
HAL Id: hal-02975516
https://hal.sorbonne-universite.fr/hal-02975516v1

Submitted on 22 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The murine Microenvironment Cell Population counter
method to estimate abundance of tissue-infiltrating

immune and stromal cell populations in murine samples
using gene expression

Florent Petitprez, Sacha Levy, Chengming Sun, Maxime Meylan, Christophe
Linhard, Etienne Becht, Nabila Elarouci, David Tavel, Lubka T. Roumenina,

Mira Ayadi, et al.

To cite this version:
Florent Petitprez, Sacha Levy, Chengming Sun, Maxime Meylan, Christophe Linhard, et al.. The
murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating
immune and stromal cell populations in murine samples using gene expression. Genome Medicine,
2020, 12 (1), �10.1186/s13073-020-00783-w�. �hal-02975516�

https://hal.sorbonne-universite.fr/hal-02975516v1
https://hal.archives-ouvertes.fr


METHOD Open Access

The murine Microenvironment Cell
Population counter method to estimate
abundance of tissue-infiltrating immune
and stromal cell populations in murine
samples using gene expression
Florent Petitprez1,2,3* , Sacha Levy1†, Cheng-Ming Sun1†, Maxime Meylan1,2†, Christophe Linhard1, Etienne Becht4,
Nabila Elarouci2, David Tavel2, Lubka T. Roumenina1, Mira Ayadi2, Catherine Sautès-Fridman1,
Wolf H. Fridman1† and Aurélien de Reyniès2*†

Abstract

Quantifying tissue-infiltrating immune and stromal cells provides clinically relevant information for various diseases.
While numerous methods can quantify immune or stromal cells in human tissue samples from transcriptomic data,
few are available for mouse studies. We introduce murine Microenvironment Cell Population counter (mMCP-
counter), a method based on highly specific transcriptomic markers that accurately quantify 16 immune and
stromal murine cell populations. We validated mMCP-counter with flow cytometry data and showed that mMCP-
counter outperforms existing methods. We showed that mMCP-counter scores are predictive of response to
immune checkpoint blockade in cancer mouse models and identify early immune impacts of Alzheimer’s disease.

Keywords: Immune composition, Heterogeneous tissue, Tumor microenvironment, Immune checkpoint blockade,
Alzheimer’s disease

Background
For a large number of diseases, such as inflammatory
diseases or cancer, it is often crucial to accurately deter-
mine the cellular composition of the tissue where the
pathology develops, in terms of immune and stromal cell

populations. An array of methods are available to obtain
these data from human samples, either by immuno-
chemistry or cytometry, or computationally from tran-
scriptomics data [1].
The analysis of the immune and stromal composition

of tissues is particularly critical in cancer studies. Indeed,
tumors are highly heterogeneous tissues which are infil-
trated by a variety of immune and stromal cells [2]. It
was shown that immune cell densities were associated
with prognosis [3]. For instance, CD8+ T cells density
correlates with prolonged patient survival in most can-
cers, whereas M2-polarized macrophages are generally
associated with a poor prognosis [3].
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The transcriptome of a bulk tissue sample yields the
averaged expression of genes across all the cells present
in the sample. As some genes are uniquely expressed in
some specific cell populations, their expression can be
used to determine the abundance of the underlying cell
populations. Using this property, we have previously re-
ported on MCP-counter, a method designed to quantify
the immune infiltrate of heterogeneous human tissues
[4], currently one of the best performing methods for
this purpose [5].
While murine models are widely used to decipher the

pathophysiological mechanisms of various diseases, in-
cluding inflammatory diseases and cancer, the computa-
tional methods currently available to measure the
immune and stromal composition of murine tissues are
few and limited, as compared to what is available for hu-
man samples [6].
Here, we introduce murine Microenvironment Cell

Populations counter (mMCP-counter), the adaptation of
the MCP-counter method to murine samples (Fig. 1),
which was made possible thanks to the release of large
datasets of microarray-measured gene expression of
murine sorted immune populations by the Immuno-
logical Genome Project (ImmGen) [7, 8]. mMCP-
counter can be accessed as an R package (https://github.
com/cit-bioinfo/mMCP-counter) [9]. It takes a gene ex-
pression profiles matrix as input and returns the abun-
dance of RNA originating from 16 defined cell
populations present in the heterogeneous sample.
We compared the performance of mMCP-counter

with other previously published methods on simulated
mixtures generated using two datasets that are inde-
pendent from the discovery ImmGen microarrays data-
sets, and we validated our approach on samples from
peripheral blood, peritoneum, spleen, and several grafted
tumors that were analyzed by both RNA-sequencing
(RNA-Seq) and flow cytometry (Fig. 1). Finally, we ana-
lyzed how mMCP-counter can be used, in murine
models of mesothelioma and kidney cancer, to analyze
the TME differences between responders and non-
responders to immune checkpoint blockade, a crucial
and emerging therapy for many cancer types, and in a
murine model of early neurodegeneration from Alzhei-
mer’s disease, to identify immune and stromal cell popu-
lations in hippocampal transcriptomes.

Methods
Public data accession, curation, and normalization
Data included in the discovery dataset included the two
micro-array releases of ImmGen (Gene Expression
Omnibus (GEO) accession numbers GSE15907 and
GSE37448), and parts of several datasets for: epithelial
cells (GSE27456 and GSE74317), breast cancer
(GSE25525, GSE54626, and GSE78698), hypothalamic

cell line (GSE61402), melanoma B16F10 cells
(GSE84155), pancreatic ductal adenocarcinoma
(GSE48643), myoblasts (GSE26764), and hepatocytes
(GSE18614). Raw CEL files were used and data was nor-
malized through frozen robust multi-array analysis [10]
with the R package fRMA. Batch effect was correcting
using ComBat [11] from the R package sva. Consistency
within the data was verified using principal components
analysis with the R package FactoMineR [12] and out-
liers were discarded.
Application data were downloaded from GEO (acces-

sion numbers GSE93017 and GSE117358). For
GSE117358, data was normalized at the 75th percentile
of gene expression.

Signatures discovery
For signature discovery, only populations for which all
subsets were present in the dataset and that have appro-
priate negative samples were taken into account. All
probes were screened for (log2) fold-change (FC), spe-
cific fold change (sFC), and area under the ROC curve
(AUC). FC and sFC are defined as follows:

FC ¼ X − X

sFC ¼ X − Xmin

Xmax − Xmin

where X is the centroid (i.e., the mean over all samples)
for the population of interest, X the centroid of all other
samples, and Xmax and Xmin denote, respectively, the
maximum and the minimum of cell-type-specific cen-
troids for population different from the population of
interest.
Signatures were built using the following cut-offs:

FC > 2.1, sFC > 2.1, and AUC > 0.97. After this automated
screening, all retained probed were manually curated to
verify the accuracy of the selection. All signatures that
contained more than 8 putative transcriptomic markers
underwent an additional selection process. A sub-
signature with strong inter-marker correlation was kept
following hierarchical clustering of the whole signature
transcriptomic markers. The hierarchical clustering was
made using R, with Euclidian metric and Ward’s linkage
criterion.

In silico mixtures preparation
The in silico simulated mixtures were computed as fol-
lows: firstly, weights for all included populations were
chosen randomly. Pure transcriptomic profiles for all
populations were computed with the expression of all
genes being the mean expression over all the corre-
sponding samples in the Haemopedia and ImmGen ULI
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datasets. Finally, the mixture transcriptome was com-
puted as follows:

T ¼ P � C

where T is the transcriptomic matrix with genes in lines
and samples (mixtures) in columns, P is the pure profiles
matrix with genes in lines and cell populations in

columns, and C is the mixture composition matrix, with
populations in lines and samples (mixtures) in column,
the sum of each column being equal to 1.
To evaluate the various scoring algorithms, 24 mix-

tures were simulated with random proportions of each
cell population. For the comparisons between mMCP-
counter and other methods, 50 sets of mixtures were
generated from the Haemopedia data (accessed as TPM-

Fig. 1 Workflow for the development, validation, and application of mMCP-counter. This figure depicts (1) the data acquisition, pre-processing,
and normalization, as well as the mapping the cell population hierarchy; (2) the building of the methods by research and curation of cell-type-
specific gene signatures and optimal scoring algorithm; (3) the validation of mMCP-counter by comparison to previously published methods on
simulated mixtures and by comparison to immune composition inferred by flow-cytometry; and (4) the illustration of mMCP-counter to two
datasets including mouse models of kidney cancer and mesothelioma treated by immune checkpoint blockade, and murine models of early
neurodegeneration in Alzheimer’s disease
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normalized data from www.haemosphere.org and log2-
transformed) and ImmGen ULI data (accessed as raw
counts from Gene Expression Omnibus (accession code
GSE109125), normalized at the 75th percentile and log2-
transformed). For the Haemopedia data, the random
proportions for 50 mixtures were simulated using a
Dirichlet distribution with shape parameters 2.8 (CD8 T
cells), 2.2 (other T cells), 1.8 (B cells), 0.5 (monocytes),
1.7 (macrophages), 0.2 (mast cells), 0.5 (eosinophils), 0.3
(neutrophils). For the ImmGen ULI dataset mixtures,
the shape parameters were set to 2.8 (CD8 T cells), 0.2
(gamma-delta T cells), 2 (other T cells), 0.2 (NK cells),
0.8 (memory B cells), 0.8 (other B cells), 0.5 (monocytes),
2 (macrophages), 0.2 (mast cells), 0.2 (eosinophils), and
0.3 (neutrophils).

Comparison with other published methods
mMCP-counter, DCQ, and ImmuCC were run inde-
pendently on each of the 50 sets of 50 mixtures defined
above, aggregated by gene. The ImmuCC algorithm and
signature matrix was accessed on GitHub (https://
github.com/chenziyi/ImmuCC) and ran on the mixtures
locally. DCQ was run using the dcq function from the
ComICS R package. All methods were run using default
parameters. When the granularity of cell populations dif-
fered between mMCP-counter and ImmuCC or DCQ, to
allow for comparisons, we forced a similar granularity,
summing the scores of subpopulations corresponding to
a larger population. For ImmuCC, populations “T Cells
CD8 Actived,” “T Cells CD8 Naive,” “T Cells CD8 Mem-
ory,” “T Cells CD4 Memory,” “T Cells CD4 Naive,” “T
Cells CD4 Follicular,” and “GammaDelta T Cells” were
summed as “T cells”; “T Cells CD8 Actived,” “T Cells
CD8 Naive,” and “T Cells CD8 Memory” were summed
as “CD8 T cells”; “NK Resting” and “NK.Actived” were
summed as “NK cells”; “B Cells Memory,” “B Cells
Naive,” and “Plasma Cells” were summed as “B derived”;
“M0 Macrophage,” “M1 Macrophage,” “M2 Macrophage,
” and “Monocyte” were summed as “Monocytes / macro-
phages.” For DCQ, all populations starting with “T.” or
“TGD.” were summed as “T cells”; all populations start-
ing with “T.8” were summed as “CD8 T cells”; all popu-
lations starting with “NK.” were summed as “NK cells”;
all populations starting with “B.” were summed as “B de-
rived”; all populations starting with “MO.” or “MF.” were
summed as “Monocytes/macrophages”; and all popula-
tions starting with “GN.” were summed as “neutrophils.”

Spillover analysis
For spillover, mean profiles for CD8+ T cells, B-derived
cells, monocytes/macrophages, neutrophils, eosinophils,
and mast cells from the Haemopedia dataset, and the
above populations plus NK cells from the ImmGen ULI
dataset were computed. All three methods were applied

on these pure profiles, and the results were aggregated
to higher-level cell populations as in the above para-
graph. The noise ratio was computed with the following
formula:

noise ratio ¼ noise
noiseþ signal

where noise is the sum of all off-targets scores (i.e.,
scores for all other populations than what was included
in each case) and signal is the sum of target scores (i.e.,
the scores for the correct populations). For DCQ, we
substracted the minimum value to all scores in order to
only have positive values.

Animal experiment
Eight- to 10-week-old female C57/BL6 mice were pur-
chased from Charles River Laboratories. The use of ani-
mals followed the institutional guidelines and the
recommendations for the care and use of laboratory ani-
mals with approvals APAFIS#34\0-2016052518485390v2
and #9853-2017050211531651v5 by the French Ministry
of Agriculture. Mice were sacrificed and spleens were
surgically removed and were pressed through a 70-μm
cell strainer (BD Falcon) for single-cell suspension prep-
aration. Blood was obtained with a cardiac puncture or
from the submandibular vein. Peritoneal cells were ob-
tained by washing the peritoneal cavity with 3–4 ml of
PBS twice. Red blood cells were lysed by ACK lysing
buffer and cells were then washed with PBS with 2% of
fetal bovine serum (FBS). All cells were resuspended in
ice-cold PBS with 2% FBS for FACs staining.
TC-1, tumor cells derived from mouse lung epithelial

cells and transformed by human papillomavirus [13],
were cultured in vitro. Cells were washed with PBS and
4 × 105 cells were inoculated subcutaneously in the right
flank with 200 μl PBS. Twenty-six days later, tumors
were surgically removed and single-cell suspension is
prepared for FACs analysis.

Flow cytometry
For flow cytometry, cells were stained with the following
monoclonal antibodies: PE-conjugated anti-CD4, Fitc-
conjugated anti-CD8, BV786-conjugated anti-CD11c,
PE-Cy7-conjugated anti-CD45, BV605-conjugated anti-
NK-1.1 (all from BD Biosciences), eFluor 450-conjugated
anti-CD11b, Alexa Fluor 700-conjugated anti-CD19,
APC-eFluor 780-conjugated anti-CD19, PerCP-eFluor
710-conjugated anti-CD49b, PE-CF594-conjugated anti-
Siglec-F, (all from eBioscience), Brilliant Violet 785-
conjugated anti-CD11b, APC/Fire 750-conjugated anti-
TCR-β, Pacific Blue-conjugated anti-GL7, Fitc-
conjugated anti-FcεRIa, Alexa Fluor 700-conjugated
anti-F4/80, Brilliant Violet 605-conjugated anti-Ly-6C,
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and Brilliant Violet 650-conjugated anti-Ly-6G (all from
BioLegend). Cells were stained for 30 min in the dark at
4 °C and were washed with PBS with 2% of FBS. For
Foxp3 staining, cells were fixed and permeabilized with
eBioscience Foxp3/Transcription Factor Staining Buffer
Set according to the manufacturer’s protocol
(eBioscience). All stainings were done with Fc block (BD
Biosciences). Cells were then analyzed on a BD LSRFor-
tessa cell analyzer (BD Bioscience). Flow cytometry data
analysis was performed using Flowjo analysis platform
(FlowJo, LLC).
Living cells were identified by LIVE/DEAD Fixable aqua

dead cell stain kit (ThermoFisher Scientific) and singlet cells
were gated before further analysis. T cells are identified as
CD19−B220−CD11b−NK1.1−TCRβ+ cells, CD8+ T cells are
CD19−B220−CD11b−NK1.1−TCRβ+CD8+ cells, Treg cells are
CD19−B220−TCRβ+CD4+CD25+Foxp3+ cells, NK cells are
CD19−TCRβ−NK1.1+ cells, B-derived cells are
CD19+B220+TCRβ− cells, memory B cells are
CD19+B220+CD38+CD80+IgDlo cells, neutrophils are
CD19−TCRβ−CD11c−CD11b+Ly6G+ cells, eosinophils are
CD19−TCRβ−CD11c−CD11bloLy6G−SiglecF+ cells, basophils
are CD19−TCRβ−CD11c−CD11b+Ly6G−CD117−FcεR-
Ia+CD49d+ cells, mast cells are CD19−TCRβ−CD11b−FcεR-
Ia+CD117+ peritoneal cells, monocytes are
CD19−TCRβ−CD11c−F4/80−CD11b+CD115+ cells, and mac-
rophages are CD19−TCRβ−F4/80+CD11b+ peritoneal cells.

RNA preparation
Splenocytes, peripheral blood cells, peritoneal cells, and
tumor cells were washed with PBS and were counted.
Cells were centrifuged at 400g for 5 min and supernatant
was removed. Cells pellet (< 3 × 106 cells) was resuspend
in 350 μl of RLT buffer (Qiagen). RNA was extracted
with RNeasy Mini kit (Qiagen) according to the manu-
facturer’s protocol.

RNA sequencing
mRNA library preparation was realized following the
manufacturer’s recommendations (KAPA mRNA Hyper-
Prep ROCHE). Library purity/integrity were assessed
using an Agilent 2200 Tapestation (Agilent Technolo-
gies, Waldbrunn, Germany). Final 7 samples pooled li-
brary prep were sequenced on Nextseq 500 ILLUMINA
with MidOutPut cartridge (2 × 130 million of 75 bases
reads), corresponding to 2 × 18 million of reads per
sample after demultiplexing.

RNA-seq data pre-processing and normalization
Raw RNA-seq reads were aligned on the GCRm38 Mus
musculus genome using STAR pipeline. Feature count
was performed using the Rsubread R package and nor-
malized at the 75th percentile.

Analysis of single-cell RNA-seq data
The analysis of the single-cell RNA-seq data from the
Tabula Muris consortium [14] was accessed on the Sin-
gle Cell Expression Atlas [15] from EMBL-EBI at
https://www.ebi.ac.uk/gxa/sc/home on March 4, 2020,
and analyzed online on this platform.

Statistical analysis
All statistical analyses were made using R 3.6.2 with
packages gtools, ComICS, circlize [16], and Complex-
Heatmap [17]. Pearson’s correlation was used to com-
pare two quantitative variables. The comparisons
between mMCP-counter and other methods (Fig. 4)
were assessed using t tests. For other comparisons be-
tween a quantitative variable and a 2-level qualitative
variable, we used Mann-Whitney tests. For 3 or more
levels, we used Kruskal-Wallis with post hoc Dunn test
for pairwise comparisons with Benjamini-Hochberg cor-
rection. Associations between two quantitative variables
were assessed using Pearson’s correlation and its correl-
ation test.

Results
Prior hierarchization of cell populations
mMCP-counter relies on the identification of specific
transcriptomic markers for each analyzed population.
We define transcriptomic markers as having a “high” ex-
pression in a given cell population, including all its sub-
populations, and “zero” expression (meaning either zero
or not differentiable from the detection threshold, de-
pending on the technologies) in any other cell popula-
tion. Their detection is based on three criteria (see
signature discovery thereafter). This approach requires to
represent a priori both the cell categories and their in-
clusion relationships, as comprehensively as possible. To
do so, we completed the hematopoietic tree provided by
ImmGen [18], using a survey of the literature [19, 20].
The resulting hierarchy of cell populations is presented
in Additional file 1: Fig. S1a.

Constitution of a training series
To obtain enough transcriptomic samples mapping to
each of the nodes (cell categories) of the prior hierarch-
ical model, we collected transcriptomic profiles of sorted
cell populations from the ImmGen Microarray datasets.
To include non-immune non-stromal negative controls,
parts of additional datasets were also added to our
training data, including those from epithelial cell lines,
hypothalamic cell lines, melanoma, pancreatic ductal
adenocarcinoma, and breast cancer cell lines, myoblasts,
and hepatocytes. Curation and normalization of data are
explained in the “Methods” section.
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Signatures discovery
Only categories that were fully represented, i.e., of which
all subcategories were included in the dataset, were con-
sidered for signature discovery. For each of the 55
remaining populations (Additional file 1: Fig. S1b), all
available transcripts (probes) were screened for (log2)
fold-change (FC), specific fold change (sFC), and area
under the ROC curve (AUC) (see the “Methods” sec-
tion). Features were considered as transcriptomic
markers for a given population if they respected 3

criteria: FC > 2.1, sFC > 2.1, and AUC > 0.97. Figure 2 a
and b illustrate an example with probe 10442786
(Tpsb2), which qualified as a transcriptomic marker for
mast cells. On Fig. 2a, we observe an overexpression of
the marker in mast cells, with a log2 FC of 6.48 for the
median expression as compared to the median expres-
sion in all non-mast cell samples, as well as a log2 sFC of
5.94 of the median expression in mast cells as compared
to the expression variance among all non-mast cell sam-
ples. Figure 2 b represents the ROC curve for this marker,

Fig. 2 Identification of cell-type-specific gene signatures: example of mast cells. a Expression of a transcriptomic marker (probe 10442786) of mast
cells in various cell types, with the representation of the fold-change and the specific fold-change. b Receiver operating characteristic (ROC) curve
for the same marker as in a. c Correlation heatmap of all found transcriptomic markers for mast cells. The yellow square indicates the restricted
signature that was chosen for the method
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showing an AUC of 0.997, thus providing sufficient sensi-
tivity and specificity. After the automated screening, all
retained transcripts were manually examined to remove
transcripts that were also slightly expressed in other popu-
lations than the target populations, even though they fitted
all three criteria (Additional file 1: Fig. S2). At this step,
we found transcriptomic markers for 18 denominations
(Additional file 1: Fig. S1b).

Sub-signature selection
For some populations, a large number of transcriptomic
markers were found (up to 41 for fibroblasts). A lower
intra-signature correlation is likely to induce a loss of ac-
curacy. To circumvent this potential issue, we selected a
sub-signature for populations that had 8 or more
markers, by choosing the highest inter-correlated set of
markers (Fig. 2c and Additional file 1: Fig. S3). The final
signatures are presented in Additional file 2: Table S1.

Scoring metric
Given a cell population and its signature (i.e., the set of
corresponding transcriptomic markers), the next step
consisted in defining a metric, taking as input the ex-
pression value of this set of markers, and yielding as out-
put a score of abundance of the cell population. To
select a scoring metric, we performed tests on a dataset
composed of in silico-simulated RNA mixtures (see the
“Methods” section). Six scoring metrics were considered:
arithmetic mean, geometric mean, harmonic mean,
quadratic mean, energetic mean, and median. Each
metric was tested on the mixtures by analyzing the cor-
relations between the derived scores and the known pro-
portions of all cell populations. The score for each
scoring metric and each population are reported in Add-
itional file 1: Fig. S4. All metrics were found to perform
similarly. The median presents the advantage of being
insensitive to outliers and was therefore chosen. At this
point, we discarded the dermal dendritic cell signa-
ture, as the correlation between the scores and the
mixture proportion for this population was below
0.75 (Additional file 1: Fig. S1b).

Ex vivo validation
To validate our approach ex vivo, we analyzed 14 sam-
ples of the spleen (n = 4), peripheral blood (n = 4), peri-
toneum (n = 4), and TC1 tumors (n = 2) by flow
cytometry and RNA-Seq and used the cytometry-
estimated proportions of each cell type as reference
(Additional file 1: Fig. S5). We applied mMCP-counter
to the RNA-seq data and computed the correlation be-
tween the flow cytometry estimates (expressed in per-
centage within living cells) and the mMCP-counter
scores for hematopoietic cell populations, pooling all
samples regardless of the tissue of origin (Fig. 3). The

signature for canonical CD4+ regulatory T cells failed
this validation step (Fig. 3b and Additional file 1: Fig.
S1b). However, for all other available populations
(Fig. 3a), there was a good agreement between the
mMCP-counter scores and the proportions obtained by
flow cytometry, with correlation comprised between
0.629 (eosinophils) and 0.975 (CD8+ T cells).

Comparison with other published methods
Other methods have been previously reported to analyze
the composition of heterogeneous samples in murine
models [21, 22]. DCQ (Digital Cell Quantification) is an
algorithm that, given gene expression data and prior
knowledge on immune cell type transcriptomic profiles,
returns the cell abundances for a wide variety of im-
mune cells [21]; it was designed using RNA-Seq data.
ImmuCC [22] is derived from the method proposed by
CIBERSORT [23] and adapted by finding markers for
murine populations; it was first designed for micro-
arrays, but an updated version is adapted for RNA-Seq
data [24]. We applied both methods on 50 sets of in
silico RNA mixtures (each with 50 samples, see the
“Methods” section) generated from the Haemopedia
dataset [25] and 50 similar sets of 50 in silico mixtures
generated from the ImmGen ultra-low-input RNA-seq
(ImmGen ULI) dataset [26], another dataset composed of
purified immune cells independent of the dataset used to
generate the signatures, to assess each method’s perform-
ance on cell subtypes that were quantified by both mMCP-
counter and another. On the Haemopedia dataset, mMCP-
counter outperformed both ImmuCC and DCQ for T cells,
B-derived cells, monocytes/macrophages, monocytes, mast
cells, and neutrophils (all p values below 5e−12), performed
similarly with ImmuCC and outperformed DCQ for CD8+

T cells, and was outperformed by ImmuCC only for eosino-
phils. On the ImmGen ULI dataset, which comprises more
populations, including NK cells and memory B cells, on all
considered populations, mMCP-counter outperformed
both ImmuCC and DCQ (p < 4e−06 for all comparisons,
with the exception of memory B cells, p = 0.0298 as
ImmuCC computed non all-zero scores for the population
for only 2 sets of mixtures). mMCP-counter also found to
consistently perform well, with the median correlation be-
tween mixture compositions and scores above 0.7 for all
considered populations in both datasets, whereas ImmuCC
and DCQ performance greatly varied depending on the
populations (Fig. 4).
We also estimated the spillover effect, that is the fact for

a method to estimate the presence of other cell types in a
setting with only one cell population present [5]. This is il-
lustrated in Additional file 1: Fig. S6, for which the analysis
was performed on the mean expression profile of CD8+ T
cells, B-derived cells, NK cells, monocytes/macrophages,
neutrophils, eosinophils, and mast cells from the
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Heamopedia (Additional file 1: Fig. S6a) and ImmGen
ULI (Additional file 1: Fig. S6b) datasets. We found that
mMCP-counter had a slight spillover where pure mast
cells could have a non-zero score for B-derived cells, pure
neutrophils a non-zero score for monocytes/macrophages
and eosinophils, and monocytes/macrophages and eosio-
phils a non-zero score for each other. However, the overall
noise ratio, measured as the ratio of off-target scores to
total scores, was low (0.28 and 0.24 for Haemopedia and
ImmGen ULI, respectively). ImmuCC had the lowest
overall noise ratios of all three methods (0.07 and 0.19),
but on the ImmGen ULI dataset, pure eosinophils are esti-
mated as principally monocytes/macrophages. DCQ was
found to have stronger spillover effects and overall noise
ratios of 0.54 and 0.66.

mMCP-counter discriminates tumor types and responders
to immune checkpoint blockade
Immune checkpoint blockade (ICB) has become in the
last decade a crucial treatment option for cancer
patients. The response rate to such drugs strongly varies
depending on the malignancy, and identifying patients
likely to respond remains a challenge. Mouse pre-clinical
models greatly help to identify markers of response that
are potentially useful in human clinical trials. We there-
fore applied mMCP-counter to pre-treatment samples of
mouse models of kidney cancer and mesothelioma that
have been treated with a combination of CTLA-4 and
PD-L1 blockade [27]. We could therefore investigate
whether mMCP counter could detect differences in the
tumor micro-environment (TME) composition between

Fig. 3 Validation of mMCP-counter on ex vivo data by comparison to flow cytometry data on n = 14 samples. a Correlation graphs between the
flow cytometry estimates (logarithmic scale, expressed in percent of the total of living cells) and the mMCP-counter scores for populations for
which the signature was accepted. Each graph corresponds to a different population. The dotted line shows the linear regression model.
Correlations are estimated with the Pearson correlation. b Correlation graph for canonical CD4+ regulatory T cells presented as in a. Following
this validation step, this signature was discarded
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cancer types and between tumors responding or not to
ICB. An unsupervised analysis (Fig. 5a) revealed that the
TME, as analyzed by mMCP-counter, principally dis-
criminates malignancies based on the tumor type.
Within each tumor type, the unsupervised clustering on
the mMCP-counter scores allows to discriminate be-
tween two groups associated with response to ICB,

suggesting that the TME composition is tightly associ-
ated with response to ICB.
In more details, we also analyzed the association be-

tween the scores for each population and response, in
both models (Fig. 5b). This revealed associations with re-
sponses that are found in both kidney cancer and meso-
thelioma models. Indeed, the two models showed that

Fig. 4 Comparison of the performance of mMCP-counter with other published methods. The three methods have been applied to 50 simulated
RNA mixture sets, each comprising 50 randomized mixtures, generated from the Haemopedia (a) and ImmGen ULI datasets (b). This graph shows
the Pearson correlation between the mixture compositions and the scores returned by the methods for each population on all mixture sets. Full
lines indicate correlation equal to 0 and 1. Dashed lines indicate correlations equal to 0.7 and 0.5. An asterisk indicates that for memory B cells,
there were only 2 datasets where ImmuCC returned non-all-zero scores and where its performance could therefore be assessed
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responsive tumors had an increased infiltration by T
cells, CD8+ T cells, and monocytes/macrophages as
compared to tumors that resisted the ICB treatment.
However, other TME differences between responders
and non-responders appear to be cancer type-specific.
Thus, in mesothelioma, responders exhibited more
NK cells, granulocytes, and eosinophils, and less
endothelial cells than non-responders, while these
associations were not found in kidney cancer models.
Moreover, some populations were particularly

differentially present in the two tumor types, includ-
ing NK cells, B-derived cells, memory B cells,
monocytes/macrophages, granulocytes, mast cells,
neutrophils, basophils, and fibroblasts.

mMCP-counter identifies immune and stromal correlates
of early Alzheimer’s disease onset
Alzheimer’s disease (AD) has been modeled by a bitrans-
genic mouse model called CK-p25 which can overex-
press p25 when induced through the calcium/

Fig. 5 mMCP-counter discriminates between tumor types and between responders and non-responders to immune checkpoint blockade.
a Heatmap showing that clustering of tumors on mMCP-counter scores accurately separates tumors based on the tumor type (n = 24
mesothelioma models, n = 24 kidney cancer models, first line) and the response to immune checkpoint blockade (second line, n = 12 responders
and n = 12 non-responders for each cancer type). The heatmap illustrates row Z-scores for all included cell populations. b Detailed differences in
mMCP-counter scores between responders and non-responders to ICB in both kidney cancer and mesothelioma models. Comparisons are
computed using Kruskal-Wallis tests followed by post hoc Dunn test for pairwise comparisons, with Benjamini-Hochberg correction for multiple
testing. *p < 0.05, **p < 0.01, ***p < 0.001, n.s. p≥ 0.05
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calmodulin-dependent protein kinase II (CK) promoter,
as compared to CK control mice [28]. p25 triggers an
aberrant activation of cyclin-dependent kinase 5, which
in turn increases phosphorylation of pathological sub-
strates including tau. We obtained RNA-seq data from
the hippocampus of CK-p25 mice, thereafter labeled as
AD mice, at 2 or 6 weeks into neurodegeneration, as well
as similar data from control CK mice [29]. Using
mMCP-counter, we observed that the immune and stro-
mal composition of the samples neatly segregated mice
with AD from CK mice (Fig. 6a), suggesting that AD im-
pacts the hippocampus’ immune infiltration and
vascularization.
In detail, we notably observed that AD mice hippo-

campus had a higher infiltration by B-derived cells, but
not memory B cells, more macrophages (since they have
an increased score for monocytes/macrophages, but not
monocytes), and more endothelial vessels (Fig. 6b). The
increase in macrophages is likely due to microglia, the
resident macrophages of the central nervous system. In-
deed, using single-cell RNA-sequencing data from the
Tabula Muris project [14], we noticed a strong expres-
sion of the monocytes/macrophages signature by micro-
glial cells in the brain (Additional file 1: Fig. S7). No
significant alterations were found for T cells, eosinophils,
lymphatics, and fibroblasts. We noted that 6-week AD
mice showed an increased presence of CD8+ T cells in
the hippocampus, although the limited number of mice
did not allow to reach significance (p = 0.01).

Discussion
Here we introduced mMCP-counter, a method to quan-
tify immune and stromal cell populations in heteroge-
neous murine samples. mMCP-counter is based on the
identification of highly specific transcriptomic signatures
for each of the cell populations considered. We found
robust signatures for a total of 16 populations: 12 im-
mune populations (T cells, CD8+ T cells, NK cells, B-
derived cells, memory B cells, monocytes/macrophages,
monocytes, granulocytes, mast cells, eosinophils, neutro-
phils, and basophils) and 4 stromal populations (vessels,
lymphatics, endothelial cells, and fibroblasts).
We validated mMCP-counter method by comparing

the scores with flow cytometry estimates on blood,
spleen, peritoneal, and tumor samples and demonstrate
a strong correlation between both methodologies. For
several populations, a very strong correlation was found,
in part due to the fact that we included samples with
both very low and very high content in these popula-
tions. While this limits the possibility to demonstrate a
proper linearity between the mMCP-counter scores and
the flow cytometry estimates, it shows that no outlier
was found, and that mMCP-counter consistently

returned extremely low or high scores for samples with
low or high content, respectively.
We also showed that mMCP-counter allows a signifi-

cant improvement over the existing methods by compar-
ing its performance to previously developed methods on
large simulated mixture datasets from two independent
datasets.
Applied to mouse models of kidney cancer and meso-

thelioma treated by combination of immune checkpoint
blockade therapies, mMCP-counter allows to decipher
the differences of tumor microenvironment composition
between both tumor types and between responders and
non-responders to immune checkpoint blockade. Along-
side known associations between TME composition and
response to ICB, such as T cells and CD8+ T cells,
mMCP-counter revealed that tumors responsive to ICB
had a higher infiltration by monocytes and/or macro-
phages. Moreover, malignancy-specific differences be-
tween responders and non-responders could be
observed, that were not previously reported. Finally,
there were strong differences in the overall composition
of the TME between mesothelioma and kidney cancer
models. Due to the rapidly increasing, almost impossible
to handle, number of agents tested in immunotherapy
clinical trials [30, 31], it is of paramount importance to
test them in pre-clinical models with a method that ro-
bustly and sensitively quantifies the TME composition.
Altogether, mMCP-counter may help find the rationale
for potential cancer-specific combination strategies and
drive more efficient personalized cancer medicine.
To assess the applicability of mMCP-counter beyond

the field of cancer, we analyzed a model of Alzheimer’s
disease. Thus, we applied mMCP-counter to hippocam-
pal transcriptomics data from a murine model of Alzhei-
mer’s disease, comparing mice with induced AD with
controls. The most striking difference was an increased
expression of the monocyte/macrophage signature in
AD mice. This may be explained by the detection by
mMCP-counter of microglia, which have been shown to
be a prominent marker of AD [32]. Conversely, the role
of B cells is disputed and looked as inessential in AD
[32]. Here, we also noticed an increase in B lineage cells.
Finally, we also noted an increased presence of endothe-
lial vessels in AD mice, in line with reports of angiogen-
esis in AD [33]. mMCP-counter could help further
analyze the immune and stromal impacts of AD and
other neurodegenerative syndromes. Although it did not
reach significance, a trend towards an increase in the
presence of CD8+ T cells in the hippocampus of AD
mice between weeks 2 and 6 was observed. This con-
cords with recent observation of presence of CD8+ T
cells in the hippocampi of AD human patients [34].
mMCP-counter is fast and memory-efficient to com-

pute the scores. The abundance scores it provides are
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shown to be linearly related to the known abundances of
the related cell populations in validation data. These
scores can thus safely be compared across the samples
of a given series, as illustrated here in two examples.
mMCP-counter scores are given in population-
dependent arbitrary units. As such, the intra-sample ra-
tio of the scores of two distinct cell populations is not
an accurate estimate of the actual intra-sample ratio of

these two populations, as reported for MCP-counter
[35]. However, such a ratio could still be compared
across samples within a series, as by construction, it
would also be linearly correlated to true ratios. This is a
major difference with some methods, including
CIBERSORT-based ImmuCC, which instead enable
intra-sample comparison but do not allow inter-sample
comparisons as it returns the proportions of immune

Fig. 6 mMCP-counter discriminates between control CK mice and Alzheimer’s disease brain tissues. a Heatmap showing that clustering of
samples on mMCP-counter scores accurately separates hippocampus samples from control CK samples and induced Alzheimer’s disease (AD) at
different time points (n = 6 AD and n = 6 CK). The heatmap illustrates row Z-scores for all included cell populations. b Detailed differences in
mMCP-counter scores between CK and induced AD hippocampus samples. The color code of the individual data points refers to the legend of
panel a. Comparisons are computed using Mann-Whitney tests. *p < 0.05, **p < 0.01
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cells within the overall immune infiltrate, not within the
full sample [5, 35]. Therefore, samples with similar rela-
tive composition of the immune infiltrate, but one highly
infiltrated and the other lowly infiltrated, would have
similar ImmuCC outputs. CIBERSORT, but not
ImmuCC, now offers an absolute version of their tool
which removes this obstacle [36]. Although mMCP-
counter allows a robust quantification of 16 immune
and stromal cell populations, the functional orientation
cannot be assessed using mMCP-counter. In particular,
this tool does not allow precise quantification of im-
munosuppressive populations such as regulatory T cells
or macrophage polarization.
For human samples, a large number of methods are

available and are part of a global set of methods to study
cancer immunity [37]. However, they differ in their per-
formance, and signatures appear to be the most critical
aspect of such approaches [38]. The robust and stringent
definition of signatures of MCP-counter allows it to be
among the best performing ones [5]. However, only few
of these methods were available for murine models to
this day. Here, we have kept the same methodology to
define gene signatures that are highly specific for the
considered cell populations, which could explain that
mMCP-counter outperforms the other approaches.
Indeed, to build mMCP-counter, we chose to use very
stringent definitions of specific transcriptomic markers.
This allows a precise estimation of all measured popula-
tions, but it is at the expense of the number of popula-
tions that can be accounted for. For instance, mMCP-
counter does not include quantification of CD4+ T cells.
Although this is a crucial cell population in many set-
tings, we would have had to diminish the signature qual-
ity cut-offs, at the expense of a lower accuracy of
mMCP-counter. Other methods, such as DCQ, estimate
changes in more than 70 immune populations, where we
only quantify 12 plus 4 stromal populations. mMCP-
counter therefore cannot estimate all precise functional
orientations but outperforms DCQ for the populations
where it applies. Nevertheless, robust signatures for
memory B cells were identified here. Similarly, there is a
growing interest in the heterogeneity of cancer-
associated fibroblasts [39, 40]. To include more details
as to fibroblasts subtypes in mMCP-counter would have
required far more detailed data on sorted fibroblasts
subtypes than what is currently available.

Conclusions
Although many different methods are currently available
to estimate the immune and stromal composition of het-
erogeneous human tissues, only a few such methods
have been reported for murine samples. In the present
study, we have introduced and validated mMCP-
counter, a method that allows a precise estimation of the

abundance of 12 immune and 4 stromal populations in
murine tissues from transcriptomic data.
mMCP-counter can provide extremely useful informa-

tion in cancer murine models. A major asset of mMCP-
counter, compared to previously reported methods, is
that it allows to simultaneously study immune and stro-
mal cell populations. The clinical relevance of the tumor
microenvironment composition is not only documented
for immune cells [3], but also for stromal cells: blood
vessels and angiogenesis are key players in cancer devel-
opment and metastasis [41], lymphatic vessels are associ-
ated with metastasis [42], and the impact of fibroblasts
raises a growing interest [43].
Beyond the field of cancer, mMCP-counter may also

have broad applications in murine models of diseases in
which immunity, inflammation, or angiogenesis play
crucial roles. In particular, it can be applied to models of
neurodegenerative syndromes such as Alzheimer’s dis-
ease, well-known auto-immune [44] and inflammatory
[45, 46] diseases, but also atherosclerosis [47].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13073-020-00783-w.

Additional file 1. PDF (.pdf) file. Supplementary figures S1 to S7.

Additional file 2. Excel spreadsheet (.xlsx). Supplementary Table S1.
Signatures used by mMCP-counter. The signatures are indicated in the
following format: Affymetrix Mouse Gene 1.0 ST Array probe ID, HUGO
gene symbol and ENSEMBL gene ID.

Acknowledgements
The authors thank Robert D. Schreiber for insightful discussions. This work
benefited from equipment and services from the iGenSeq core facility, at
Institut du Cerveau et de la Moelle épinière.

Authors’ contributions
FP, WHF, AdR, and CSF designed the study. CL, NE, and DT accessed and
curated publicly available datasets. FP, SL, MM, CL, and EB analyzed the data.
CMS and LTR carried the murine and flow cytometry experiments and RNA
extraction. MA designed the RNA-seq protocol. FP, WHF, AdR, CSF, and MM
wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Institut National de la Santé et de la
Recherche Médicale, the Université de Paris, Sorbonne University, the
Programme Cartes d’Identité des Tumeurs (CIT) from the Ligue Nationale
Contre le Cancer, grants from Institut National du Cancer (HTE-INSERM plan
cancer, C16082DS), Cancer Research for Personalized Medecine programme
(CARPEM T8), “FONCER contre le cancer” program, and Labex Immuno-
Oncology (LAXE62_9UMRS972 FRIDMAN). This project has received funding
from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 754923. The materials presented and views
expressed here are the responsibility of the authors(s) only. The EU Commis-
sion takes no responsibility for any use made of the information set out. FP
was supported by CARPEM doctorate fellowship.

Availability of data and materials
mMCP-counter can be accessed as an R package (https://github.com/cit-
bioinfo/mMCP-counter) [9].
The RNA-seq data from murine spleen, peritoneum, peripheral blood, and tu-
mors are available from ArrayExpress (accession code E-MTAB-9271) [48].

Petitprez et al. Genome Medicine           (2020) 12:86 Page 13 of 15

https://doi.org/10.1186/s13073-020-00783-w
https://doi.org/10.1186/s13073-020-00783-w
https://github.com/cit-bioinfo/mMCP-counter
https://github.com/cit-bioinfo/mMCP-counter


Ethics approval and consent to participate
The use of animals followed the institutional guidelines and the
recommendations for the care and use of laboratory animals with approvals
APAFIS#34\0-2016052518485390v2 and #9853-2017050211531651v5 by the
French Ministry of Agriculture.

Consent for publication
Not applicable

Competing interests
WHF is a consultant for Adaptimmune, AstraZeneca, Novartis, Anaveon,
Catalym, Oxford Biotherapeutics, OSE immunotherapeutics, Zelluna, and IPSE
N. The remaining authors declare that they have no competing interests.

Author details
1Centre de Recherche des Cordeliers, INSERM, Sorbonne Université,
Université de Paris, Team Inflammation, Complement and Cancer, F-75006
Paris, France. 2Programme Cartes d’Identité des Tumeurs, Ligue Nationale
contre le Cancer, F-75013 Paris, France. 3Present address: MRC Centre for
Reproductive Health, The University of Edinburgh, The Queen’s Medical
Research Institute, Edinburgh, UK. 4Fred Hutchinson Cancer Research Center,
Seattle, WA, USA.

Received: 30 March 2020 Accepted: 14 September 2020

References
1. Petitprez F, Sun C-M, Lacroix L, Sautès-Fridman C, de Reyniès A, Fridman

WH. Quantitative analyses of the tumor microenvironment composition and
orientation in the era of precision medicine. Front Oncol. 2018;8:390.

2. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture
in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:
298–306.

3. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune
contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:
717–34.

4. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression. Genome Biol. 2016;17:218.

5. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al.
Comprehensive evaluation of transcriptome-based cell-type quantification
methods for immuno-oncology. Bioinformatics. 2019;35:i436–45.

6. Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from
transcriptomics data. Cancer Immunol Immunother. 2018;67:1031–40.

7. Heng TSP, Painter MW, Consortium IGP. The Immunological Genome
Project: networks of gene expression in immune cells. Nat Immunol. 2008;9:
1091–4.

8. Elpek KG, Cremasco V, Shen H, Harvey CJ, Wucherpfennig KW, Goldstein DR,
et al. The tumor microenvironment shapes lineage, transcriptional, and
functional diversity of infiltrating myeloid cells. Cancer Immunol Res. 2014;2:
655–67.

9. Petitprez F. mMCP-counter. GitHub. 2020. https://github.com/cit-bioinfo/
mMCP-counter. Accessed 14 Sept 2020.

10. McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA).
Biostatistics. 2010;11:242–53.

11. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

12. Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis.
J Stat Softw. 2008;25:1–18.

13. Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll
DM, et al. Treatment of established tumors with a novel vaccine that
enhances major histocompatibility class II presentation of tumor antigen.
Cancer Res. 1996;56:21–6.

14. Tabula Muris Consortium. Overall coordination, Logistical coordination,
Organ collection and processing, Library preparation and sequencing,
Computational data analysis, et al. Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris. Nature. 2018;562:367–72.

15. Papatheodorou I, Moreno P, Manning J, Fuentes AM-P, George N, Fexova S,
et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res.
2020;48:D77–83.

16. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances
circular visualization in R. Bioinformatics. 2014;30:2811–2.

17. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and
correlations in multidimensional genomic data. Bioinformatics. 2016;32:
2847–9.

18. Jojic V, Shay T, Sylvia K, Zuk O, Sun X, Kang J, et al. Identification of
transcriptional regulators in the mouse immune system. Nat Immunol. 2013;
14:633–43.

19. Metcalf D. On hematopoietic stem cell fate. Immunity. 2007;26:669–73.
20. Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate

and adaptive immunity. Immunity. 2014;41:191–206.
21. Altboum Z, Steuerman Y, David E, Barnett-Itzhaki Z, Valadarsky L, Keren-

Shaul H, et al. Digital cell quantification identifies global immune cell
dynamics during influenza infection. Mol Syst Biol. 2014;10:720.

22. Chen Z, Huang A, Sun J, Jiang T, Qin FX-F, Wu A. Inference of immune cell
composition on the expression profiles of mouse tissue. Sci Rep. 2017;7:40508.

23. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Meth. 2015;
12:453–7.

24. Chen Z, Quan L, Huang A, Zhao Q, Yuan Y, Yuan X, et al. seq-ImmuCC: cell-
centric view of tissue transcriptome measuring cellular compositions of
immune microenvironment from mouse RNA-seq data. Front Immunol.
2018;9 Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2
018.01286/full. [cited 2018 Jul 23].

25. Choi J, Baldwin TM, Wong M, Bolden JE, Fairfax KA, Lucas EC, et al.
Haemopedia RNA-seq: a database of gene expression during
haematopoiesis in mice and humans. Nucleic Acids Res. 2019;47:D780–5.

26. Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A, et al.
The cis-regulatory atlas of the mouse immune system. Cell. 2019;176:897–
912.e20.

27. Zemek RM, Jong ED, Chin WL, Schuster IS, Fear VS, Casey TH, et al. Sensitization
to immune checkpoint blockade through activation of a STAT1/NK axis in the
tumor microenvironment. Sci Transl Med. 2019;11:eaav7816.

28. Cruz JC, Tseng H-C, Goldman JA, Shih H, Tsai L-H. Aberrant Cdk5 activation
by p25 triggers pathological events leading to neurodegeneration and
neurofibrillary tangles. Neuron. 2003;40:471–83.

29. Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai L-H, et al.
Conserved epigenomic signals in mice and humans reveal immune basis of
Alzheimer’s disease. Nature. 2015;518:365–9.

30. Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune
set point. Nature. 2017;541:321–30.

31. Tang J, Yu JX, Hubbard-Lucey VM, Neftelinov ST, Hodge JP, Lin Y. Trial
watch: the clinical trial landscape for PD1/PDL1 immune checkpoint
inhibitors. Nat Rev Drug Discov. 2018;17:854–5.

32. Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell
Biol. 2018;217:459–72.

33. Desai BS, Schneider JA, Li J-L, Carvey PM, Hendey B. Evidence of angiogenic
vessels in Alzheimer’s disease. J Neural Transm. 2009;116:587–97.

34. Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, et al.
Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s
disease. Nature. 2020;577:399–404.

35. Petitprez F, Vano YA, Becht E, Giraldo NA, de Reyniès A, Sautès-Fridman C,
et al. Transcriptomic analysis of the tumor microenvironment to guide
prognosis and immunotherapies. Cancer Immunol Immunother. 2017:1–8.

36. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with
digital cytometry. Nat Biotechnol. 2019;37:773–82.

37. Finotello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational
tools for interrogating cancer immunity. Nat Rev Genet. 2019;20:724–46.

38. Vallania F, Tam A, Lofgren S, Schaffert S, Azad TD, Bongen E, et al.
Leveraging heterogeneity across multiple datasets increases cell-mixture
deconvolution accuracy and reduces biological and technical biases. Nat
Commun. 2018;9:4735.

39. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast
heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6.

40. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al.
Fibroblast heterogeneity and immunosuppressive environment in human
breast cancer. Cancer Cell. 2018;33:463–479.e10.

41. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin
Oncol. 2002;29:15–8.

Petitprez et al. Genome Medicine           (2020) 12:86 Page 14 of 15

https://github.com/cit-bioinfo/mMCP-counter
https://github.com/cit-bioinfo/mMCP-counter
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01286/full
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01286/full


42. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in
cancer progression. Oncogene. 2012;31:4499–508.

43. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.
44. Lee BH, Gauna AE, Pauley KM, Park Y-J, Cha S. Animal models in

autoimmune diseases: lessons learned from mouse models for Sjögren’s
syndrome. Clin Rev Allergy Immunol. 2012;42:35–44.

45. DeVoss J, Diehl L. Murine models of inflammatory bowel disease (IBD):
challenges of modeling human disease. Toxicol Pathol. 2014;42:99–110.

46. Kips JC, Anderson GP, Fredberg JJ, Herz U, Inman MD, Jordana M, et al.
Murine models of asthma. Eur Respir J. 2003;22:374–82.

47. Lee YT, Lin HY, Chan YWF, Li KHC, To OTL, Yan BP, et al. Mouse models of
atherosclerosis: a historical perspective and recent advances. Lipids Health
Dis. 2017;16 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5240327/. [cited 2020 Feb 7].

48. Petitprez F, Lévy S, Sun C-M, Meylan M, Linhard C, Becht E, et al. RNA seq
from peritoneum, peripheral blood, spleen and tumors from TC-1 grafted
mice. ArrayExpress. 2020. https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-9271/. Accessed 14 Sept 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Petitprez et al. Genome Medicine           (2020) 12:86 Page 15 of 15

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240327/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240327/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9271/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9271/

	Abstract
	Background
	Methods
	Public data accession, curation, and normalization
	Signatures discovery
	In silico mixtures preparation
	Comparison with other published methods
	Spillover analysis
	Animal experiment
	Flow cytometry
	RNA preparation
	RNA sequencing
	RNA-seq data pre-processing and normalization
	Analysis of single-cell RNA-seq data
	Statistical analysis

	Results
	Prior hierarchization of cell populations
	Constitution of a training series
	Signatures discovery
	Sub-signature selection
	Scoring metric
	Ex vivo validation
	Comparison with other published methods
	mMCP-counter discriminates tumor types and responders to immune checkpoint blockade
	mMCP-counter identifies immune and stromal correlates of early Alzheimer’s disease onset

	Discussion
	Conclusions
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

