actions remained open until 2010
when Lewis Bowen proved [5]:
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Theorem 2.3. Consider G a free group on finitely many generators and
the Bernoullis B(π1, G) and B(π2, G). They are isomorphic if and only if
h(π1) = h(π2).

The ”if” part is clearly a consequence of the Stepin theorem. The strategy
of the proof of the ”only if” part of the theorem follows, in a way, the same
path as the historical approach of Kolmogorov: also relying on Shannon’s
entropy, it is to first define a numerical isomorphism invariant for general
actions of the free group, and then to compute it for Bernoulli shifts.

Definition 2.4. Given an action (X,A, µ,G, τ) as in the previous definition,
a measurable partition P of X with countably many atoms is said to be a
generating partition, or to be a generator, if the smallest σ-algebra which
contains all the images τg(P ) of P for all the elements g ∈ G is A.

Definition 2.5. For a partition P of the space (X,A, µ), with π correspond-
ing to the distribution of its atoms, h(P ) = h(π)

Let us note that it follows immediately from the Definition 2.1. of a
Bernoulli action that the family of partitions τh(P ), h ∈ G, is independent.
We call then P an independent generator.

The f-invariant of Lewis Bowen, is defined as follows. Given an action σ of
Fk, the free group on k generators, on (X,A,m) with a generating partition
P , let

F (P ) =
i=k∑
i=1

(
h(P ∨ σsiP )− 2h(P )

)
+ h(P )

where the si, 1 ≤ i ≤ k are the generators of the group Fk.
Let Bn be the ball of radius n with respect to the word metric associated

to the generators of Fk and let

P n = ∨g∈BnσgP

.
Let then

f(P ) = inf
n
F (P n)

The theorem 2.3. is therefore a consequence of the following (Bowen [5])

Theorem 2.6. With the above definitions:

(1) Given an action of Fk on (X,A,m), for any two finite generating
partitions P and Q, f(P ) = f(Q).

(2) For a Bernoulli shift with independent generator P , f(P ) = h(P ).
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The proof of (1) given by Lewis Bowen rests on a beautiful and uncon-
ventional coding argument.

The conclusion (2) is a consequence of the fact, which rests on a simple
entropy computation, that F (P n) = h(P ) for all n.

There is another equivalent way to present the f-invariant. Defining

F∗(P ) = (1− k)h(P ) +
i=k∑
i=1

h(P, σsi)

where h(P, σsi) is the classical entropy of the action of σsi on P and
letting, as before, f∗(P ) = inf

n
F∗(P

n),

f∗(P ) = f(P )

Therefore, clearly, when k = 1 the f-invariant is exactly the usual entropy
of the corresponding Z action. As Lewis Bowen indicates himself, the f-
invariant can be thought of as the limit of the sums of the entropies in the
si directions applied to suitable ”n step Markov approximations” of the P
process generated by the free group action. The f-invariant can be computed
for Markov chains; however, it can increase under the taking of factors and
can take negative values (just consider τ = Id acting on the space of the
Bernoulli B(π1, Fd), then f(Id) = −(d− 1)h(π)).

There are nevertheless several interesting features of the f- invariant which
show that it shares a lot, functorially, with the usual entropy theory of Z
actions.

(1) the f-invariant possesses a satisfactory relative version.

(2) the f-invariant satisfies an ergodic decomposition formula

3 The sofic entropy

It is quite remarkable that, almost simultaneously, Lewis Bowen devised
another invariant with which he could solve the same questions for a much
larger class of groups than the ones which he had considered at first.

As an essential tool lies the noticeable and important fact, due to M.
Gromov [14], that, for a wide class of non amenable groups, there is a way,
given any finite set Γ in G, to produce an ”almost faithful” representation
of Γ in the set SN of permutations of the interval [1, N ]. A closely related
property had been defined by E. Gordon and A. Vershik [13].
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We equip the interval [1, N ] of integers between 1 and N with the normal-
ized counting measure ν. We also say that, in a probability measure space,
a property holds ε almost everywhere if it holds on a set measure > 1− ε.

To be precise,

Definition 3.1. A group G is sofic if given ε, given Γ a finite set in G, there
is N and an injective mapping τ from Γ to SN , γ → τγ such that for all
γ1 and γ2 in Γ such that γ1γ2 stays in Γ, τγ1γ2(x) = τγ1(τγ2(x)) for ε almost
every x ∈ [1, N ]) together with the fact that for all x, the cardinality of its τΓ

orbit is ε close to the cardinality of Γ, that is,

1/ | Γ | ×

(
| Γ | − | τΓ(x) |

)
< ε.

.

We shall refer to the preceding objects as sofic approximations. This
terminology was introduced by B. Weiss. Let us note that the Γ action
defined before is ε-measure preserving, meaning that for all A outside of a
set of measure < ε, | ν(τγ(A)

ν(A)
− 1 |< ε

Clearly Z is sofic: Consider Γ = [1, K]. Given ε, for all N large enough,
and k < K , let τk(x) = x+ k when x < N − k, and, τk(x) = x+ k −N for
x ≥ N − k. In the same way, it is seen that amenable groups are also sofic:
given Γ a finite subset of the amenable group G equipped with the Følner
sequence An, and ε > 0, extend in any way to the whole of An the action of
Γ on An∩ΓAn with n sufficiently large to imply that | ΓAn∆An | / | An |< ε.
Residually finite groups, and in particular free groups, are sofic, as was shown
by Gromov.

We are now given an action σ of a countable sofic group G on a Lebesgue
space (X,A,m) equipped with a finite generating partition P . Let Γ be a
finite subset of G. By P Γ we mean the partition of X which is spanned by
the σg(P ), g ∈ Γ. Given a sofic approximation τ associated to Γ and N ,
a partition P ′ of [1, N ] labelled in the same way as P is exactly a word ω
of length N in the alphabet of P . If the Γ action is sufficiently close to be
measure preserving, we can define with arbitrary accuracy the distribution of
the span of the τgP

′, g ∈ Γ. We consider the weak topology distance between
(P Γ,m) and (P ′Γ, ν) (P ′Γ is the partition of [1, N ] which is the span of the
τgP

′, g ∈ Γ): dΓ(P, P ′) = Σp∈PΓ | m(p) − ν(p′) |. (Here ν(p′) is the measure
of the atom of P ′Γ which has the same name as p given by the action of Γ
by σ). The ω’s such that dΓ(P, P ′) < α have been called by Lewis Bowen
(P,Γ, N, α) microstates. Let MN(P,Γ, α) be the cardinality of this set.
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Clearly, when N , P and Γ are fixed, MN(P,Γ, ε) decreases when ε de-
creases. Also MN(P,Γ, ε) decreases when Γ increases. The exponential rate
at which MN(P,Γ, ε) grows with N when ε ↓ 0 and Γ ↑ G is the Bowen
entropy. More precisely [6] :

Theorem 3.2. Let G be a group which admits a sofic approximation and
an action (X,A,m, σg) of G on X. Let P be a finite partition of X. Let
hΣ(P, σg) be

hΣ(P, σg) = inf
Γ

inf
ε>0

lim sup
N→∞

1

N
logMN(P,Γ, ε)

For any two finite finite generators P and Q, hΣ(P, τg) = hΣ(Q, τg).

Proof. (in this sketch, we follow a presentation first developed by B. Weiss [32]).
Let α = hP − hQ. (hP and hQ are the two preceding values). We consider
two generating partitions P and Q for the action σg. For all u > 0, there is
a finite subset of G, Γu, such that P Γu ⊃ Q̃ with d(Q̃, Q) < u. We say that
P u codes Q and we write P Γu ⊃u Q. Given any finite set Γ ⊂ G, there
exist convenient finite sets Γ1 and Γ2, numbers ε1 with h(2ε1) = α/10, ε2
and associated codes such that P Γ2 ⊃ε2 QΓ1 ⊃ε1 P Γ (by which we mean that
P codes to Q̃ such that dΓ1(Q̃, Q) < ε2 where ε2 has been chosen so that P̃
coded from Q̃ satisfies dΓ(P̃ , P ) < ε1).

Given a (P,Γ2, ε3, N) microstate ω where we choose ε3 such that the
successive codings of the associated partition P ′ of [1, N ] will produce first
ω′ and a corresponding partition Q′ of [1, N ] such that Q′Γ1 is still ε2 close
to QΓ1 (so that ω′ will be a (Q,Γ1, ε2, N) microstate) and then ω′′ with
corresponding partition P ′′ with P ′′Γ ε1 close to P ′Γ, we see in particular
that P ′′ will be ε1 close to P ′ which implies that the corresponding P -names
of length N are 2ε1 close in d̄ which means that ω′′ is 2ε1 close to ω for the
Hamming metric.

It is no restriction to assume that Γ1, Γ and ε1 are also such such that
MN(Q,Γ1, ε2) < 2N(hQ+α/10) and MN(P,Γ, ε1) > 2N(hP−α/10). This is clearly
impossible.

Note that what we have been doing is just to imitate in the approximate
actions given by the sofic approximation and the microstates the relations
between generators which were taking place in the original action. This was
possible because only finitely many coordinates had to be considered. Lastly,
the important fact was that in the approximate models, close partitions cor-
respond to d̄ close names.

�
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In fact, Lewis Bowen has extended his definition of the sofic entropy to
countable generators which have finite entropy in the following way: let P be
a countable partition, let Pn an increasing sequence of finite P measurable
partitions which increase towards P . The sofic entropy is then:

hΣ(P, σg) = inf
Γ

inf
Pn

inf
ε>0

lim sup
N→∞

1

N
logMN(Pn,Γ, ε)

Here Pn vary among all possible sequences of finite partitions increasing
towards P . With this definition, Bowen in fact proved the theorem 3.2. for
generators with finite entropy.

There is a nice interpretation of the f-invariant as an average sofic entropy
in the paper by Lewis Bowen. In the same way as it was for the f-invariant,
there are groups for which the identity has sofic entropy −∞. To complete
the extension of the theorem 2.4. to sofic groups, Bowen has proved [6].

Theorem 3.3. Consider a Bernoulli action B(π,G) of the group G which
admits a sofic approximation. We call P the partition which makes measur-
able the first coordinate of the Bernoulli action. Then,

hΣ(P, τg) = h(π)

Proof. it is classical that, when considering the product measure on PN ,
given any finite Γ, given ε, the (P,Γ, N, ε) microstates will fill a set of arbi-
trarily big measure, for N large enough. The MacMillan theorem therefore
implies that the sofic entropy satisfies hΣ(P, τg) ≥ h(π). If the previous
inequality were strict, we would get arbitrarily large N and an excessive
number of microstates, every one of them, as a consequence of the assump-
tion, generic for a distribution with one-marginal very close to π. Let τ be
the distribution on names of length N of P giving equal mass to everyone of
these microstates. If we build a stack of N levels above a Bernoulli with dis-
tribution τ (call S the corresponding transformation) and if we let P̃ be the
partition obtained by labelling the levels with the names of the microstates,
we get that P̃

∨
Φ will be a generator for S (Φ the two sets partition which

is the base of the stack and its complement ) which contradicts Abramov’s
formula (as the distribution of P̃ is going to be as close as we want to π and
h(Φ) can be made as small as we want provided N is sufficiently large). �

Although there are presently no examples known of countable non amenable
groups which are not sofic, there are several results which have already been
shown to hold for all non amenable countable groups. In another spectacular
paper, which adds to the weirdness of the entropy theory of actions of non
amenable groups, Lewis Bowen has proved [11] :
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Theorem 3.4. Let Γ be a non amenable countable group, any two Bernoulli
shifts over that group are weakly isomorphic.

(Two actions of a group are weakly isomorphic if each one is a factor of
the other).

(In a previous paper [8], L. Bowen had proved this result with the restric-
tion that the acting group contained a copy of a free group).

At the opposite end, we have seen that amenable groups were sofic. It was
proved by L. Bowen [10] and D. Kerr and H. Li [22], that the sofic entropy,
when applied to amenable groups coincided with the classical entropy theory
(initiated by Kieffer [23], in the general amenable group case). The proofs rely
deeply on the Ornstein Weiss Rokhlin lemma for general countable amenable
groups [25].

As a beautiful extension of the Stepin theorem, Lewis Bowen proved [9]
that

Theorem 3.5. Let Γ be a countable non amenable group. Let π1 and π2 be
two probability distributions, both with at least 3 states, such that h(π1) =
h(π2), then B(π1,Γ) is isomorphic to B(π2,Γ).

Brandon Seward [27] improved the same result and showed it to be true
without the ”3 states restriction”. He also proved there that the isomorphism
could be made finitary.

The world of Bernoulli actions of countable non amenable group actions
brings a lot of surprises. D. Kerr [19] proved:

Theorem 3.6. A Bernoulli action of a sofic group has completely positive
sofic entropy. (That is, all its non trivial factors have positive sofic entropy
for any sofic approximation)

However S. Popa has proved [26]: (see also Tim Austin [3])

Theorem 3.7. For some non amenable groups (namely for a class of groups
which satisfy Kazhdan’s property T) Bernoulli actions have factors which are
not isomorphic to a Bernoulli action.
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4 The continuations of the theory

The theory initiated by Lewis Bowen has evolved in different directions. The
first one is the extension of the definition of sofic measure theoretic entropy
to the case where the action is defined on a topological space (that is without
an a priori generator). The second one concerns the extensions of the sofic
entropy to the topological sofic entropy and to the corresponding variational
principles. All this was mainly worked out by D. Kerr and H. Li. [18], [21].

The third one is the appearance of an other invariant, first introduced
by Brandon Seward [28], the Rokhlin entropy. For Bernoulli actions of sofic
groups, the Rokhlin entropy coincides with the sofic entropy. Although it
is only known in general to be greater than the sofic entropy, it has the
advantage to be defined for all countable groups. It has been the source
of important, beautiful and unexpected results. In particular, the following,
due to Brandon Seward [30] which is really a Sinai theorem for non amenable
group actions: Given a countable group action with positive Rokhlin entropy,
it has as a factor a Bernoulli action (and, due to the theorem 3.4. above of
Bowen, any Bernoulli action). Note that, due to the domination result of B.
Seward, the same theorem holds under the assumption that the sofic entropy
of the action is positive.

There are also nice implications related to spectral theory: if the Koop-
man representation associated to an action of Γ is singular with respect to
the left regular representation, then the Rokhlin entropy (hence the sofic en-
tropy) of the action is 0. This is due to B. Hayes [16] and B. Seward [29].
This is obtained through the definition of important new objects: the Pinsker
algebra and the outer Pinsker algebra. See also Alpeev [1]. These are deep ex-
tensions to the non amenable case of the theorem which states, for Z actions,
that the spectrum, on the orthocomplement of L2 of the Pinsker algebra is
countable Lebesgue.

Another direction has been initiated by T. Austin [4]: to define invariants
related to the sofic entropy which would behave well (that is be additive)
under the operation of taking products.

Many examples have been the object of study: Markov actions, actions of
algebraic origin [15], Gaussian actions [17]. T. Austin and P. Burton [2] have
constructed uncountably many actions with the same entropy with com-
pletely positive sofic entropy, pairwise not isomorphic (and none of them
being a factor of a Bernoulli shift).

Important questions remain in the theory. It is not known whether the
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sofic entropy depends upon the choice of the sofic approximations. There
are no examples known presently of groups which are not sofic. In case such
exist, computing the Rokhlin entropy for their Bernoulli actions becomes a
new challenge.

Lastly, I cannot resist to mention the recent work of Lewis Bowen [12]:
”Sofic homological invariants and the weak Pinsker property”, in which he
produces, for sufficiently large r actions of Fr for which the weak Pinsker
property fails (as well for the Rokhlin entropy as for any sofic entropy). This
is in sharp contrast with the fact, recently proved by T. Austin, that, for Z,
the weak Pinsker property is universal.
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