S. Andrews, FastQC: a quality control tool for high throughput sequence data, 2010.

, Bioinformatics. Available at

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful 872 approach to multiple testing, J. Roy. Stat. Soc, vol.57, issue.1, pp.289-300, 1995.

D. A. Berg, L. Belnoue, H. Song, and A. Simon, Neurotransmitter-mediated control of 875 neurogenesis in the adult vertebrate brain, Development, vol.140, pp.2548-2561, 2013.

U. L. Böhm, A. Prendergast, L. Djenoune, S. N. Figueiredo, J. Gomez et al., 880 CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal 881 circuits, Nat Commun, vol.7, pp.1-8, 2016.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence 883 data, Bioinformatics, vol.30, pp.2114-2120, 2014.

M. Brand, C. P. Heisenberg, R. M. Warga, F. Pelegri, R. O. Karlstrom et al., Mutations affecting 887 development of the midline and general body shape during zebrafish embryogenesis, Development, vol.888, pp.129-142, 1996.

Y. Cantaut-belarif, J. R. Sternberg, O. Thouvenin, C. Wyart, and P. L. Bardet, The Reissner 890 Fiber in the Cerebrospinal Fluid Controls Morphogenesis of the Body Axis, Curr Biol, vol.891, pp.2479-2486, 2018.

T. Caprile, S. Hein, S. Rodríguez, H. Montecinos, and E. Rodríguez, Reissner fiber binds and 893 transports away monoamines present in the cerebrospinal fluid, Mol Brain Res, vol.894, pp.177-192, 2003.

C. J. Chan, C. P. Heisenberg, and T. Hiiragi, Coordination of Morphogenesis and Cell-Fate 896 Specification in Development, Curr Biol, vol.27, 2017.

L. Desban, A. Prendergast, J. Roussel, M. Rosello, D. Geny et al., 899 Regulation of the apical extension morphogenesis tunes the mechanosensory response 900 of microvilliated neurons, PLoS Biol, vol.17, pp.1-27, 2019.

R. Didier, B. Dastugue, and A. Meniel, The secretory material of the subcommissural organ 902 of the chick embryo. Characterization of a specific polypeptide by two-dimensional 903 electrophoresis, Int J Dev Biol, vol.39, pp.493-499, 1995.

J. Diederen, H. Vullings, J. Rombout, and A. De-gunst-schoonderwoerd, The 905, 1983.

, Subcommissural Organ-Liquor Fibre Complex: the Binding of Catecholamines to the 906 Liquor Fibre in Frogs of the Rana esculenta Complex, Acta Zool, vol.64, pp.47-53

L. Djenoune, L. Desban, J. Gomez, J. R. Sternberg, A. Prendergast et al., The dual developmental 910 origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional 911 subtypes, Sci Rep, vol.7, pp.1-14, 2017.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., , p.913

T. R. Gingeras, STAR: Ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-914, 2013.

R. M. Fame and M. K. Lehtinen, Emergence and Developmental Roles of the Cerebrospinal 916 Fluid System, Dev Cell, vol.52, pp.261-275, 2020.

R. Faubel, C. Westendorf, E. Bodenschatz, and G. Eichele, Cilia-based flow network in the 918 brain ventricles, Science (80-), vol.353, pp.176-178, 2016.

K. Fidelin, L. Djenoune, C. Stokes, A. Prendergast, J. Gomez et al., State-dependent modulation of locomotion by GABAergic spinal sensory neurons, vol.920, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01941112

, Curr Biol, vol.25, pp.3035-3047

J. M. Forbes and C. A. Baile, Norepinephrine Diffusion from Hypothalamus to Cerebrospinal 923 Fluid and Cerebrospinal Fluid to Hypothalamus of Sheep, J Dairy Sci, vol.57, pp.826-832, 1974.

K. Fuxe and U. Ungerstedt, Localization of catecholamine uptake in rat brain after 926 intraventricular injection, Life Sci, vol.5, pp.1817-1824, 1966.

M. Galaz-montoya, S. J. Wright, G. J. Rodriguez, O. Lichtarge, and T. G. Wensel, 2017. ?2-Adrenergic 928 receptor activation mobilizes intracellular calcium via a non-canonical cAMP-929 independent signaling pathway, J Biol Chem, vol.292, pp.9967-9974

D. T. Grimes, C. W. Boswell, N. Morante, R. M. Henkelman, R. D. Burdine et al., , 2016.

, Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine 933 curvature, Science, vol.80, pp.1341-1344

C. Hagenlocher, P. Walentek, C. Ller, T. Thumberger, and K. Feistel, Ciliogenesis and 935 cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1, Cilia, vol.936, p.12, 2013.

J. Holzschuh, A. Barrallo-gimeno, A. K. Ettl, E. W. Knapik, and W. Driever, Noradrenergic 938 neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for 939 expression of the neurotransmitter phenotype, Development, vol.130, pp.5741-5754, 2003.

K. M. Jaffe, D. T. Grimes, J. Schottenfeld-roames, M. E. Werner, T. Ku et al., , p.942

N. Morante, B. J. Mitchell, and R. D. Burdine, C21orf59/kurly Controls Both Cilia Motility 943 and Polarization, vol.14, pp.1841-1849, 2016.

K. Kaiser, D. Gyllborg, J. Procházka, A. Sala?ová, P. Kompaníková et al.,

T. Radaszkiewicz, J. Harno?, M. Procházková, D. Pot??il, R. A. Barker et al., WNT5A is transported via 947 lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis, Nat 948 Commun, vol.10, pp.1-15, 2019.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, Stages of embryonic 950 development of the zebrafish, Dev Dyn, vol.203, pp.253-310, 1995.

A. G. Kramer-zucker, F. Olale, J. Haycraft, B. K. Yoder, A. F. Schier et al., Cilia-952 driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for 953 normal organogenesis, Development, vol.132, pp.1907-1921, 2005.

M. B. Langford, C. J. O'leary, L. Veeraval, A. White, V. Lanoue et al., WNT5a 955 Regulates Epithelial Morphogenesis in the Developing Choroid Plexus. Cereb Cortex 1-956 15, 2020.

C. Lehmann and W. W. Naumann, Axon pathfinding and the floor plate factor Reissner's 958 substance in wildtype, cyclops and one-eyed pinhead mutants of Danio rerio, Dev Brain 959 Res, vol.154, pp.1-14, 2005.

M. K. Lehtinen, M. W. Zappaterra, X. Chen, Y. J. Yang, A. D. Hill et al., , p.961

S. Kim, P. Ye, D. 'ercole, A. J. Wong, E. T. Lamantia et al., The Cerebrospinal, vol.962, 2011.

, Fluid Provides a Proliferative Niche for Neural Progenitor Cells, Neuron, vol.69, pp.893-905

M. Levitt, S. Kowalik, and A. I. Barkai, Measurement of tritiated norepinephrine metabolism in 965 intact rat brain, J Neurosci Methods, vol.8, pp.155-160, 1983.

H. Lu, A. Shagirova, J. L. Goggi, H. L. Yeo, and S. Roy, Reissner fibre-induced urotensin 967 signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the 968 vertebrate spine, 2020.

J. W. Maas and D. H. Landis, Brain norepinephrine and behavior. A behavioral and kinetic 970 study, Psychosom Med, vol.27, pp.399-407, 1965.

O. Meiniel, R. Meiniel, F. Lalloué, R. Didier, M. O. Jauberteau et al., The 972 lengthening of a giant protein: When, how, and why?, J Mol Evol, vol.66, 2008.

E. W. Olstad, C. Ringers, J. N. Hansen, A. Wens, C. Brandt et al., Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and 976 Regulates Ventricular Development, Curr Biol, vol.975, pp.229-241, 2019.

A. Orts-del'immagine, Y. Cantaut-belarif, O. Thouvenin, J. Roussel, A. Baskaran et al., , p.979

F. Koëth, P. Bivas, F. X. Lejeune, P. L. Bardet, and C. Wyart, Sensory Neurons Contacting 980 the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo, 2020.

, Curr Biol, vol.30, pp.827-839

H. C. Park, J. Shin, and B. Appel, Spatial and temporal regulation of ventral spinal cord 983 precursor specification by Hedgehog signaling, Development, vol.131, pp.5959-5969, 2004.

F. B. Quan, C. Dubessy, S. Galant, N. B. Kenigfest, L. Djenoune et al., , p.986

H. Tostivint, Comparative distribution and in vitro activities of the urotensin II-987 related peptides URP1 and URP2 in zebrafish: Evidence for their colocalization in spinal 988 cerebrospinal fluid-contacting neurons, PLoS One, vol.10, pp.1-21, 2015.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: A Bioconductor package for 991 differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-992, 2009.

E. Robles, E. Laurell, and H. Baier, The retinal projectome reveals brain-area-specific visual 994 representations generated by ganglion cell diversity, Curr Biol, vol.24, pp.2085-2096, 2014.

C. D. Rose, D. Pompili, K. Henke, M. P. Harris, M. Nitz et al., , p.997

J. Gennip, . Van, and R. R. Meyer-miner-a, Report SCO-Spondin Defects and 998 Neuroinflammation Are Conserved Mechanisms Driving Spinal Deformity across 999 Genetic Models of Idiopathic Scoliosis Report SCO-Spondin Defects and 1000 Neuroinflammation Are Conserved Mechanisms Driving Spinal Deformity across Gene 1001 1-11, 2020.

A. Rossi, Z. Kontarakis, C. Gerri, H. Nolte, S. Hölper et al., Genetic 1003 compensation induced by deleterious mutations but not gene knockdowns, Nature, vol.1004, pp.230-233, 2015.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., , p.1006

C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White et al., , p.1007

P. Tomancak and A. Cardona, Fiji: An open-source platform for biological-image 1008 analysis, Nat Methods, vol.9, pp.676-682, 2012.

M. Ségalen, C. A. Johnston, C. A. Martin, J. G. Dumortier, K. E. Prehoda et al., , p.1010

Y. Bellaïche, The Fz-Dsh Planar Cell Polarity Pathway Induces Oriented Cell 1011 Division via Mud/NuMA in Drosophila and Zebrafish, Dev Cell, vol.19, 2010.

C. Singh, G. Oikonomou, and D. A. Prober, Norepinephrine is required to promote 1014 wakefulness and for hypocretin-induced arousal in zebrafish, Elife, vol.4, pp.1-22, 1015.

S. L. Steele, X. Yang, M. Debiais-thibaud, T. Schwerte, B. Pelster et al., In vivo and in vitro assessment of cardiac-adrenergic receptors in larval zebrafish 1018 (Danio rerio), J Exp Biol, vol.214, pp.1445-1457, 1017.

J. R. Sternberg, A. E. Prendergast, L. Brosse, Y. Cantaut-belarif, and O. Thouvenin,

A. Del'immagine, L. Castillo, L. Djenoune, S. Kurisu, J. R. Mcdearmid et al., Pkd2l1 is required for mechanoception in 1022 cerebrospinal fluid-contacting neurons and maintenance of spine curvature, Nat 1023 Commun, vol.9, pp.1-10, 2018.

J. Sullivan-brown, J. Shottenfeld, N. Okabe, C. L. Hostetter, F. C. Serluca et al., Zebrafish mutations affecting cilia motility share similar cystic phenotypes 1026 and suggest a mechanism of cyst formation that differs from pkd2 morphants, Dev Biol, vol.314, pp.261-275, 1027.

O. Thouvenin, L. Keiser, Y. Cantaut-belarif, M. Carbo-tano, F. Verweij et al., Origin and role of the cerebrospinal fluid 1030 bidirectional flow in the central canal, Elife, vol.9, pp.1-37, 2020.

H. Tostivint, D. Ocampo-daza, C. A. Bergqvist, F. B. Quan, M. Bougerol et al., Molecular evolution of GPCRs: Somatostatin/urotensin II receptors, J Mol 1033 Endocrinol, vol.52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02427066

B. Troutwine, P. Gontarz, R. Minowa, A. Monstad-rios, M. Konjikusic et al., , p.1035

L. Solnica-krezel and R. S. Gray, The Reissner Fiber is Highly Dynamic in Vivo and 1036 Controls Morphogenesis of the Spine. SSRN Electron J 1-10, 1037.

H. Vaudry, J. Leprince, D. Chatenet, A. Fournier, D. G. Lambert et al., , p.1039

A. Schwertani, H. Tostivint, and D. Vaudry, International union of basic and clinical 1040 pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: From 1041 structure to function, Pharmacol Rev, vol.67, pp.214-258, 2015.

Z. Wang, Y. Nishimura, Y. Shimada, N. Umemoto, M. Hirano et al., , p.1043

J. Kuroyanagi and T. Tanaka, Zebrafish ?-adrenergic receptor mRNA expression and 1044 control of pigmentation, Gene, vol.446, pp.18-27, 2009.

L. Yang, S. Rastegar, and U. Strähle, Regulatory interactions specifying Kolmer-Agduhr 1046 interneurons, Development, vol.137, pp.2713-2722, 2010.

X. Zhang, S. Jia, Z. Chen, Y. L. Chong, H. Xie et al., , 1048.

, Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to 1049 straighten the vertebrate body axis, Nat Genet, vol.50, pp.1666-1673

, Figure 6 -Video 1. Adrb2 is expressed in the midline of the ventral most region of the 1170 neural tube that is different from that of CSF-contacting neurons

, Z-stack of a Tg(pkd2l1:GCaMP5G) control sibling (top) and a Tg

, scospondin icm15/icm15 mutant (bottom) at 30 hpf immunostained against GFP (green) and 1173

, In both cases, Adrb2-postive domains are inserted between two rows of 1174

, The video 1175 represents a 20.5 µm deep slice (0.5 µm z-step) for both embryos, GFP-positive ventral CSF-contacting neurons, pp.10-1176