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ABSTRACT
K2-19 hosts a planetary system composed of two outer planets, b and c, with size of
7.0 ± 0.2 R⊕ and 4.1 ± 0.2 R⊕, and an inner planet, d, with a radius of 1.11 ± 0.05 R⊕.
A recent analysis of Transit-Timing Variations (TTVs) suggested b and c are close to but not
in 3:2 mean motion resonance (MMR) because the classical resonant angles circulate. Such
an architecture challenges our understanding of planet formation. Indeed, planet migration
through the protoplanetary disc should lead to a capture into the MMR. Here, we show that
the planets are in fact, locked into the 3:2 resonance despite circulation of the conventional
resonant angles and aligned periapses. However, we show that such an orbital configuration
cannot be maintained for more than a few hundred million years due to the tidal dissipation
experienced by planet d. The tidal dissipation remains efficient because of a secular forcing of
the innermost planet eccentricity by planets b and c. While the observations strongly rule out
an orbital solution where the three planets are on close to circular orbits, it remains possible
that a fourth planet is affecting the TTVs such that the four planet system is consistent with
the tidal constraints.

Key words: celestial mechanics – planets and satellites: dynamical evolution and stability –
planets and satellites: formation – planets and satellites: individual: (K2-19b, K2-19c, K2-19d).

1 IN T RO D U C T I O N

The numerous planet discoveries over the past decades have
revealed the large diversity in sizes and orbital architecture of
exoplanetary systems (Winn & Fabrycky 2015). The discovery of
Hot Jupiters (Mayor & Queloz 1995) and of super-Earths have
profoundly changed how we see planets and their formation outside
of the Solar system narrative. Since then, planet formation theories
have been adapted to take this diversity into account. The models
now prefer a fast formation within the protoplanetary disc lifetime
involving a migration process (e.g. Bitsch et al. 2019; Izidoro et al.
2019; Lambrechts et al. 2019, and references therein). In particular,
the migration process can lead to the capture of planet in mean
motion resonant (MMR) chains (Cresswell & Nelson 2008). Most
of the resonant chains are expected to break once the protoplanetary
disc is dissipated as most of the systems are observed outside of
MMR (Izidoro et al. 2017, 2019). Nevertheless, the period ratio
distribution still shows signpost of this past history (Fabrycky et al.
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2014). The study of the few remaining resonant chains is thus of
particular interest to unravel the very early life of planetary systems.

The capture into MMR is a complex process that depends on
the migration parameters, the planet masses and the particular
resonance where capture happen (e.g. Mustill & Wyatt 2011;
Batygin 2015). Nevertheless, we expect planets in resonant chains to
have close to circular orbits due to the eccentricity damping during
the migration (Cresswell & Nelson 2008). Such configurations
have been observed for various systems observed through both
radial velocities (RV) and with the analysis of Transit-Timing
Variations (TTV, see e.g. Agol et al. 2005; Holman & Murray 2005).
Systems where observations challenge this theoretical picture are
of particular interest as they are the only way to probe the validity
and/or the generality of theories.

K2-19 hosts three known transiting planets. The first two were
reported (Armstrong et al. 2015) based on the photometry collected
by the Kepler Space Telescope during the K2 operations (Howell
et al. 2014). K2-19 b and c appeared to be close to the 3:2 MMR,
but it was not possible to conclude whether or not the pair was
indeed in resonance. Planets b and c sizes lies between Uranus and
Saturn with respective radii of 7.0 ± 0.2 and 4.1 ± 0.2 R⊕ and
they orbit in respectively 7.9 and 11.9 d. A third inner planet was
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detected by Sinukoff et al. (2016). Planet d orbits in 2.5 d and has
a size similar to Earth with a radius of 1.11 ± 0.05 R⊕. The recent
observations by Petigura et al. (2020) of TTV for both planets
b and c, as well as RV measurements showing the reflex motion
due to planet b, have given a precise set of orbital elements for
the system. The 5 per cent fractional uncertainties, are among the
smallest for sub-Jovian exoplanets. Using a photodynamical model,
they obtained a determination of the planet masses and orbital
element down to a few per cent. One puzzling aspect of this system
is the moderate eccentricities of 0.2 with well-aligned apsides
(�� = 2 ± 2◦) of planets b and c. Petigura et al. (2020) conclude
from these observations that the system is very close to the 3:2
commensurability while not being resonant based on the analysis
of the classical resonant angles. K2-19 system’s architecture is thus
puzzling from a dynamical point of view as no clear mechanism is
identified to explain its stability. Indeed, Petigura et al. (2020) report
that the system is stable in numerical simulations but is strongly
angular momentum deficit (AMD) unstable (Laskar & Petit 2017)
and not protected by the resonance. Moreover, such a configuration
is in tension with our current understanding of planet formation.
Indeed, convergent migration within the protoplanetary disc leads to
eccentricity damping and capture into MMR (Cresswell & Nelson
2008). The planets trapped into such state have low eccentricity
(comparable to the protoplanetary disc aspect ratio �0.05) and have
their periapses anti-aligned (Batygin & Morbidelli 2013).

The dynamics of the system and its origin thus necessitate an
in-depth study. From a dynamical point of view, the proximity to
the resonance and the eccentric and aligned orbits require one to
go beyond the simple study of the resonant angles as they may not
be representative of the nature of the dynamics. Given that all the
planets are within 0.1 au, tidal effects must also be considered.

In this paper, we revisit the dynamical study of the system orbiting
K2-19. We show in Section 2 that the two outer planets are indeed
trapped into the 3:2 MMR despite being apsidally aligned and the
resonant angles circulation. The first-order resonant model explains
all the dynamics properties discussed by Petigura et al. (2020).
We also show that the inner planet is secularly coupled to the b–c
pair. We then study in Section 3 the effect of tidal dissipation on
to the inner planet d. We show that due to the eccentricity forcing
from the outer planets, planet d’s orbit tends to decay while the outer
planets circularize. The time-scale for the system evolution is shorter
than its lifetime rendering the configuration unlikely. In these two
sections, we take the results from Petigura et al. (2020) as certain
and simply draw conclusions based on the dynamical analysis. We
finally discuss in Section 4 the tension between the observations and
our theoretical understanding of the system history. In particular,
we highlight the constraints on the three planet best fit and discuss
whether the TTVs might be affected by an unmodelled effect,
including the presence of a planet not yet detected.

2 R E S O NA N T DY NA M I C S O F K 2 - 1 9 ’ S SY S T E M

In this section, we re-analyse the dynamics of the best-fitting three
planet solution given by Petigura et al. (2020). We show that
the outer planets are indeed inside the MMR and that they are
coupled secularly to the inner planet. We partially reproduce in
Table 1, the orbital elements and planet characteristics from the
best photodynamical fit from Petigura et al. (2020).

Table 1. K2-19 system parameters from Petigura et al.
(2020), reproduced by permission of the AAS.

Parameter Value

M� (M�) 0.88 ± 0.03
R� (R�) 0.82 ± 0.03
Pb (d) 7.9222 ± 0.0001
Tc, b (BJD−2454833) 2027.9023 ± 0.0002√

eb cos ωb 0.02 ± 0.06√
eb sin ωb − 0.44 ± 0.04

ib (deg) 91.5 ± 0.1
�b (deg) 0 (fixed)
Rp, b/R� 0.0777 ± 0.0006
Mp, b (M⊕) 32.4 ± 1.7
Pc (d) 11.8993 ± 0.0008
Tc, c (BJD−2454833) 2020.0007 ± 0.0004√

ec cos ωc 0.04 ± 0.04√
ec sin ωc − 0.46 ± 0.03

ic (deg) 91.1 ± 0.1
�c (deg) − 7.4 ± 0.8
Rp, c/R� 0.0458 ± 0.0004
Mp, c (M⊕) 10.8 ± 0.6
Pd (d) 2.5081 ± 0.0002
Tc, d (BJD−2454833) 2021.0726 ± 0.0018√

ed cos ωd 0 (fixed)√
ed sin ωd 0 (fixed)

id (deg) 90.8 ± 0.7
�d (deg) 0 (fixed)
Rp, d/R� 0.0124 ± 0.0004
Mp, d (M⊕) <10
Derived parameters
Rp, b (R⊕) 7.0 ± 0.2
Rp, c (R⊕) 4.1 ± 0.2
Rp, d (R⊕) 1.11 ± 0.05
eb 0.20 ± 0.03
ec 0.21 ± 0.03
�ω (deg) 2 ± 2

2.1 The 3:2 mean motion resonance

The analysis of the K2 photometric data makes it clear that K2-
19 b and c are close to the 3:2 MMR. Being close to the 3:2
MMR means that the planet mean motions nk = 2π /Pk (Pk being
the planets’ orbital periods) satisfy the arithmetic relation 2nb

− 3nc � 0. As a result, the motion of the planets are coupled
and one cannot average over the fast motions to study the long-
term orbital evolution. Instead, the classical approach to analyse
resonant motions consists of averaging the planet interactions over
the non-resonant angles to reduce the problem to a one degree of
freedom problem that is integrable. For first-order MMR such as the
3:2 resonance, d’Alembert relations (see Morbidelli 2002) impose
that at first order, the resonant terms in the development of the
perturbation depend on the angles

ϕk = 2λb − 3λc + �k (1)

where λk and � k are respectively the mean longitude and the
longitude of the periapsis of planet k. There are two different
combination of angles related to the 3:2 resonance. In principle,
the interaction between the two terms should make the system not
integrable. In reality, the system can be reduced to a one degree
of freedom resonant system thanks to a constant of motion that
appears after a canonical transformation (Sessin & Ferraz-Mello
1984; Henrard et al. 1986).
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The resonant dynamics of the K2-19 system 3103

The integrable approximation for first-order MMR has been
called the second fundamental model of resonance1 (Henrard &
Lemaitre 1983). The analytical derivation of the integrable model
for two massive planets has been carried out by several authors
(Henrard et al. 1986; Batygin & Morbidelli 2013; Deck, Payne &
Holman 2013; Delisle, Laskar & Correia 2014; Petit, Laskar &
Boué 2017; Hadden 2019). It is obtained by an expansion to first
order in eccentricity, averaging over the fast angle and a rotation of
the two classical resonant coordinates

xk =
√

Cke
ι(�k−θres) �

√
�k

2
eke

ι(�k−θres) (2)

where Ck = �k(1 −
√

1 − e2
k ) is the AMD (Laskar 1997) of the

planet k, �k = mk

√
GmSak , G is the gravitational constant, and

θ res = 3λc − 2λb. Following Petit et al. (2017), we also define

ẽk =
√

2Ck

�k

=
√

2

(
1 −

√
1 − e2

k

)
� ek. (3)

The rotation, first described in Sessin & Ferraz-Mello (1984),
transforms the coordinates xb, xc into two complex coordinates
y1 and y2 (we follow here the notations from Petit et al. 2017).
The norm of y2 is a constant of motion and the dynamics of y1

are described by the second fundamental model of resonance (see
Ferraz-Mello 2007, for a complete description of the dynamics). It
is also worth pointing out that the total AMD of the system is given
by C = I1 + I2 where Ik = ykȳk . For the 3:2 MMR, the expressions
of y1 and y2 are

y1 =
√

�b

2

ẽbe
ι�b − 1.22ẽce

ι�c

√
1 + 1.31γ

e−ιθres , (4)

y2 =
√

�c

2

1.07γ ẽbe
ι�b + ẽce

ι�c

√
1 + 1.31γ

e−ιθres , (5)

where γ = mb/mc � 3.0 for K2-19 and the numerical coefficients
come from the expansion of the resonant terms of the 3:2 resonance.
More precisely, the coefficients are linear combinations of different
Laplace coefficients evaluated at the exact Keplerian resonance. We
give the analytical expression in Appendix A and refer to Batygin &
Morbidelli (2013), Petit et al. (2017) or Hadden (2019) for recent
complete derivations of the Hamiltonian.

Without loss of generality, one may rescale y1 and y2

Y1 =
√

2

�b

y1 = ẽbe
ι�b − 1.22ẽce

ι�c

√
1 + 1.31γ

e−ιθres , (6)

Y2 =
√

2

�c

y2 = 1.07γ ẽbe
ι�b + ẽce

ι�c

√
1 + 1.31γ

e−ιθres . (7)

They are linear combinations of the eccentricities where Y1 is
roughly the eccentricity vectors difference and Y2 the mass weighted
sum. The posterior distributions for Y1 and Y2 calculated from
Petigura et al. (2020) are shown in Fig. 1. As we can see, Y1 is
much more constrained than Y2.

In the case of a system with two massive planets, the real resonant
angle corresponds to the argument of Y1. Hence, to determine if the
system is indeed in resonance one should in principle verify if the
variable Y1 evolves within the resonant island shown in Fig. 2.
In reality, for most of the resonant chains observed in exoplanet
systems, the resonant angles ϕk (equation 1) are good proxies for

1The first fundamental model is the classical pendulum.

Figure 1. Posterior distribution of the real and imaginary parts of Y1 and
Y2 calculated from Petigura et al. (2020). Colours correspond to the 1σ and
2σ confidence levels. The posterior distribution of Y1 is plotted to show the
differences in uncertainties.

Figure 2. Phase portrait of the integrable approximate Hamiltonian in the
Y1 (equation 6) space. The black lines correspond to circulating orbits, the
green lines to resonant orbits, and the red line is the separatrix. The red set
represents the posterior probability distribution of Y1 at time t = 2020 BJD −
2454833. The grey points corresponds to the result of one N-body integration
of the two-planet system for 5000 planet b orbits.

the actual resonant angle and such an analysis is not needed (see
below).

On the other hand, the actual value of Y2 is less critical to
determine whether or not the system is resonant because it does
not affect directly the shape of the resonance (Fig. 2). It can also
be shown (see Appendix A) that within the limit of the first order
model, Y2 precesses at the same frequency as θ res. Hence, Y2e

ιθres is
almost a constant that we will note

Ỹ2 = Y2e
ιθres = 1.07γ ẽbe

ι�b + ẽce
ι�c

√
1 + 1.31γ

. (8)

In reality, secular terms are neglected in this approximation. Nev-
ertheless, the evolution of Ỹ2 happens on a much longer time-scale.

The phase space dynamics of Y1 are shown in Fig. 2. We compute
the phase portrait using the expression of the Hamiltonian given in
the appendix (equation A16). We also plot the distribution of Y1

using the posterior distribution of Petigura et al. (2020). It should
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be noted that while the uncertainties on the eccentricities are of the
order of 0.03 in this paper, Y1 has a much more restricted spread,
reinforcing the argument that the system is in a resonant state, that
is the data require that Y1 is well-within the resonant island shown
in Fig. 2. Finally, we plot the result of a numerical integration of the
two-planet system. We integrated multiple draws from the posterior
distribution from Petigura et al. (2020) with REBOUND (Rein & Liu
2012) and the high order integrator SABA(10,6,4) (Blanes et al.
2013; Rein, Tamayo & Brown 2019) and for 5000 orbits of planet b
(roughly 108 yr). We show a sample trajectory in Fig. 2. All draws
behaved in qualitatively the same way, that is showing the libration
of the resonant variable Y1.

It is clear that the dynamics are resonant, moreover, we can
see that all the trajectories lie very close to the centre of the
resonance. It suggests that the mechanism that led to the capture
must have been gentle and dissipative (Batygin 2015). The most
favoured mechanism for the formation is through migration within
a protoplanetary disc (e.g. Cresswell & Nelson 2008). However,
such a scenario is incompatible with the large eccentricities as well
as the apsidal alignment of planet b and c as discussed in Petigura
et al. (2020).

2.2 Short-term eccentricity evolution

Petigura et al. (2020) also reported that eb and ec oscillate over a
period of about 6 yr. We show that this oscillation is well explained
by the resonant dynamics.

In most of the systems that have been observed in resonant
configurations, Y2 is usually negligible with respect to Y1. When
|Y2| � |Y1|, the libration of the angles ϕk (equation 1) is a good
proxy to test whether or not a system is in MMR. However, in cases
where Y2 cannot be neglected with respect to Y1, the transformation
from this set of resonant variables to the classical orbital elements
is not straightforward. This means that the angles ϕk can circulate
while the system is actually very well described by the resonant first-
order integrable model. Indeed, the inverse transformation from Yk

to the complex eccentricities can be written as

ẽbe
ι(�b−θres) = Y1 + 1.22Y2√

1 + 1.31γ
,

ẽce
ι(�c−θres) = −1.07γ Y1 + Y2√

1 + 1.31γ
. (9)

Since Y1 oscillates around the resonant centre, its argument is
librating. In a very rough approximation, we can consider it as
constant. On the other hand, Y2 has a constant norm and is
rotating, with a frequency comparable to the one of θ res that can
be approximated as

νθ = −3δnc � −2.7 × 10−3 rad d−1, (10)

where δ = 2nb/(3nc) − 1, represents the distance to the exact
Keplerian resonance. In this approximation, ẽbe

ι(�b−θres) describes a
circle centred on Y1/

√
1 + 1.31γ and of radius 1.22Y2/

√
1 + 1.31γ

(a similar analysis can be done for planet c). The angle ϕb = � b

− θ res librates if the complex plane origin lies outside of this circle.
From equation (9), we see that if |Y1| � 1.22|Y2| (respectively,
1.07γ |Y1| � |Y2|), then ϕb = � b − θ res (respectively, ϕc = � c

− θ res) circulates. In the case of the best fit studied here, both
of these conditions are fulfilled. As a result, we cannot use the
classical angles to probe the resonance. To our knowledge, this is the
first system observed where the resonance cannot be characterized
thanks to the classical angles.

Figure 3. Dynamical evolution of the eccentricities and resonant variables
of the numerical solution described in Section 2.1. The quantities Yk are
defined by equations (6) and (7) and e

app.
k by equation (11).

The 3:2 resonance can also explain the eccentricity dynamics and
in particular the apsidal aligned configuration. Let us denote with
Y 0

1 and Y 0
2 the initial conditions for Y1 and Y2 at t0, the evolution of

the eccentricities can be approximated as

ebe
ι�b � 0.46Y 0

1 e−ινθ (t−t0) + 0.56Y 0
2 ,

ece
ι�c � −1.40Y 0

1 e−ινθ (t−t0) + 0.46Y 0
2 , (11)

where γ was replaced by its average value and we used the approx-
imation ẽk � ek . From equation (11), we see that the oscillations
of ec are about three times as large as the one of eb. The period of
oscillations should be of order 6.3 yr.

We plot in Fig. 3 the evolution of the eccentricities of planet b
and c, of |Y1| and |Y2| as well as the approximation from equation
(11). While there is a small discrepancy on the frequency (the error
is of the order of 10 per cent), the amplitude of the motion is well
reproduced. Moreover, the agreement in the plane ek–�� is very
good.

The main observational evidence for the resonance comes from
the TTV. While the eccentricities evolve with a period of about
6 yr, the main frequency in the observed TTVs from Petigura et al.
(2020) is about 2 yr, which is the period of the oscillation of the
resonant variable Y1.

2.3 Secular evolution

On short time-scales (i.e. comparable to the TTV baseline), the
simple model described above gives a good description of the system
dynamics. On longer time-scales (more than a few kyr), the system is
subject to orbital precession due to secular interactions. We integrate
the same initial condition as in the previous section, but this time
we add planet d to the system. The initial condition was drawn from
the posterior distribution and the mass of planet d in this particular
realization2 is 5.9 M⊕. The simulation is run for 10 000 yr, general
relativity and stellar oblateness slightly change the precession rate
but are not included in the example shown.

We plot the eccentricities as well as |Y1| and |Y2| in Fig. 4. We
see that as in the case with only planets b and c, the eccentricities
eb and ec evolve very rapidly with the roughly 6 yr period seen

2The value is close to the average of the posterior distribution but results
were qualitatively similar for other realizations (not shown here).
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The resonant dynamics of the K2-19 system 3105

Figure 4. Eccentricities dynamical evolution over long time-scales when
planet d is included.

in Section 2.2, while |Y1| is almost constant. We checked that
the resonance is indeed preserved in this case during the whole
integration. However, |Y2| is no longer a constant and there are
large AMD exchanges between planet d and the b–c pair. Due to
the smaller planet d mass and semimajor axis, its eccentricity rises
to values around 0.37 and its mean value is 0.24. We conclude that
even starting with a circular orbit, planet d is largely coupled to the
two outer planets and therefore cannot be considered in isolation.

3 T I DA L D E C AY D U R I N G L O N G - T E R M
E VO L U T I O N

From the last section, we have seen that K2-19’s system is stable
over long time-scales. But until now we have only taken into account
the purely N-body gravitational interactions. However, due to their
eccentric orbits, the three planets are subject to tidal effects. Indeed,
the change of orbital distance leads to friction inside the planet
and thus energy dissipation. Tidal effects conserve the total angular
momentum3 (Goldreich & Soter 1966). The energy loss results in a
circularization of the orbits and a decay of the semimajor axes.

Dissipative effects are of particular importance due to the
estimated age of the system. Indeed, based on K2-19’s rotation
period, the star is older than 1 Gyr. Besides, an age of a few Gyr is
compatible with the rotation rate and effective temperature (Trevor,
private communication: the star is more slowly rotating so more
likely older than similar temperature 1 Gyr old stars).

3.1 Low-eccentricity tidal migration

Pu & Lai (2019) proposed a formation mechanism for ultrashort-
period planets (with an orbital period of around 1 d), that they
called the low-eccentricity migration scenario (see also Mardling
2007; Laskar, Boué & Correia 2012). They showed that, in a
multiplanetary system with slightly eccentric outer planets, the inner
planet migrates very efficiently inward up until the point where it is
decoupled due to the precession induced by the star oblateness and
general relativity or if the outer planets run out of AMD.

3In this analysis, we neglect the planets spin as well as tides raised on the
star, that influences the stellar spin. The total orbital angular momentum is
thus conserved

Since planet b and c interact secularly with planet d only through
the variation of Y2, we will assume that the interaction can be
reduced to a two planet case: planet d and an outer planet. This
simplification does not affect the results since the resonance is not
affected by a variation of Y2 (see Fig. 4). We use the two planet
model presented by Pu & Lai (2019) to compute the effect of tides
on planet d’s orbit. It should be noted that considering the two
outer planet as a single one is a conservative assumption as their
interactions could lead to a faster migration (Pu & Lai 2019).

Following the weak friction theory of equilibrium tides (Darwin
1880; Alexander 1973; Hut 1981; Pu & Lai 2019), the evolution
of the planets’ semimajor axes in presence of tides is given by the
equation

ȧk

ak

= −1.9 × 10−9k2,k

(
�tL,k

100 s

)( ek

0.02

)2
(

mS

M�

)2

×
(

mk

M⊕

)−1 (
Rk

R⊕

)5 ( ak

0.02 au

)−8
yr−1, (12)

where k2, k is the tidal Love number, �tL, k is the tidal lag time,
and Rk is the radius for planet k. We note that the decay time-
scale depends on the eccentricity squared. The decay is fast at
moderate eccentricity and slows down as the orbit becomes more
and more circular. While the eccentricities of the outer planets
are not extremely high, the validity of the limitation to leading
order in eccentricities in equation (12) should be discussed. From
Hut (1981), we remark the the additional terms at order e4 and e6

accelerate the dissipation. Besides, while relevant at the beginning
(when eb � 0.2) the corrections become negligible for eccentricities
closer to 0.1. It results that the equation (12) gives a conservative
decay rate and we do not include higher order corrections given the
other uncertainties on the system such as on the tidal lag times.

The tides become less important for the farthest planets because
of the steep a−8

k dependency. In principle tidal dissipation in the two
outer planets should be considered. However, the tidal dissipation in
large planets is not well constrained (Ogilvie 2014). We thus follow
the conservative assumption made in Pu & Lai (2019) to neglect
tides affecting planets b and c.

The decay rate also depends on the two coefficients k2, d, of order
unity, and �tL, d. Using this parametrized formalism allows us to
study the dissipation while remaining agnostic on the actual physical
mechanisms at play. We show below that the results are compatible
with a large range of values for the coefficients. As Pu & Lai (2019),
we take k2, d = 1. The tidal lag �tL, d is inversely proportional to the
planet’s quality factor

Qd = Pd

4π�tL,d

. (13)

Planet d is terrestrial so its tidal lag is close to 100 s (Goldreich &
Soter 1966; Pu & Lai 2019), which corresponds to a quality factor
close to 170. Using values close to the Solar system terrestrial
planets is common in the field and motivated by studies of the
viscoelastic response of planets to tidal deformations (Correia et al.
2014; Efroimsky & Makarov 2014; Makarov & Efroimsky 2014).
In our analysis, we choose to draw planet d tidal lag time from a
log-uniform distribution with boundaries 50 s ≤ �tL, d ≤ 500 s.

We first detail our model for the long-term evolution of the system
and then discuss the possible outcomes. As shown in Section 2.3,
the eccentricity of planet d is driven by its secular coupling with
the outer planets. For planet d, we replace in equation (12), the
eccentricity ed by a forced eccentricity ed, forced given by the secular
coupling. The forced eccentricity can be estimated as a function of
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planets b and c eccentricities. We use equation (40) from Pu & Lai
(2019),

ed,forced = νd,b

ωb,d + ωd,gr + ωd,tide
eb, (14)

where νd, b and ωb, d correspond to secular interaction terms between
b and d, and ωd, gr and ωd, tide are respectively the apsidal precession
of planet d due to general relativity and tides. While planet d is close
to its current position, ad � 0.035 au, the ratio ed, forced/eb is close
to 0.5. For shorter orbits (ad � 0.01 au), the ratio sharply decays
as general relativity and tidal precession become significant and
decouple planet d from the outer planets, effectively stopping the
tidal migration. The secular planet interactions are computed using
Lagrange–Laplace theory. We do not include higher order terms
despite the moderate eccentricities. Indeed, as we see in Fig. 4,
planet d eccentricity is well coupled to the pair b–c in numerical
simulations. Higher order corrections will most likely give a more
accurate coupling, but equation (14) reproduces qualitatively the
observed behaviour for moderate eccentricities and is accurate once
the eccentricities become smaller.

Finally, the outer planets eccentricities evolve as planet d migrates
because tides raised on planets conserve the total orbital angular
momentum.4 One can estimate eb as a function of the new semimajor
axis of planet d, and the initial values for eb, ad, and ab

e2
b = 1 −

(
1 − C0 − (�d,0 − �d )

�d + �b + �c

)2

, (15)

where C0 is the total initial AMD of the system and �k,0 =
mk

√
GmSak,0 is the initial circular angular momentum of planet

k. To obtain expression (15), we assumed that planets b and c see
no variation of their semimajor axis due to tidal migration and that
ec and eb were equal, which is reasonable in first approximation
due to the resonance. By inserting equations (14) and (15) into
equation (12), we obtain a differential equation for ad that gives
results comparable to a secular complete integration (Pu & Lai
2019).

We draw 1000 initial conditions from the posterior distribution of
Petigura et al. (2020). We plot in Fig. 5 the evolution of the period
of planet d over 10 Gyr. The individual evolutions are in red, while
the thick blue line corresponds to the averaged value.

The final orbital periods extend from 0 d (where planet d would
be consumed by the star) to almost 2 d. It should be noted that for
periods smaller than 0.4 d (semimajor axis of about 0.01 au), the
decay is expected to be faster due to stellar tides that are neglected in
this analysis. The typical outcome is the formation of an ultrashort-
period planet with an orbit of about a day. The final orbit of planet d
is mainly determined by the mass of planet d and the initial AMD.
For larger AMD or smaller mass md, the final orbit is shorter.

We plot in Fig. 6, the resulting distribution of planet b
eccentricity5 and of planet d period at t = 0, 500 Myr and at t =
2 Gyr. We see that even after a few hundreds of Myr, the decay
of the eccentricity and orbital period are general and significant.
After 2 Gyr, the eccentricity of planet b is smaller than 0.1 in
85 per cent of the simulations. In the simulations where planet d
does not migrate up to the star, the orbital decay is stopped because
the AMD reservoir has been emptied, that is the outer planets’ orbits
have been circularized.

4This is true as long as the planet spins are negligible with respect to the
orbital angular momentum
5We recall that planet c is assumed to have the same eccentricity as planet b
at all times.

Figure 5. Planet d period evolution due to low-eccentricity tidal migration
for 1000 initial conditions drawn from the three planet best fit. The blue
curve is the average value. The spread is explained by the range of tidal lag
times explored, the uncertainties on planet d’s mass and the system’s initial
total AMD.

Figure 6. Distribution of planet b eccentricity (top panel) and planet d
orbital period (bottom panel) at various times. In the second panel, the
initial period is represented by a blue thick line. The dashed vertical lines
correspond to the mean values at the given time. Note the log scale in the
first panel.

More importantly, the final state is reached within a few hundred
Myr. We define the half-decay time Thf as the time such that planet d
has undergone half of its orbital decay over 10 Gyr. The median half-
decay time is Thf = 472Myr and 80 per cent of the initial conditions
have Thf < 1Gyr.
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3.2 Tidal decay in the past history of the system

We also considered the case where planet d started on a wider
orbit and is currently experiencing tidal decay. We run the same
model but with planet d starting with a period of 3.5 d, correcting
the total AMD such that the system keeps the same total angular
momentum. This initial period is the largest one before planet d’s
orbit crosses planet b’s. After 2 Gyr, only 30 per cent of the systems
have planet d with a period larger than 2.4 d and eb > 0.1. The
systems compatible with today’s observations give a constrain on
planet d tidal lag. The 1σ upper limit is �t

86 per cent
L,d = 130 s (which

corresponds to a quality factor of 180 at the current orbit). The
constraints become stronger if the system is older than 2 Gyr.

It results that it may be possible that the observed system is on
its way to circularize in the next billion of years. Such a scenario
necessitates a very particular initial configuration where planet d is
originally on an orbit at the limit of instability.

4 TRU LY EC C ENTRIC? TENSIONS BETWEEN
T H E O B S E RVAT I O N S A N D T H E TH E O RY

The observations for this system are very precise and from multiple
sources. The planets were detected thanks to the photometry from
the K2 campaign (Armstrong et al. 2015; Sinukoff et al. 2016). The
orbital elements and masses are also constrained by RV data and
TTV obtained 2 yr after the K2 campaign. Petigura et al. (2020)
perform a photodynamical fit that forward model the light curve.
Given the posterior distribution obtained, a close to circular, three
planet model is strongly ruled out. Besides, the eccentricity cannot
be attributed to a bias in the fitting model. Indeed, the eccentricities
and periapsis argument are parametrized as {√e cos ω,

√
e sin ω}

such that the prior is uniform in eccentricity (Eastman, Gaudi &
Agol 2013). The eccentricity priors as well as the photodynamical
modelling have been used in a number of previous studies. In
particular, if close to circular solutions provided a fit as good as
the eccentric ones, the photodynamical model would have selected
them.

In the limit of low eccentricities, the TTV signal is mainly
affected by the distance to the nominal resonance δ = 2Pc

3Pb
− 1

and the variable Y1 (Lithwick, Xie & Wu 2012; Hadden &
Lithwick 2016), but almost not by Y2. This is the reason why
the constraint on Y1 is much better than the one on Y2. Note
that the formalism from Lithwick et al. (2012) is developed for
close but out of resonance planets. While Y1 has a much greater
effect on the TTVs than Y2, the photodynamical model can extract
more information from the TTV signal for moderate eccentricities.
Indeed, we can show that the value of Y2 as a strong influence
on the obtained TTVs. We draw 20 systems from the Monte
Carlo Markov Chain (MCMC) posterior and compute their transit
times in numerical simulations. We then refit the observed transits
while forcing Y2 to remain small (� 0.03) through numerical
simulations and keep the best fit obtained. In practice, we perform
a non- linear least-squares fit on the transit times using a cost
function defined as χ2 = 1

2

∑
j

(
T mod

j − T obs
j

)2
/σ 2

j . We force Y2

to remain small by performing a first fit after adding a term in
the cost function proportional to |Y2|2. We then take the result
of this first fit as an initial condition to a second fit without
penalization.

We checked that the close to circular systems were also inside the
3:2 MMR. Note that this experiment’s purpose is only to highlight
the influence of Y2 on the TTVs. In particular, we do not take into
account the information from the full photometry from K2. We take

Figure 7. Synthetic TTV fits to the transit times. The ‘best-fitting’ curves
(blue for planet b and orange for planet c) correspond to the best fit
where the eccentricities are not constrained. These systems have moderate
eccentricities. The low Y2 TTVs (green for planet b and red for planet c),
result from a fit to the transit times, while constraining the value of Y2 (see
the text). The pair b–c remains inside the MMR but the orbits are very close
to circular. The observed transit times are plotted as black dots. In the bottom
panels, we give the residuals to the observed transit times (in min).

into account the RV constraints on the planet masses (section 4.1,
Petigura et al. 2020).6

For the eccentric system and its close to circular counterpart, we
plot in the first panel of Fig. 7, the synthetic transit times as well
as the observed times from the K2 campaign7 and from table 1 of
Petigura et al. (2020). On the two last panels, we plot the residuals
to the observed times. As expected, we see that the synthetic TTVs
for the eccentric systems are consistent with the results obtained by
Petigura et al. (2020). We note that the solutions where Y2 was forced
to remain small fit the transit times. However, we see that the two
sets of curves behave qualitatively differently. We can also observe
that the residuals are significantly larger for the close to circular
fits with respect to the errors on the transit times. In particular, the
eccentric fit is compatible with the final set of Spitzer data for planet
b, whereas the transit times for the circular fit are at least 2σ away
from the observations. It shows that such follow-up measurements,
taken long after the initial planet discoveries are critical to the
characterization of the system. Quantitatively, the goodness of fit
of the eccentric, unconstrained fit is χ2 = 17.7 whereas it is χ2 =
27.3 for the close to circular ones.

6Fitting the transits without constraining the masses leads to systems where
planet c mass is of order 20 M⊕, whereas the RVs give an upper mass of
10.2 M⊕ (at 95 per cent confidence). The fit without the constraints were
not leading to a significant cost improvement.
7The K2 times and the associated errors were estimated in Narita et al.
(2015).
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This small experiment confirms the results from the photo-
dynamical modelling: the current observations favour eccentric
orbits over close to circular ones. It should also be noted that the
photodynamical modelling of the K2 light curve done in Petigura
et al. (2020) also incorporates information on the transit durations
that is independent on the Y1 measurement (Kipping 2010). While
Petigura et al. (2020) ruled out Y2 = 0 at 4σ formal significance, we
acknowledge the possibility of errors due to model-misspecification.
The fact that Y2 factors so critically into the system’s dynamical
interpretation motivates additional observations by the exoplanet
community.

Petigura et al. (2020) already noticed that the architecture of
the system was puzzling despite it being stable in numerical
simulations. However, it appears from the previous section that the
tidal dissipation make the current system’s architecture harder to
explain. Besides, the formation of the system remains unexplained.
So one needs to explain how to fit the observations while ensuring
that the system configuration can be observed after a few Gyr.

4.1 The formation challenge

We showed in Section 2.1 that K2-19 b and c are trapped in the
3:2 MMR with a small libration amplitude. Capture into MMR
generally emerges from dissipative effects leading to convergent
migration (Batygin 2015). The most common mechanism is migra-
tion within the protoplanetary disc (e.g. Cresswell & Nelson 2008;
Pichierri, Batygin & Morbidelli 2019). Capture can also occurs due
to convergent tidal migration (Papaloizou, Szuszkiewicz & Terquem
2018). However, both disc and tidal migration show shorter time-
scales for eccentricity damping than for change in orbital period.
Systems are thus capture close to circular orbits, an increase of the
eccentricity while the system is in the resonance typically leads
to an anti-aligned configuration as pointed out by Petigura et al.
(2020).

In order to explain the present configuration, one has to imagine a
mechanism where the planet’s eccentricity vectors are not damped
to zero but to a common value. In this case, the capture can occur
in the aligned configuration since the resonant dynamics and the
capture mainly depend on Y1 (equation 22 and fig. 7, Batygin
2015). Migration in eccentric disc has been studied theoretically
(Papaloizou 2002), but eccentric discs arise only in the presence
of large planets (Teyssandier & Ogilvie 2016) or for circumbinary
discs. Moreover, eccentricities close to 0.2 leads to an outward
migration (D’Angelo, Lubow & Bate 2006), which seems at odds
with the short period of planets b and c. In any way, it is clear that
the formation of the three planets around K2-19 remains a challenge
that does not fit the classical scenarios.

4.2 New constraints from tidal dissipation

We have shown in Section 3 that taking into account tides is
critical to understand the long-term evolution of this system.
Indeed, the best-fitting orbital solution is stable in the presence
of purely gravitational interactions over long time-scales. However,
the secular coupling between planet d and the resonant pair (see
Section 2.3) leads to a strong tidal dissipation in the inner planet.
Over a few hundreds Myr, the outer planets’ AMD is depleted and
planet d experiences a period decay. If the system had truly formed
as we see it today, we would expect to observe the outer planets on
circular orbits and the inner one on a shorter orbit.

Yet, the current system configuration might be explained in
presence of tidal decay. However, it implies that planet d orbital

period was originally larger (up to 3.5 d) and that the three planets
started on eccentric orbits with planets d and b at the limit of the
orbit crossing. It also requires that the tidal lag time of planet d is
smaller than 130 s (or that the quality factor is larger than 180), a
value that is not incompatible with our understanding of tides in
rocky bodies but that still gives a constraint on the dissipation rate.
Lower quality factors are strongly ruled out. Such a fine tuning
of the original configuration is necessary to explain the observed
architecture if the system only hosts three planets.

In this work, we have not taken into account the dissipation in
planets b and c because of the poor constraints on tidal dissipation
in gaseous planets. However, works on on tidal dissipation for
systems in MMR (e.g. Delisle et al. 2012, 2014) have shown that the
resonance is often broken before the planets circularization. Such
studies could give an additional constraint on the system.

4.3 A fourth planet?

When it is hard to reconcile the observations to the theory, it is
common to explore the possibility that the planets motion can be
perturbed by an unseen companion. From Le Verrier’s work on
Neptune to the recent Planet 9 hypothesis (Batygin et al. 2019), this
approach is historically tied to the progresses in our understanding
of the Solar system because of the very precise constraints on
the planets’ motion. However, the method have been applied with
success also in the context of exoplanet dynamics. One can cite
the example of Kepler-56 where the 40 deg obliquity of the two
transiting planets is due to a distant planetary companion (Huber
et al. 2013; Otor et al. 2016). But the most obvious application
to exoplanets is the TTV method itself that allows us to find non-
transiting planets, most of the time in resonance with a transiting
one (Kepler-88, the ‘King of TTVs’ is an example of a system
where a non-transiting planet perturbing the motion of Kepler-88b,
Nesvorný et al. 2013).

The photodynamical fit strongly reject solutions with three planet
on circular orbits. Nevertheless, it remains possible that the model
is misspecified, which would be the case if, for instance, the TTVs
are affected by a fourth planet in the system. In this case, the orbits
of the observed planets b, c, and d might be close to circular at
the expense of the addition of another planet in the resonant chain.
Indeed, a few Earth masses planet trapped in an inner resonance
with planet b can have significant TTVs contribution, while being
non-transiting or even not being detected due to its small radius.
We also point out that the TTV coverage of Petigura et al. (2020) is
sparse, especially compared to TTV data sets from the prime Kepler
mission. This data set had timing measurements over three distinct
epochs (the K2 campaign and two sets from Spitzer). We expect
sparse data sets to be more susceptible to model misspecification
errors and encourage additional transit time measurements.

While it will necessitate more transit observations in the future
to verify such a claim, it should be noted that it is possible to
add a planet between planets d and b without destabilizing the
system. Indeed, we show the positions of the planets alongside the
resonances 2:1 and 3:2 with planet b in Fig. 8. Another planet in
3:2 or 2:1 resonance with planet b is consistent with the ‘peas in
a pod’ pattern observed in the architecture of the Kepler systems
(Weiss et al. 2018). Moreover, assuming this unseen planet is in
a 2:1 resonance with planet b leads to a period ratio of 1.58 with
planet d, which is just wide of the 3:2 resonance. In other words, the
whole system could have been placed into a four planet resonant
chain during its formation before tidal effects broke the resonance
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Figure 8. Architecture of the system K2-19 including the inner 2:1 and 3:2
MMR with planet b. The size of the planets is proportional to their radius.

with the innermost planet as it has been proposed by Millholland &
Laughlin (2019) or Pichierri et al. (2019).

5 C O N C L U S I O N S A N D D I S C U S S I O N S

In systems such as K2-19, the precise orbital parameters obtained
by TTVs allow for rich dynamical studies that can provide a lot of
insight on to the system history and configuration. Such systems act
as laboratories to test theories of formation and dynamical evolution.

Following their observations, Petigura et al. (2020) conclude that
K2-19’s two outer planets are very close to the 3:2 MMR but due
to their large aligned eccentricity, the classical resonant angles are
not librating. A system with such a configuration is a challenge for
classical planet formation scenarios. Indeed, planets close to MMR
tend to be captured due to type I migration during the disc lifetime
(Cresswell & Nelson 2008). Besides, migration is very effective to
damp planet’s eccentricities.

We have shown in Section 2.1 that by considering the true
resonant variables of the system that is a combination of the
two complex eccentricities, the system rapid dynamics are well
explained by the integrable first-order model. Besides, the very
small libration amplitude of the resonant variable (fig. 2) strengthens
the classical scenario of a smooth capture through disc migration
(Batygin 2015). We also see that the resonant variable is more
constrained than the two eccentricities as it is expected for systems
presenting TTVs (Hadden & Lithwick 2016). In particular, we
want to highlight that in the context of orbital fit with such large
eccentricities, the classical methods to spot an MMR such as
monitoring the classical resonant angles (equation 1) is not reliable.
A resonant configuration can also exist even if the two orbits are
not anti-aligned.

We then studied the entire system rather than only the two outer
more massive planets. The fitted configuration leads to a very strong
secular coupling between the inner terrestrial planet d and the pair
b and c. The coupling does not disrupt the MMR but leads to
eccentricities of the order of 0.35 for the inner planet. In particular,
this planetary system’s architecture is long-lived in the presence of
purely N-body interactions.

Because planet d orbits in about 2.5 d around its host star, it is
subject to large tidal effects. The tides raised on planet d tend to
circularize its orbit at the expense of a period decay. Following the
low-eccentricity migration model presented in Pu & Lai (2019),
we show that the two outer planets transfer their AMD to the
inner planet through the secular coupling. As a result, the inner
planet continues to decay up until the point where tidal and general
relativity precession decouple it from the outer planets or if the
outer planets run out of AMD. The typical time-scale of the process
is less than 500 Myr, whereas the system is expected to be billions
of years old. The system’s current architecture remains compatible
with the tidal decay if planet d started in a longer orbit, at the limit
of orbit crossing with planet b. Note that in the absence of planet d,

it would be much harder to rule out the aligned eccentric resonant
configuration due to the poor constraint we have on the dissipation
on to gaseous planets.

Even though the photodynamical fit gives a configuration that can
only be maintained for a short amount of time with respect to the
system lifetime, the observations have to be explained. While biases
in eccentricity determination are known and have been quantified
in RV observations (Anglada-Escudé, López-Morales & Chambers
2010; Hara et al. 2019), no such study has been carried for TTVs
systems. One could speculate on the fact that another undiscovered
planet in the system can affect the outer planets periods. Indeed, in
the picture of the ‘peas in a pod’ systems (Weiss et al. 2018), the
system is compatible with the presence of another planet between
planets d and b. If such a non-transiting planet could also be in
resonance with planets b and c and lead to TTV unaccounted
for. However, the presence of an eventual fourth planet would
need to be confirmed by more measurements of planets b and c
transits.

The detailed analysis of the K2-19 system has revealed even
richer dynamics than originally reported. Taking into account the
dissipative effects also appears to be crucial for the understanding
of the system history. Nevertheless, the system formation remains
mostly unexplained. Future photometric or RV monitoring will be
crucial to unveil the nature of this system.
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A P P E N D I X A : ME A N MOT I O N R E S O NA N C E
DY NA MIC S

In this section, we briefly derive the first-order integrable model for
the p + 1:p MMR. The reader interested in a recent detailed analysis
should refer to Batygin & Morbidelli (2013), Deck et al. (2013),

Petit et al. (2017), and Hadden (2019). The model was initially
developed by Henrard & Lemaitre (1983), Sessin & Ferraz-Mello
(1984), and Henrard et al. (1986). We consider two planets of mass
m1 and m2 orbiting a star of mass m0 in a plane (the spatial case
is treated similarly). The Hamiltonian in democratic heliocentric
coordinates is (e.g. Morbidelli 2002)

H =
2∑

k=1

||r̃k||2
2mk

− μmk

rk

+ ||r̃1 + r̃2||2
2m0

− Gm1m2

r12
, (A1)

where r̃k = mk ṙk is the barycentric momentum, rk the heliocentric
position G is the gravitational constant, and μ = Gm0. We may
expressH in terms of the complex Poincaré coordinates (e.g. Laskar
1990)

�k = mk

√
μak, λk;

Ck = �k

(
1 −

√
1 − e2

k

)
, −�k;

√
Cke

−ι�k , ι
√

Cke
ι�k ;

where ak is the semimajor axis, ek the eccentricity, λk the mean
longitude and � k the longitude of periapsis of planet k. Note that the
last two lines are redundant and both set of variables can be used to
obtain the Hamiltonian equations. Expressed in these variables, the
Hamiltonian takes the form H0 + εH1, where H0 is the Keplerian
part

H0 = −μ2m3
1

2�2
1

− μ2m3
2

2�2
2

(A3)

and εH1 is the perturbation part and depends on all the coordinates.
The small parameter ε = (m1 + m2)/m0 is introduced explicitly to
emphasize the scale difference.

In order to obtain an integrable model for the p + 1:p MMR, we
carry out a canonical transformation such that the new coordinates
are (e.g. Petit et al. 2017)

� = p+1
p

�1 + �2, θ� = p(λ1 − λ2), ;

G = �1 + �2 − C1 − C2, θres = (p + 1)λ2 − pλ1;

xk = √
Cke

ι(�k−θres), ιx̄k = ι
√

Cke
−ι(�k−θres);

� has been called in the literature the scaling factor (Sessin &
Ferraz-Mello 1984), G is the total angular momentum. Because
of the d’Alembert relations, the Hamiltonian does not depend
explicitly on θ res (i.e. the angular momentum is conserved). The
two resonant angles are � k − θ res (see equation 1). We then expand
the perturbation εH1 in power series of xk and Fourier series of
θ� and only keep the first-order terms. The next step consists in
averaging the motion over the fast angle θ� . This operation is also
a canonical transformations and the new coordinates are ε close to
the old ones. They correspond to the average coordinates over a
Keplerian orbit. The resulting Hamiltonian no longer depends on
θ� . As a result, � is a constant of the averaged system. Note that
the inverse transformation of equation (A4) allow to express �k as
a function of the total AMD, C and the constants of motion � and
G.

The perturbation εH1 then takes the form

εH1 = εR1(x1 + x̄1) + εR2(x2 + x̄2), (A5)

where

R1 = − γ

1 + γ

μ2m3
2

�2
2

1

2

√
2

�1
R1(α) (A6)
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and

R2 = − γ

1 + γ

μ2m3
2

�2
2

1

2

√
2

�2
R2(α) (A7)

with γ = m1/m2 and α = a1/a2,

R1(α) = −α

4

(
3b

p

3/2(α) − 2αb
p+1
3/2 (α) − b

p+2
3/2 (α)

)
, (A8)

R2(α) = α

4

(
3b

p−1
3/2 (α) − 2αb

p

3/2(α) − b
p+1
3/2 (α)

)
+ 1

2
b

p

1/2(α). (A9)

The opposite signs of R1 and R2 should be noted. In the two
previous expressions, bk

s (α) are the Laplace coefficients that can be
expressed as

bk
s (α) = 1

π

∫ π

−π

cos(kφ)(
1 − 2α cos φ + α2

)s dφ (A10)

for k > 0. For k = 0, a 1/2 factor has to be added in the second-
hand member of equation (A10). Note that for p = 1, that is the
2:1 MMR, a contribution from the indirect part (due to the reflex
motion of the star) should be added (Delisle et al. 2012). Because
we restrict the expansion to the first order, all the coefficients are
constant and evaluated at the Keplerian resonance, α = α0 = (p/(p
+ 1))2/3.

The integrable Hamiltonian is then obtained by a final transforma-
tion proposed by Sessin & Ferraz-Mello (1984) and Henrard et al.
(1986) and generalized by Hadden (2019) to resonances of arbitrary
order. Geometrically, it consists in a rotation of the coordinates x1

and x2. We define

y1 = R1√
R2

1 + R2
2

x1 + R2√
R2

1 + R2
2

x2

y2 = R2√
R2

1 + R2
2

x1 − R1√
R2

1 + R2
2

x2. (A11)

Let us define Ik = ykȳk . I2 now becomes a constant of motion and
C = I1 + I2. I1 and I2 do not depend on the resonant angles but only
on �� . Indeed one has

I1 = 1
R2

1+R2
2

(
R2

1C1 + R2
2C2 + 2R1R2

√
C1C2 cos(�� )

)
,

I2 = 1
R2

1+R2
2

(
R2

2C1 + R2
1C2 − 2R1R2

√
C1C2 cos(�� )

)
. (A12)

Finally, we expand the Keplerian part close to the circular
Keplerian resonance given the scaling factor � and the angular

momentum G

H0 = K2

2
(C − �G)2, (A13)

where

K2

2
= − 3n2

2�2
(p + 1)2 γ + α

α
, (A14)

n2 = 2π /P2 being the mean motion and

�G = �

p + 1

pγ + (p + 1)α0

γ + α0
− G. (A15)

The integrable Hamiltonian plotted in Fig. 2 has the form

H = K2

2
(I1 + I2 − �G)2 + 2ε

√
R2

1 + R2
2

√
I1 cos(θ1) (A16)

where θ1 is the argument of y1. Such a Hamiltonian is called the
second fundamental model of resonance. We refer to the previously
cited papers and to Ferraz-Mello (2007) for a complete description
of the dynamics.

When plotting the Hamiltonian level curves in Fig. 2, we choose
the value of the parameters from the short-term integration shown
in grey. This choice is motivated by the fact that the posterior values
of I1 and I2 − �G are correlated. Indeed, while the uncertainties on
I1 are much smaller than the uncertainties on I2, it turns out, that the
uncertainties on the quantity I1 + I2 − �G are even smaller. The
ratio of the standard deviations of I1 + I2 − �G and I1 is 0.07. Since
the shape of the resonance is affected by small variations of I2 −
�G, the values associated to the integration are more faithful to the
actual dynamics. We also emphasize that it is critical to compute I2

with the exact expression and not the linear approximations for ẽk

as the approximation leads to a significant deformation of the phase
space.

As claimed in Section 2.1, θ2 = arg(Y2) precesses at the same
frequency as θ res. Indeed, by definition of the canonical variables,
we have

θ̇2 = ∂H
∂I2

= K2(C − �G) = ∂H
∂G

= θ̇res. (A17)

The frequency can be related to the distance to the Keplerian
resonance δ = pn1/((p + 1)n2) − 1 and we have θ̇2 = −n2δ(p + 1).
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