A. S. Adeleye, J. R. Conway, K. Garner, Y. Huang, Y. Su et al., Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability, Chemical Engineering Journal, vol.286, pp.640-662, 2016.

K. Akasaka, H. Uemoto, F. Wilt, K. Mitsunaga-nakatsubo, and H. Shimada, Oralaboral ectoderm differentiation of sea urchin embryos is disrupted in response to calcium ionophore, Growth & Differentiation, vol.39, issue.3, pp.373-379, 1997.

S. N. Al-subiai, V. M. Arlt, P. E. Frickers, J. W. Readman, B. Stolpe et al., Merging nano-genotoxicology with eco-genotoxicology: An integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C60 fullerenes and fluoranthene in marine mussels, Mytilus sp, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.745, issue.1, pp.92-103, 2012.

V. Aruoja, H. Dubourguier, K. Kasemets, and A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata, The Science of the Total Environment, vol.407, issue.4, pp.1461-1468, 2009.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al.,

K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nature Genetics, vol.25, issue.1, pp.25-29, 2000.

L. Bachelet-violette, A. K. Silva, M. Maire, A. Michel, O. Brinza et al., Strong and specific interaction of ultra small superparamagnetic iron oxide nanoparticles and human activated platelets mediated by fucoidan coating, RSC Advances, vol.4, issue.10, pp.4864-4871, 2014.

T. J. Baker, C. R. Tyler, and T. S. Galloway, Impacts of metal and metal oxide 26 nanoparticles on marine organisms, Environmental Pollution, vol.186, pp.257-271, 2014.

A. K. Baltaci and K. Yuce, Zinc Transporter Proteins, Neurochemical Research, vol.43, issue.3, pp.517-530, 2018.

P. Bardou, J. Mariette, F. Escudié, C. Djemiel, and C. Klopp, jvenn: an interactive Venn diagram viewer, BMC bioinformatics, vol.15, p.293, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640484

I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru, Ecotoxicity of nanoparticles of CuO and ZnO in natural water, Environmental Pollution, vol.158, issue.1, pp.41-47, 2010.

O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer et al., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review, Archives of Toxicology, vol.87, issue.7, pp.1181-1200, 2013.

R. Brayner, A. Couté, J. Livage, C. Perrette, and C. Sicard, Micro-algal biosensors, Analytical and Bioanalytical Chemistry, vol.401, issue.2, pp.581-597, 2011.

M. Bundschuh, J. Filser, S. Lüderwald, M. S. Mckee, G. Metreveli et al.,

R. Schulz and S. Wagner, Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe, p.30, 2018.

L. Canesi and I. Corsi, Effects of nanomaterials on marine invertebrates, The Science of the Total Environment, vol.565, pp.933-940, 2016.

C. Carballeira, J. Ramos-gómez, L. Martín-díaz, and T. A. Delvalls, Identification of specific malformations of sea urchin larvae for toxicity assessment: application to marine pisciculture effluents, Marine Environmental Research, vol.77, pp.12-22, 2012.

A. Châtel and C. Mouneyrac, Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.196, pp.61-70, 2017.

F. Chen, Z. Xiao, L. Yue, J. Wang, Y. Feng et al., Algae 27 response to engineered nanoparticles: current understanding, mechanisms and implications, Environmental Science: Nano, vol.6, issue.4, pp.1026-1042, 2019.

M. Chiu, Z. A. Khan, S. G. Garcia, A. D. Le, A. Kagiri et al.,

H. W. Drobenaire, P. H. Santschi, A. Quigg, and W. Chin, Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton, Nanoscale Research Letters, vol.12, issue.1, p.620, 2017.

J. A. Coffman and E. H. Davidson, Oral-Aboral Axis Specification in the Sea Urchin Embryo, Developmental Biology, vol.230, issue.1, pp.18-28, 2001.

J. F. Covian-nares, R. M. Smith, and S. S. Vogel, Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development, Developmental Biology, vol.316, issue.1, pp.135-148, 2008.

B. J. Crawford and R. D. Burke, TEM and SEM Methods. In: Methods in Cell Biology, pp.411-441, 2004.

M. L. Cuvelier, J. Guo, A. C. Ortiz, M. J. Van-baren, M. A. Tariq et al.,

A. Z. Worden, Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress, PloS One, vol.12, issue.3, p.172135, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01490543

E. Derelle, C. Ferraz, M. Escande, S. Eychenié, R. Cooke et al., Life-cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri, PloS One, vol.3, issue.5, p.2250, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02114367

J. Exbrayat, E. N. Moudilou, and E. Lapied, Harmful Effects of Nanoparticles on Animals, Journal of Nanotechnology, p.12, 2015.

E. A. Fairbairn, A. A. Keller, L. Mädler, D. Zhou, S. Pokhrel et al., Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological, p.28, 2011.

, response in sea urchin development, Journal of Hazardous Materials, vol.192, issue.3, pp.1565-1571

N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd et al., Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environmental Science & Technology, vol.41, issue.24, pp.8484-8490, 2007.

C. Gambardella, S. Ferrando, A. M. Gatti, E. Cataldi, P. Ramoino et al., Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles, Environmental Toxicology, issue.11, pp.1552-1562, 2016.

S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji et al.,

R. Damoiseaux, K. A. Bradley, L. Mädler, and A. E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping, ACS nano, vol.4, issue.1, pp.15-29, 2010.

F. Gottschalk, C. Lassen, J. Kjoelholt, F. Christensen, and B. Nowack, Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment, International Journal of Environmental Research and Public Health, vol.12, issue.5, pp.5581-5602, 2015.

F. Gottschalk, T. Sun, and B. Nowack, Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies, Environmental Pollution, vol.181, pp.287-300, 1987.

R. R. Guillard and P. E. Hargraves, Stichochrysis immobilis is a diatom, not a chrysophyte, Phycologia, vol.32, issue.3, pp.234-236, 1993.

K. Ø. Hanssen, J. H. Andersen, T. Stiberg, R. A. Engh, and J. Svenson,

E. Hansen, Antitumoral and mechanistic studies of ianthelline isolated from the Arctic sponge Stryphnus fortis, Anticancer Research, vol.32, issue.10, pp.4287-4297, 2012.

M. Heinlaan, A. Ivask, I. Blinova, H. Dubourguier, and A. Kahru, , p.29, 2008.

B. Nanosized and . Zno, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, vol.71, issue.7, pp.1308-1316

J. Hou, Y. Wu, X. Li, B. Wei, S. Li et al., Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms, 2018.

, Chemosphere, vol.193, pp.852-860

K. Huang, D. R. Diener, A. Mitchell, G. J. Pazour, G. B. Witman et al., Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella, The Journal of Cell Biology, vol.179, issue.3, pp.501-514, 2007.

E. Kadar, F. Simmance, O. Martin, N. Voulvoulis, S. Widdicombe et al., The influence of engineered Fe2O3 nanoparticles and soluble (FeCl3) iron on the developmental toxicity caused by CO2-induced seawater acidification, Environmental Pollution, vol.158, issue.12, pp.3490-3497, 2010.

M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa et al.,

S. Kawashima, S. Okuda, T. Tokimatsu, Y. , and Y. , KEGG for linking genomes to life and the environment, Nucleic Acids Research, vol.36, pp.480-484, 2008.

M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-kinoshita, M. Itoh et al., From genomics to chemical genomics: new developments in KEGG, Nucleic Acids Research, vol.34, pp.354-357, 2006.

A. A. Keller and A. Lazareva, Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local, Environmental Science & Technology Letters, vol.1, issue.1, pp.65-70, 2014.

A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr et al., Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environmental Science & Technology, vol.44, issue.6, pp.1962-1967, 2010.

R. Kim, J. S. Choi, B. Kim, and W. Kim, Comparative Analysis of Transcriptional Profile Changes in Larval Zebrafish Exposed to Zinc Oxide Nanoparticles and Zinc Sulfate, Bulletin of Environmental Contamination and Toxicology, vol.98, issue.2, pp.183-189, 2017.

E. M. Klimova, A. I. Bozhkov, E. A. Bychenko, E. V. Lavinskaya, and N. M. Zholobak,

A. M. Korobov, Characteristics of the response of the microalga (Dunaliella viridis) to cerium compounds in culture, Biosystems Diversity, vol.27, issue.2, pp.142-147, 2019.

P. Landa, R. Vankova, J. Andrlova, J. Hodek, P. Marsik et al.,

T. Vanek, Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot, Journal of Hazardous Materials, pp.55-62, 2012.

J. R. Lead, G. E. Batley, P. J. Alvarez, M. Croteau, R. D. Handy et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review, Environmental Toxicology and Chemistry, vol.37, issue.8, pp.2029-2063, 2018.

M. Levy, N. Luciani, D. Alloyeau, D. Elgrabli, V. Deveaux et al., Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, issue.16, pp.3988-3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

N. Lewinski, V. Colvin, and R. Drezek, Cytotoxicity of Nanoparticles. Small, vol.4, issue.1, pp.26-49, 2008.

H. Ma, P. M. Bertsch, T. C. Glenn, N. J. Kabengi, and P. L. Williams, Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans, Environmental Toxicology and Chemistry, vol.28, issue.6, pp.1324-1330, 2009.

H. Ma, P. L. Williams, and S. A. Diamond, Ecotoxicity of manufactured ZnO nanoparticles -A review, Environmental Pollution, vol.172, pp.76-85, 2013.

M. Magro, G. Sinigaglia, L. Nodari, J. Tucek, K. Polakova et al., , p.31, 2012.

, rhodamine derivative to OH? stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors, Acta Biomaterialia, vol.8, issue.6, pp.2068-2076

S. M. Majedi, H. K. Lee, and B. C. Kelly, Chemometric Analytical Approach for the Cloud Point Extraction and Inductively Coupled Plasma Mass Spectrometric Determination of Zinc Oxide Nanoparticles in Water Samples, Analytical Chemistry, vol.84, issue.15, pp.6546-6552, 2012.

S. Manzo, M. L. Miglietta, G. Rametta, S. Buono, D. Francia et al., Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus, Journal of Hazardous Materials, pp.1-9, 2013.

M. Marcus, M. Karni, K. Baranes, I. Levy, N. Alon et al., Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations, Journal of Nanobiotechnology, p.14, 2016.

I. Marisa, V. Matozzo, M. Munari, A. Binelli, M. Parolini et al., In vivo exposure of the marine clam Ruditapes philippinarum to zinc oxide nanoparticles: responses in gills, digestive gland and haemolymph. Environmental Science and Pollution Research International, vol.23, pp.15275-15293, 2016.

V. Marrone, M. Piscopo, G. Romano, A. Ianora, A. Palumbo et al., , 2012.

, Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus, PloS One, vol.7, issue.2, p.31750

R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Transactions on Magnetics, vol.17, issue.2, pp.1247-1248, 1981.

O. Migliaccio, I. Castellano, G. Romano, and A. Palumbo, Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide, Aquatic Toxicology, vol.156, pp.125-134, 2014.

R. J. Miller, H. S. Lenihan, E. B. Muller, N. Tseng, S. K. Hanna et al., , p.32, 2010.

, Impacts of Metal Oxide Nanoparticles on Marine Phytoplankton. Environmental Science & Technology, vol.44, issue.19, pp.7329-7334

D. R. Mitchell, The evolution of eukaryotic cilia and flagella as motile and sensory organelles, Advances in Experimental Medicine and Biology, vol.607, pp.130-140, 2007.

M. Montané and K. Kloppstech, The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?, Gene, vol.258, issue.1, pp.1-8, 2000.

M. Montané, B. Petzold, and K. Kloppstech, Formation of early-light-inducibleprotein complexes and status of xanthophyll levels under high light and cold stress in barley (Hordeum vulgare L.), Planta, vol.208, issue.4, pp.519-527, 1999.

N. Von-moos and V. I. Slaveykova, Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae--state of the art and knowledge gaps, Nanotoxicology, vol.8, issue.6, pp.605-630, 2014.

E. Morelli, E. Gabellieri, A. Bonomini, D. Tognotti, G. Grassi et al., TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta, Ecotoxicology and Environmental Safety, vol.148, pp.184-193, 2018.

K. Mukherjee and K. Acharya, Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats, Archives of Environmental Contamination and Toxicology, vol.75, issue.2, pp.175-186, 2018.

M. Oliviero, S. Schiavo, G. Rametta, M. L. Miglietta, and S. Manzo, Different sizes of ZnO diversely affected the cytogenesis of the sea urchin Paracentrotus lividus. The Science of the Total Environment, pp.176-183, 2017.

H. Park and M. Yeo, Comparison of gene expression patterns from zebrafish embryos between pure silver nanomaterial and mixed silver nanomaterial containing cells of Hydra magnipapillata, Molecular & Cellular Toxicology, vol.11, issue.3, pp.307-314, 2015.

S. Piticharoenphun, L. ?iller, M. Lemloh, M. Salome, M. Cotte et al.,

A. Gianoncelli, B. G. Mendis, U. Bangert, N. R. Poolton, B. R. Horrocks et al., Agglomeration of Silver Nanoparticles in Sea Urchin, International Journal of Environmental Pollution and Remediation, 2012.

N. Polak, D. S. Read, K. Jurkschat, M. Matzke, F. J. Kelly et al.,

S. R. Stürzenbaum, Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.160, pp.75-85, 2014.

H. Qian, K. Zhu, H. Lu, M. Lavoie, S. Chen et al., Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses, Science of The Total Environment, vol.572, pp.1213-1221, 2016.

A. Quigg, W. Chin, C. Chen, S. Zhang, Y. Jiang et al., Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic Matter, ACS Sustainable Chemistry & Engineering, vol.1, issue.7, pp.686-702, 2013.

M. A. Ragusa, S. Costa, A. Cuttitta, F. Gianguzza, and A. Nicosia, Coexposure to sulfamethoxazole and cadmium impairs development and attenuates transcriptional response in sea urchin embryo, Chemosphere, vol.180, pp.275-284, 2017.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, issue.1, pp.139-140, 2010.

M. C. Roccheri, M. Agnello, R. Bonaventura, and V. Matranga, Cadmium induces the expression of specific stress proteins in sea urchin embryos, Biochemical and Biophysical Research Communications, vol.321, issue.1, pp.80-87, 2004.

T. L. Rocha, T. Gomes, V. S. Sousa, N. C. Mestre, and M. J. Bebianno, Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview, 2015.

, Marine Environmental Research, vol.111, pp.74-88

J. Roger, J. N. Pons, R. Massart, A. Halbreich, and J. C. Bacri, Some biomedical applications of ferrofluids, The European Physical Journal Applied Physics, vol.5, issue.3, pp.321-325, 1999.

R. Russo, R. Bonaventura, and V. Matranga, Time-and dose-dependent gene expression in sea urchin embryos exposed to UVB, Marine Environmental Research, vol.93, pp.85-92, 2014.

C. P. Satori, V. Kostal, and E. A. Arriaga, Individual organelle pH determinations of magnetically-enriched endocytic organelles via laser-induced fluorescence detection, Analytical chemistry, vol.83, issue.19, pp.7331-7339, 2011.

R. Scheibe, Malate valves to balance cellular energy supply, Physiologia Plantarum, vol.120, issue.1, pp.21-26, 2004.

B. F. Silva, . Da, S. Pérez, P. Gardinalli, R. K. Singhal et al., Analytical chemistry of metallic nanoparticles in natural environments, TrAC Trends in Analytical Chemistry, vol.30, issue.3, pp.528-540, 2011.

R. K. Singhal, J. Preetha, R. Karpe, K. Tirumalesh, S. C. Kumar et al., The use of ultra filtration in trace metal speciation studies in sea water, Environment International, vol.32, issue.2, pp.224-228, 2006.

G. Su, X. Zhang, J. P. Giesy, J. Musarrat, Q. Saquib et al., Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach, Environmental Science and Pollution Research, vol.22, issue.22, pp.17434-17442, 2015.

Z. Sun and C. A. Ettensohn, TGF-? sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo, Developmental Biology, vol.421, issue.2, pp.149-160, 2017.

C. Torres-duarte, A. S. Adeleye, S. Pokhrel, L. Mädler, A. A. Keller et al., Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos, Nanotoxicology, vol.10, issue.6, pp.671-679, 2016.

C. Torres-duarte, K. M. Ramos-torres, R. Rahimoff, and G. N. Cherr, Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake, Aquatic Toxicology, vol.189, pp.134-141, 2017.

B. J. Trask, G. J. Van-den-engh, and J. H. Elgershuizen, Analysis of phytoplankton by flow cytometry, Cytometry, vol.2, issue.4, pp.258-264, 1982.

L. Tsiokas, Function and regulation of TRPP2 at the plasma membrane, American Journal of Physiology. Renal Physiology, vol.297, issue.1, pp.1-9, 2009.

I. P. Tualla and J. G. Bitacura, Effects of Cadmium and Zinc on the Gamete Viability, Fertilization, and Embryonic Development of Tripneustes gratilla (Linnaeus), 2016.

. Scientifica, , p.8175213, 2016.

V. Valdiglesias, N. Fernández-bertólez, G. Kiliç, C. Costa, S. Costa et al., Are iron oxide nanoparticles safe? Current knowledge and future perspectives, Journal of Trace Elements in Medicine and Biology, vol.38, pp.53-63, 2016.

S. W. Wong, P. T. Leung, A. B. Djuri?i?, and K. M. Leung, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility, Analytical and Bioanalytical Chemistry, vol.396, issue.2, pp.609-618, 2010.

A. Z. Worden, J. Lee, T. Mock, P. Rouzé, M. P. Simmons et al.,

B. Henrissat, C. Napoli, S. M. Mcdonald, M. S. Parker, S. Rombauts et al.,

P. Dassow, J. H. Badger, P. M. Coutinho, E. Demir, I. Dubchak et al., , p.36

W. Gready, J. E. John, U. Lanier, W. Lindquist, E. A. Lucas et al.,

S. Robbens, J. Schmutz, E. Toulza, T. Wyss, A. Zelensky et al., Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas, Science, issue.5924, pp.268-272, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00693449

B. Wu, C. Torres-duarte, B. J. Cole, and G. N. Cherr, Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers, Environmental Science & Technology, vol.49, issue.9, pp.5760-5770, 2015.

T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert et al., Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties, ACS Nano, vol.2, issue.10, pp.2121-2134, 2008.

M. M. Yung, S. W. Wong, K. W. Kwok, F. Z. Liu, Y. H. Leung et al., Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana, Aquatic Toxicology, vol.165, pp.31-40, 2015.

X. Zhao, S. Wang, Y. Wu, H. You, and L. Lv, Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish, Aquatic Toxicology, pp.49-59, 2013.

C. Zhou, Y. Carotenuto, V. Vitiello, C. Wu, J. Zhang et al., De novo transcriptome assembly and differential gene expression analysis of the calanoid copepod Acartia tonsa exposed to nickel nanoparticles, Chemosphere, vol.209, pp.163-172, 2018.