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We show propagation of moments in velocity for the 3-dimensional Vlasov-Poisson system with a uniform magnetic field B = (0, 0, ω) by adapting the work of Lions, Perthame. The added magnetic field also produces singularities at times which are the multiples of the cyclotron period t = 2πk ω , k ∈ N. This result also allows to show propagation of regularity for the solution. For uniqueness, we extend Loeper's result by showing that the set of solutions with bounded macroscopic density is a uniqueness class.

1. Introduction. We consider the Cauchy problem for the Vlasov-Poisson system with an external magnetic field, which is given by (1.1)

         ∂ t f + v • ∇ x f + E • ∇ v f + v ∧ B • ∇ v f = 0, div x E(t, x) = R 3 f (t, x)dv =: ρ(t, x). f (0, x, v) = f in (x, v) ≥ 0
This set of equations governs the evolution of a cloud of charged particles, where f (t, x, v) is the distribution function at time t ≥ 0, position x ∈ R 3 and velocity v ∈ R 3 . E corresponds to the self-consistent electric field and B is an external, constant and uniform magnetic field given by (1.2)

B =   0 0 ω   .
where ω > 0 is the cyclotron frequency.

The unmagnetized Vlasov-Poisson system has been extensively studied with the works of Arsenev [START_REF] Arsenev | Global existence of a weak solution of Vlasov's system of equations[END_REF] for weak solutions, Okabe and Ukai in dimension 2 [START_REF] Okabe | On classical solutions in the large in time of two-dimensional Vlasovs equation[END_REF] and Bardos and Degond for small initial data [START_REF] Bardos | Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[END_REF]. In the case of general initial data in dimension 3, two main approaches have been developed. The first one is based on the study of the charateristic curves with the papers from Pfaffelmoser and Schäffer [START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[END_REF][START_REF] Schäffer | Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions[END_REF]. The second approach, first introduced for Vlasov type equations by Lions and Perthame [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF], is based on the propagation of moments of the distribution function.

This has resulted in several works where similar propagation properties are shown in the case of more general systems [START_REF] Gasser | Regularity and propagation of moments in some nonlinear Vlasov systems[END_REF] and also in the case of more general assumptions [START_REF] Castella | Propagation of space moments in the Vlasov-Poisson equation and further results[END_REF][START_REF] Chen | Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy[END_REF][START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF][START_REF] Pallard | Space moments of the Vlasov-Poisson system: propagation and regularity[END_REF].

As for the Vlasov-Poisson system with an external magnetic field, it is a system of considerable importance for the modeling of tokamak plasmas. For this reason, there exists an abundant literature on the case with strong magnetic field, where the aim is
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to derive asymptotic models [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Degond | On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: Formal derivation[END_REF][START_REF] Frenod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field[END_REF][START_REF] Frenod | Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field in quasineutral regime[END_REF] and devise numerical methods that capture this asymptotic behavior [START_REF] Crouseilles | Uniformly accurate particle-in-cell method for the long time solution of the two-dimensional VlasovPoissonequation with uniform strong magnetic field[END_REF][START_REF] Frenod | Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field[END_REF]. The Vlasov-Poisson system with an external and homogeneous magnetic field has also been studied in the half-space and in an infinite cylinder in [START_REF] Skubachevskii | Vlasov-Poisson equations for a two-component plasma in a homogeneous magnetic field[END_REF][START_REF] Skubachevskii | Classical solutions of the Vlasov-Poisson equations with external magnetic field in a half-space[END_REF].

With the external magnetic field, the first difficulty is finding an appropriate representation formula for the macroscopic density, since the characteristics are a lot more complex than in the case without magnetic field. The second and most arduous difficulty is the existence of singularities at times t = 0, 2π ω , 4π ω , ..., which correspond to the cyclotron periods, when we try to control the electric field. We manage to avoid these singularities because our estimates are valid for t ∈ [0 , T ω ] with T ω = π ω which is independent of f in . This allows us to reiterate our analysis on [T ω , 2T ω ] and so on.

Hence, in this paper, we succeed in extending the results of [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF] to the case of Vlasov-Poisson with an homogeneous external magnetic field. This is a first step to proving propagation of moments in the case of a non-homogeneous magnetic field.

First, we detail our main result and several additional results in section 2. Then, in section 3, we continue by presenting the basic definitions and lemmas that will be necessary for the proof of our main result in section 4, which is the core of this work. More precisely, we will give the new representation formula for the macroscopic density in subsection 4.1 and show how we control the electric field with the "magnetized" characteristics in subsection 4.2. To treat the singularities that appear, we establish a Grönwall inequality on [0 , T ω ] in subsection 4.3 and show how this leads to propagation of moments for all time in subsection 4.4. In subsection 4.5, we explore a method where we place the magnetic part of the Lorentz force in the source term, which doesn't work, but is so simple that it's still interesting to mention. Finally, we will give the proofs of our additional results in section 5. In particular, we will explicit a new condition on the initial data so as to obtain the boundedness of the macroscopic density.

2.

Results. First we give some notations.

For k ≥ 0 we denote the k-th order moment density and the k-th order moment in velocity of a non-negative, measurable function f :

R 6 → [0 , ∞[ by m k (f )(x) := |v| k f dv and M k (f ) := m k (f )(x)dx = |v| k f dvdx.
We write E(t) for the energy of system (1.1), which is given by (2.1)

E(t) := 1 2 R 3 ×R 3 |v| 2 f (t, x, v)dxdv + 1 2 R 3 |E(t, x)| 2 dx,
and we also write E in := E(0).

Main result.

First we present this paper's main result: propagation of velocity moments for the Vlasov-Poisson system with an external magnetic field.

Theorem 2.1 (Propagation of moments). Let k 0 > 3, T > 0, f in = f in (x, v) ≥ 0 a.e. with f in ∈ L 1 ∩ L ∞ (R 3 × R 3
) and assume that (2.2)

R 3 ×R 3 |v| k0 f in dxdv < ∞.
Then for all k such that 0 ≤ k ≤ k 0 , there exists

C = C(T, k, ω, f in 1 , f in ∞ , E in , M k (f in )) > 0

and a weak solution to the Cauchy
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problem for the Vlasov-Poisson system with magnetic field (1.1) with B given by

(1.2) in R 3 × R 3 such that (2.3) R 3 ×R 3 |v| k f (t, x, v)dxdv ≤ C < +∞, 0 ≤ t ≤ T.
Remark 2.2. As said in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF], the assumptions in Theorem 2.1 guarantee that the initial energy E in is finite.

Let's first mention that to prove the existence of weak solutions to (1.1) is relatively straightforward by adapting Arsenev's work [START_REF] Arsenev | Global existence of a weak solution of Vlasov's system of equations[END_REF], even when the external magnetic field isn't homogeneous. The only requirement is to have

B ∈ L ∞ (R 3 ).
As said above, Theorem 2.1 is an extension of the main result in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF]. To obtain (2.3), we follow approximately the same strategy, which is to establish a linear Grönwall inequality on the velocity moment. First, by writing a differential inequality on the velocity moment, we realize that to obtain a Grönwall inequality on the moments, we need to control a certain norm of the electric field. To do this, we require the information gained from the Vlasov equation. Hence, by using the characteristics, we can express the macroscopic charge density with a representation formula, which will in turn allow us to control the norm of the electric field. In our case, the added magnetic field significantly complicates the characteristics and the initial proof by extension.

Additional results

. Now we state a result regarding propagation of regularity for solutions to 1.1, where the initial condition is sufficiently regular. This is also an extension of a result stated in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF] to the case with magnetic field. However here we present this result and its proof with much more detail than in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF] by adapting section 4.5 of [START_REF] Golse | Mean field kinetic equations[END_REF].

Theorem 2.3 (Propagation of regularity). Let h ∈ C 1 (R) such that h ≥ 0, h ≤ 0 and h(r) = O(r -α ) with α > 3.
and let f in ∈ C 1 (R 3 ) a probability density on R 3 × R 3 such that f in (x, v) ≤ h(|v|) for all x, v and which verifies (2.4)

R 3 ×R 3 (1 + |v| k0 )f in (x, v)dxdv < ∞ with k 0 > 6.
Then there exists a weak solution of the Cauchy problem for the Vlasov-Poisson system with magnetic field

(1.1) (f, E) ∈ C 1 (R + × R 3 × R 3 ) × C 1 (R + × R 3 ) satisfying the decay estimate (2.5) sup (t,x)∈[0 ,T ]×R 3 f (t, x, v) + |D x f (t, x, v)| + |D v f (t, x, v)| = O(|v| -α )
for all T > 0.

Next, we state a result on the uniqueness of solutions to 1.1 which is a direct adaptation of Loeper's paper [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF].

Theorem 2.4 (Uniqueness). Let f in ∈ L 1 ∩L ∞ (R 3 ×R 3 ) be a probability density such that for all T > 0 (2.6) ρ L ∞ ([0 ,T ]×R 3 ) < +∞
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then there exists at most one solution to the Cauchy problem for the Vlasov-Poisson system with magnetic field (1.1).

Finally, we give a proposition that allows to build solutions with bounded macroscopic density, which is analogous to the condition given in Corollary 3 in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF].

Proposition 2.5. Let f in verify the assumptions of Theorem 2.1 with k 0 > 6 and assume that f in also satisfies

(2.7) ess sup{f in (y + vt, w), |y -x| ≤ (R + ω |v|)t 2 e ωt , |w -v| ≤ (R + ω |v|)te ωt } ∈ L ∞ ([0 , T [ × R 3 x , L 1 (R 3 v ))
for all R > 0 and T > 0.

Then, the solution of (1.1) verifies

(2.8) ρ ∈ L ∞ ([0 , T ] × R 3 x )
for all T > 0.

Preliminaries.

As said above, we now present some basic results necessary for the proofs. First we recall the weak Young inequality. The proof of this basic inequality can be found in [START_REF] Lieb | Analysis[END_REF].

Lemma 3.1 (Weak Young inequality). Let 1 < p, q, r < ∞ with 1 p + 1 q = 1 + 1 r , then for all functions f ∈ L p (R n ), g ∈ L q,w (R n ) the convolution product f g = R n f (y)g(• -y)dy ∈ L r (R n ) and satisfies (3.1) f g r ≤ c f p g q,w
with c = c(p, q, n) and by definition g ∈ L q,w (R n ) iff h is measurable and

(3.2) sup τ >0 τ (vol {x ∈ R n | |g(x)| > τ }) 1 q < ∞.
Furthermore, we can define a norm on L q,w (R n ) given by

(3.3) f q,w = sup |A|<∞ |A| -1 q A |f (x)| dx.
The next three lemmas and their proofs can be found in [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF]. It is easy to show that the estimates given in Lemma 3.2 are also true in our case. Lemma 3.3 is a fundamental velocity moment inequality and Lemma 3.4 is a basic functional inequality.

Lemma 3.2. The estimate

(3.4) E(t) p ≤ C, t ∈ [0 , T [ holds for p ∈ ] 3 2 , 15 4 ] with the constant C = C( f in 1 , f in ∞ , E in ) independent of
p, so that we also have the estimate

(3.5) E(t) 3 2 ,w ≤ C, t ∈ [0 , T [.
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Lemma 3.3. Let 1 ≤ p, q ≤ ∞ with 1 p + 1 q = 1, 0 ≤ k ≤ k < ∞ and r = k+ 3 q k + 3 q + k-k p . If f ∈ L p + (R 6 ) with M k (f ) < ∞ then m k (f ) ∈ L r (R 3 ) and (3.6) m k (f ) r ≤ c f k-k k+ 3 q p M k (f ) k + 3 q k+ 3 q where c = c(k, k , p) > 0. Lemma 3.4. For all functions g ∈ L 1 ∩ L ∞ (R 3 ) and h ∈ L 3 2 ,w (R 3 ), (3.7) 
R 3 |gh| dx ≤ 3 3 2 2 3 g 1 3 1 g 2 3 ∞ h 3 2 ,w
Lastly we give a Calderón-Zygmund inequality, whose proof one can find in [START_REF] Duoandikoetxea | Fourier Analysis[END_REF].

Lemma 3.5 (Calderón-Zygmund).

If Ω ∈ L q (S d-1 ), q > 1 so that S d-1 Ω(ω)dS(ω) = 0, we consider the tempered distribution T = vp

Ω( x |x| ) |x| d ∈ S (R d ). The operator φ ∈ D(R d ) → T φ can be uniquely extended into a bounded operator on L p (R d ) for p ∈ ]1 , ∞[.

Proof of propagation of moments.

As said above, we extend the main result of [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF] to the case of Vlasov-Poisson with a homogeneous magnetic field. However, here, we use the same steps for the proof as in [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF], where the ideas of [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF] are presented.

We begin by considering k 0 , T and f in that follow the assumptions of Theorem 2.1.

Then, as in [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF], we can write a differential inequality on M k , with 0 ≤ k ≤ k 0 .

We differentiate M k , and by integration by parts, a Hölder inequality and lemma

(3.3) with p = ∞, q = 1, k = k -1, we obtain, d dt M k (t) = |v| k (-v • ∇ x f -(E + v ∧ B) • ∇ v f )dvdx = |v| k div v ((E + v ∧ B)f ) dvdx = k |v| k-2 v • Ef dvdx ≤ k |v| k-1 f dv |E| dx ≤ k E(t) k+3 m k-1 (f ) k+3 k+2
and finally

(4.1) d dt M k (t) ≤ C E(t) k+3 M k (t) k+2 k+3 with C = c(k) f (t) 1 k+3 ∞ = C(k, f in ∞ ).
The computations above are almost the same as in the original case because the magnetic part vanishes. This means that, like in the unmagnetized case, we need to control E(t) k+3 to obtain a Grönwall inequality on M k .
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4.1.

A representation formula for ρ. Now we turn to the next step of the proof. Following [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF], we write a representation formula for the macroscopic density using the characteristics associated to the Vlasov equation. With the added magnetic field, the characteristics are much more complicated than in the unmagnetized case.

This translates to a generalized representation formula for the macroscopic density.

Lemma 4.1. We have the following representation formula for ρ,

(4.2) ρ(t, x) = v f in (X 0 (t), V 0 (t))dv =:ρ0(t,x) + div x t 0 v (f H t ) (s, X(s; t, x, v), V (s; t, x, v)) dvds
with (X(s; t, x, v), V (s; t, x, v)) the characteristics associated to the Vlasov equation of system (1.1), given by

(4.3)                V (s; t, x, v) =   v 1 cos(ω(s -t)) + v 2 sin(ω(s -t)) -v 1 sin(ω(s -t)) + v 2 cos(ω(s -t)) v 3   X(s; t, x, v) =   x 1 + v1 ω sin(ω(s -t)) + v2 ω (1 -cos(ω(s -t))) x 2 + v1 ω (cos(ω(s -t)) -1) + v2 ω sin(ω(s -t)) x 3 + v 3 (s -t))   with (X 0 (t), V 0 (t)) = (X(0; t, x, v), V (0; t, x, v)) and (4.4) H t (s, x) =   sin(ω(s-t)) ω E 1 (s, x) + cos(ω(s-t))-1 ω E 2 (s, x) 1-cos(ω(s-t)) ω E 1 (s, x) + sin(ω(s-t)) ω E 2 (s, x) (s -t)E 3 (s, x)   with E i the coordinates of the electric field E.
Proof. Firstly, thanks to the Vlasov equation, which we see as a transport equation in x and v with source term -E • ∂ v f , we can express f by solving the characteristics and by applying the Duhamel formula

f (t, x, v) = f in (X 0 (t), V 0 (t)) - t 0 div v (f E)(s, X(s; t, x, v), V (s; t, x, v))ds where (X(•, t, x, v), V (•, t, x, v)) is the solution to    d ds (X(s; t, x, v), V (s; t, x, v)) = (V (s; t, x, v), ωV 2 (s; t, x, v), -ωV 1 (s; t, x, v), 0) (X(t; t, x, v), V (t; t, x, v)) = (x, v),
hence the expressions in (4.3). Now if we consider

G t (s, x) =   cos(ω(s -t))E 1 (s, x) -sin(ω(s -t))E 2 (s, x) sin(ω(s -t))E 1 (s, x) + cos(ω(s -t))E 2 (s, x) E 3 (s, x)  
This manuscript is for review purposes only.

then div v t 0 f G t (s, X(s; t, x, v), V (s; t, x, v))ds = t 0 cos(ω(s -t))∂ v1 (f E 1 (s, X(s; t, x, v), V (s; t, x, v))) - t 0 sin(ω(s -t))∂ v1 (f E 2 (s, X(s; t, x, v), V (s; t, x, v))) + t 0 sin(ω(s -t))∂ v2 (f E 1 (s, X(s; t, x, v), V (s; t, x, v))) + t 0 cos(ω(s -t))∂ v2 (f E 2 (s, X(s; t, x, v), V (s; t, x, v))) + t 0 ∂ v3 (f E 3 (s, X(s; t, x, v), V (s; t, x, v))) = t 0 cos sin ω ∂ x1 (f E 1 ) + cos(cos -1) ω ∂ x2 (f E 1 ) + cos 2 ∂ v1 (f E 1 ) -cos sin ∂ v2 (f E 1 ) + t 0 - sin 2 ω ∂ x1 (f E 2 ) + sin(1 -cos) ω ∂ x2 (f E 2 ) -cos sin ∂ v1 (f E 2 ) + sin 2 ∂ v2 (f E 2 ) + t 0 (1 -cos) sin ω ∂ x1 (f E 1 ) + sin 2 ω ∂ x2 (f E 1 ) + sin 2 ∂ v1 (f E 1 ) + cos sin ∂ v2 (f E 1 ) + t 0 cos(1 -cos) ω ∂ x1 (f E 2 ) + cos sin ω ∂ x2 (f E 2 ) + cos sin ∂ v1 (f E 2 ) + cos 2 ∂ v2 (f E 2 ) + t 0 (s -t)∂ x3 (f E 3 ) + ∂ v3 (f E 3 ) = t 0 div v (f E)(s, X(s; t, x, v), V (s; t, x, v))ds + div x t 0 (f H t )(s, X(s; t, x, v), V (s; t, x, v))ds
Where in the second to last equality, cos = cos(ω(s -t)) (same for sin) and

∂ xi (f E i )
is always evaluated at (s, X(s; t, x, v), V (s; t, x, v)) (same for ∂ vi (f E i )). Then we integrate with respect to v which gives us (4.2).

Remark 4.2. The expression of H t and the characteristics are coherent because

H t -→ ω→0 -tE and (X 0 , V 0 ) -→ ω→0 (x -tv, v
). These expressions obtained when ω → 0 correspond to the representation formula for ρ in the unmagnetized case. the estimates to control the electric field, still following the steps from [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF]. A first difficulty here is adapting the estimates to this new context. We also see the appearance of the singularities mentioned above at (4.16), which will be a major difficulty. is given by

(4.5) E(t, x) = -(∇K 3 ρ) (t, x) = E 0 (t, x) + Ẽ(t, x)
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where K 3 is Green's function for the Laplacian in dimension 3 given by (4.6)

K 3 (x) = 1 4π 1 |x| and (4.7)      E 0 (t, x) = -(∇K 3 ρ 0 ) (t, x) Ẽ(t, x) = -∇K 3 div x t 0 v (f H t ) (s, X(s; t, x, v), V (s; t, x, v)) dvds
The first term E 0 is easier to control.

Lemma 4.3. We have the following estimate for E 0 .

(4.8) E 0 (t, •) k+3 ≤ C(k, f in 1 , M k (f in ))
Proof. Thanks to the weak Young inequality, we can write (4.9)

E 0 (t, •) k+3 ≤ ∇K 3 3 2 ,w ρ 0 (t, •) p with p = 3k+9 k+6 .
And the 3k+9 k+6 norm of ρ 0 (t, •) can in turn be controlled using lemma 3.3, where k = 0, r = 3k+9 k+6 , p = ∞, q = 1 and with simple change of variables

ρ 0 (t, •) 3k+9 k+6 ≤ c f l l+3 ∞ |v| l f in (X 0 (t), V 0 (t))dxdv 3 l+3 = CM l (0) 3 l+3 with l+3 3 = 3k+9 k+6 . Since k > 3, l 3 = 2k+3 k+6 ≤ 2k+k 6 = k 3 .
Hence l ≤ k, and thanks to lemma 3.3 with

p = ∞, q = 1, k = l we obtain M l (0) ≤ c f in k-l k 1 M k (0) l k .
This gives us a bound on ρ 0 (t, •),

(4.10) ρ 0 (t, •) 3k+9 k+6 ≤ c f in k-l k 1 M k (0) l k 3 l+3 = C(k, f in 1 , M k (f in )).
with l+3 3 = 3k+9 k+6 .

To estimate the second term Ẽ, we first notice that it can be written as

3 j,l=1 ∂ j ∂ l G 3 t 0 f H t dvds
so that we can apply the Calderón-Zygmund inequality (lemma 3.5)

(4.11) Ẽ(t, •) k+3 ≤ t 0 v (f H t ) (s, X(s; t, x, v), V (s; t, x, v)) dvds Σ(t,x) k+3
To simplify the expression of Σ, we consider the classical change of variables

φ(v 1 , v 2 , v 3 ) =   v 1 cos(ω(s -t)) + v 2 sin(ω(s -t)) -v 1 sin(ω(s -t)) + v 2 cos(ω(s -t)) v 3   = V (s; t, x, v)
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as well as the change of variable in time α(s) = t -s, so that Σ can now be written

(4.12) Σ(t, x) = t 0 v f (t -s, X * (s, x, v), v)D(t -s, s, X * (s, x, v))dvds with (4.13) D (t, s, x) =   -sin(ωs) ω E 1 (t, x) + cos(ωs)-1 ω E 2 (t, x) 1-cos(ωs) ω E 1 (t, x) -sin(ωs) ω E 2 (t, x) -sE 3 (t, x)   and (4.14) X * (s, x, v) =   x 1 -v1 ω sin(ωs) + v2 ω (cos(ωs) -1)) x 2 + v1 ω (1 -cos(ωs)) -v2 ω sin(ωs) x 3 -v 3 s  
We first study σ(s, t, x) defined by

(4.15) σ(s, t, x) = v f (t -s, X * (s, x, v), v)D(t -s, s, X * (s, x, v))dvds.
Lemma 4.4. We have the following estimate for σ.

(4.16) σ(s, t, •) k+3 ≤ C √ 2 s ω 2 s 2 2(1 -cos(ωs)) 2 3 M k (t -s) 1 k+3
Proof. Thanks to Lemma 3.4 we obtain (4.17 ∞ f (t -s, X * (s, x, •), •)

1 3 1 
Let's first look at the weak 3 2 -norm of D(t -s, s, X * (s, x, •)) in (4.17). In the following computations D (respectively E) and its coordinates D i (respectively E i ) are always evaluated at (t -s, s, X * (s, x, •)) (respectively (t -s, X * (s, x, •))) and cos = cos(ωs)

(respectively sin = sin(ωs)).

By definition,

D 2 3 2 ,w = 3 i=1 D i 2 3 2 ,w so first we estimate D 1 2 3 2 ,w D 1 2 3 2 ,w ≤ sin 2 ω 2 E 1 2 3 2 ,w + (1 -cos) 2 ω 2 E 2 2 3 2 ,w + 2 |sin| |(1 -cos)| ω 2 E 1 3 2 ,w E 2 3 2 ,w ≤ sin 2 ω 2 E 1 2 3 2 ,w + (1 -cos) 2 ω 2 E 2 2 3 2 ,w + (1 -cos) 2 ω 2 E 1 2 3 2 ,w + sin 2 ω 2 E 2 2 3 2 ,w = 2(1 -cos) ω 2 E 1 2 3 2 ,w + E 2 2 3 2 ,w
The computations are the same for D 2 2 3 2 ,w so that we can write

(4.18) D 2 3 2 ,w ≤ 4(1 -cos(ωs)) ω 2 E 1 2 3 2 ,w + E 2 2 3 2 ,w + s 2 E 3 2 3 2 ,w
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and since for all

x ∈ R, 2(1 -cos(x)) ≤ x 2 (4.19) D 2 3 2 ,w ≤ 2s 2 E 1 2 3 2 ,w + E 2 2 3 2 ,w + s 2 E 3 2 3 2 ,w ≤ 2s 2 E 2 3 2 ,w Now let's try to express E 1 (t -s, X * (s, x, •)) 3 2 ,w , by definition (4.20) E 1 (t -s, X * (s, x, •)) 3 2 ,w = sup |A|<∞ |A| -1 3 A |E 1 (t -s, X * (s, x, v))| dv
and if we consider the change of variables ψ(v) = X * (s, x, v), for s > 0, whose Jacobian matrix is given by

(4.21) Jac(ψ) =   -sin(ωs) cos(ωs) -1 0 1 -cos(ωs) -sin(ωs) 0 0 0 -s   we can write A |E 1 (t -s, X * (s, x, v))| dv = ψ(A) |E 1 (t -s, u))| |Jac(ψ)| -1 du
So finally

E 1 (t -s, X * (s, x, •)) 3 2 ,w = sup |A|<∞ |A| -1 3 ψ(A) |E 1 (t -s, u))| |Jac(ψ)| -1 du = sup |A|<∞ |ψ(A)| -1 3   |A| |ψ(A)|   =|Jac(ψ)| -1 -1 3 |Jac(ψ)| -1 ψ(A) |E 1 (t -s, u))| du = sup |A|<∞ |ψ(A)| -1 3 |Jac(ψ)| -2 3 ψ(A) |E 1 (t -s, u))| du = |Jac(ψ)| -2 3 E 1 (t -s, •) 3 2 ,w
The computations are the same for E 2 (t -s, X * (s, x, •)) 3 2 ,w and

E 3 (t -s, X * (s, x, •)) 3 2 ,w so that (4.22) E(t -s, X * (s, x, •)) 3 2 ,w = |Jac(ψ)| -2 3 E(t -s, •) 3 2 ,w = 1 2s(1 -cos(ωs)) 2 3 E(t -s, •) 3 2 ,w
Combining (4. [START_REF] Okabe | On classical solutions in the large in time of two-dimensional Vlasovs equation[END_REF]) and (4.22) we obtain the following estimate

(4.23) D(t -s, s, X * (s, x, •)) 3 2 ,w ≤ √ 2 s ω 2 s 2 2(1 -cos(ωs)) 2 3 E(t -s, •) 3 2 ,w ≤C . and since f ∞ ≤ C we have (4.24) |σ(s, t, x)| ≤ C √ 2 s ω 2 s 2 2(1 -cos(ωs)) 2 3 f (t -s, X * (s, x, •), •) 1 3 1 ds.
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So that (4.25) 

σ(s, t, •) k+3 ≤ C √ 2 s ω 2 s 2 2(1 -cos(ωs)) 2 3 f (t -s, X * (s, •, v), v)dv
ψ α p = ψ α αp so that (4.27) f (t -s, X * (s, •, v), v)dv 1 3 k+3 ≤ f (t -s, X * (s, •, v), v)dv 1 3 k+3 3 
, and thanks to Lemma 3.3 with p = ∞, q = 1, k = 0, r = k+3 3 we obtain the desired estimate

σ(s, t, •) k+3 ≤ C √ 2 s ω 2 s 2 2(1 -cos(ωs)) 2 3 M k (t -s) 1 k+3 with C = C(k, f in 1 , f in ∞ , E in ).
Like in the unmagnetized case, we exactly obtain the desired exponent 1 k+3 on M k in our estimate. However, as mentioned above, we also see the singularities at times 2πk ω , k ∈ N.

To deal with the singularities that stem from the added magnetic field, we notice that all our estimates depend only on k, ω and f in , which means that if we can show propagation of moments on an interval [0 , T ω ], then we can reiterate our analysis with the new initial condition f in 1 = f (T ω ) and so on.

Since the singularities depend on ω, it is logical to take T ω that also depends on ω (this also justifies the notation). As said above, we choose to take T ω = π ω (in fact, we could have taken any t ∈ ]0 , 2π ω [).

Now to control Σ(t, •) k+3 with M k (t) ... where t 0 ∈ ]0 , T ω [. This is an idea from the original paper [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF]. The interval [0 , t 0 ] is considered small and thus we control the large t contribution ( t t0 ) precisely (with

M k (t) β , β ≤ 1 k+3
) and the small t contribution ( t0 0 ) less precisely (with M k (t) γ , γ > 0). This last imprecise estimate is compensated by the fact that we integrate on a short length segment. However, the main difference with the unmagnetized case is that now we need t 0 to be small compared to T ω = π ω to deal with the singularities.

Small time estimates. First we estimate the small contribution in time,

as in [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF], but with the added difficulty of the singularities.

Proposition 4.5. We have the following estimate for the small contribution in time

(4.29) t0 0 σ(s, t, •)ds k+3 ≤ C(ωt 0 ) 2-3 d (1 + t) l+3 k+3 1 + sup 0≤s≤t M k (s) 3(l+3) (k+3) 2 with C = C(k, f in 1 , f in ∞ , E in )
and l is an exponent defined in the proof.
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Proof. Thanks to the Hölder inequality with

1 d + 1 d = 1, we can write |σ(s, t, x)| ≤ R 3 |D (t -s, s, X * (s, x, v))| d dv 1 d R 3 f (t -s, X * (s, x, v), v) d dv 1 d ≤ √ 2s 1 2s(1 -cos(ωs)) 1 d E(t -s, •) d f 1 d ∞ R 3 f (t -s, X * (s, x, v), v) dv 1 d
.

Using (4.26) with α = 1 d , p = k+3 and Lemma 3. Thanks to Lemma 6.1 we have that

3 with p = ∞, q = 1, k = 0, r = k+3 d , this implies t0 0 σ(s, t, •)ds k+3 ≤ C sup 0≤s≤t E(t -s, •) d × sup 0≤s≤t R 3 f (t -s, X * (s, x, v), v) dv 1 d k+3 d t0 0 s 1 s(1 -cos(ωs)) 1 d ds ≤ C sup 0≤s≤t E(t -s, •) d sup 0≤s≤t M l (t -s) 1 k+3 t0 0 s 1 s(1 -cos(ωs))
sup 0≤s≤t M l (s) ≤ C(1 + t) l+3 1 + sup 0≤s≤t M k (s) 3(l+3) k+3
so that finally we obtain (4.31)

t0 0 σ(s, t, •)ds k+3 ≤ C      t0 0 s 1 s(1 -cos(ωs)) 1 d ζ(s) ds      (1 + t) l+3 k+3 1 + sup 0≤s≤t M k (s) 3(l+3) (k+3) 2 . with C = C(k, f in 1 , f in ∞ , E in ).
Now we must study t0 0 ζ(s)ds (in the case without magnetic field I = [0 , t 0 ] and

ζ(s) = s 1-3 d ).
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We have

t0 0 ζ(s)ds = ω 1 d -2 ωt0 0 s 1 s(1 -cos(s)) 1 d ds = ω 1 d -2 ωt0 0 s 1-3 d s 2 (1 -cos(s)) 1 d ds Since ωt 0 ≤ ωt ≤ π, the function s → s 2 (1-cos(s)) 1 d is bounded on [0 , ωt 0 ] (indepen- dently of t 0 ) so that finally (4.32) t0 0 ζ(s)ds ≤ C ωt0 0 s 1-3 d ds ≤ C(ωt 0 ) 2-3 d 4.2.
3. Large time estimates. Now we look at the large t contribution, where our hope is to get a logarithmic dependence in t 0 just like in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF][START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF].

Proposition 4.6. We have the following estimate for the large contribution in time

(4.33) t t0 σ(s, t, •)ds k+3 ≤ C ln t t 0 sup 0≤s≤t M k (s) 1 k+3 with C = C(k, f in 1 , f in ∞ , E in ).
Proof. Using (4.16), we can write

t t0 σ(s, t, •)ds k+3 ≤ C sup 0≤s≤t M k (s) 1 k+3 ωt ωt0 1 s s 2 (1 -cos(s)) 2 3 ds ≤ C sup 0≤s≤t M k (s) 1 k+3 ωt ωt0 1 s ds
because in the same way as above the function s → Proof. First, we define

s 2 (1-cos(s)) 1 d is bounded on [ωt 0 , ωt] (independently of t 0 , t or ω) so that finally t t0 σ(s, t, •)ds k+3 ≤ C ln t t 0 sup 0≤s≤t M k (s) 1 k+3 with C = C(k, f in 1 , f in ∞ , E in ).
(4.34) µ k (t) := sup 0≤s≤t M k (s)
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E(t, •) k+3 ≤ ρ 0 (t, •) 3k+9 k+6 + C(ωt 0 ) 2-3 d (1 + t) l+3 k+3 (1 + µ k (t)) 3(l+3) (k+3) 2 + C ln t t 0 µ k (t) 1 k+3
Now, as was previously announced, we can absorb the term (1 + µ k (t))

3(l+3) (k+3) 2 by choosing a small t 0 such that t 0 < t ≤ T ω . We choose t 0 in a different way than what was done in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF] and [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF] by using the natural variable t t0 . Hence t 0 is defined by the following relation

(4.36) ( t 0 t ) 2-3 d (1 + µ k (t)) 3(l+3) (k+3) 2 = 1
(the exponent 2 -3 d is non-negative). Thus, we automatically have the inequality

t 0 < t ≤ T ω .
Then we can bound the three terms in (4.35) so as to obtain (4.37)

E(t, •) k+3 ≤ C 1 + C 2 t 2-3 d (1 + t) l+3 k+3 + C 3 3(l + 3) (2 -3 d )(k + 3) 2 µ k (t) 1 k+3 ln (1 + µ k (t)) ≤ C (1 + µ k (t)) 1 k+3 (1 + ln (1 + µ k (t))) with C = C(T, k, ω, f in 1 , f in ∞ , E in , M k (f in )).
So now thanks to the inequality (4.1) we can write

(4.38) d dt M k (t) ≤ C (1 + µ k (t)) (1 + ln (1 + µ k (t)))
and integrating the inequality on [0 , t] we conclude that Proof. First, we show by induction on n that for all n ∈ N * (4.44)

M k (t) ≤ M k (0) + C t 0 (1 + µ k (s)) (1 + ln (1 + µ k (s))) ds for all t ∈ [0 , T ]. Setting y(t) = 1 + µ k (t
for all t ∈ [0 , T ] with C = C(T, k, ω, f in 1 , f in ∞ , E in , M k (f in )).
y(nT ω ) ≤ β n-1 β αn-1 n-2 β αn-1αn-2 n-3 ...β αn-1αn-2...α1 0 y(0) αn-1...α0
with β p = exp (C p T exp (C p T ω )) and α p = exp (C p T ω ) with

C p = C p (T, k, ω, f in 1 , f in ∞ , E in , M k (f (pT ω ))) = C p (T, k, ω, f in 1 , f in ∞ , E in , M k (f in )).
The initial case is simply a consequence of Proposition 4.7. Proving the induction step is also easy because thanks to the induction hypothesis, f (nT ω ) verifies the assumptions of Theorem 2.1. This means we can apply the same analysis as in the previous subsections while initializing system (1.1) with f (nT ω ).

Hence we obtain:

(4.45) y((n + 1)T ω ) ≤ exp (C n T exp (C n t)) y(nT ω ) exp(Cnt) with C n = C n (T, k, ω, f in 1 , f in ∞ , E in , M k (f (nT ω )))
. The induction step is completed by writing β n = exp (C n T exp (C n t)) and α n = exp (C n t) and by applying the induction hypothesis 4.44.

To conclude we consider t ∈ [0 , T ] with T > T ω and we write t = (n + r)T ω with n ∈ N and 0 ≤ r < 1. Like in the induction proof above, we can apply the same analysis as in the previous section while initializing with f (nT ω ) to obtain:

(4.46) y(t) ≤ exp C n T exp C n t - nπ ω y( nπ ω ) exp(Cn(t-nπ ω )) .
The proof is complete since we showed just before that we can bound y( nπ ω ).

4.5. Difficulty of controlling the electric field with the magnetic field in the source term. In this section, we present a strategy for the proof of Theorem 2.1 that does not permit us to conclude, but which is still interesting to detail because of its simplicity.

The idea is to consider the magnetic term v ∧ B • ∇ v not as an added transport term in the Vlasov equation but as a source term. This allows us to write a new representation formula for the macroscopic density using the characteristics of the unmagnetized Vlasov-Poisson system.

Lemma 4.9. We have a representation formula for ρ,

(4.47) ρ(t, x) = ρ 0 (t, x) -div x t 0 s v (f (E + v ∧ B)) (t -s, x -sv, v) dvds
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Proof. We use the methods of characteristics and the Duhamel formula but this time with the magnetic term in the source term, which allows us to write

f (t, x, v) = f in (x -tv, v) - t 0 (E + v ∧ B) (s, x + (s -t)v) • ∇ v f (s, x + (s -t)v, v)ds = f in (x -tv, v) - t 0 div v ((E + v ∧ B) f ) (t -s, x -sv, v)ds
where we used the change of variable s = t -s and because div

v (E + v ∧ B) = 0. Now we notice that div v ((E + v ∧ B) f (t -s, x -sv, v)) = -sdiv x ((E + v ∧ B) f (t -s, x -sv, v)) + div v ((E + v ∧ B) f ) (t -s, x -sv, v)
Using this equality and integrating in v we obtain (4.47). Now we define (4.48)

             Σ E (t, x) = t 0 s v E(t -s, x -sv)f (t -s, x -sv, v) dvds Σ B (t, x) = t 0 s v v ∧ B(t -s, x -sv)f (t -s, x -sv, v) dvds Σ(t, x) = Σ E (t, x) + Σ B (t, x)
Thanks to the Calderón-Zygmund inequality, to estimate the k + 3-norm of E(t, •),

we only need to estimate the k + 3-norms of Σ E (t, •) and Σ B (t, •).

Using the exact same analysis as in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF][START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF], we obtain the following estimate for Σ E (t, •) with µ(t) defined as in (4.34)

(4.49) Σ E (t, •) k+3 ≤ Ct 2-3 d 0 (1 + t) l+3 k+3 (1 + µ k (t)) 3(l+3) (k+3) 2 + C ln t t 0 µ k (t) 1 k+3
, and then we choose t 0 like at (4.36) to obtain

(4.50) Σ E (t, •) k+3 ≤ C (1 + µ k (t)) 1 k+3 (1 + ln (1 + µ k (t)))
which is a good estimate, analogous to (4.37).

Next we try to estimate Σ B (t, •) k+3

|Σ B (t, x)| = ω t 0 s v   v 2 -v 1 0   f (t -s, x -sv, v) dvds ≤ ω t 0 s v |v| f (t -s, x -sv, v) dvds = ω t 0 sm 1 (f (t -s, x -s•, •))ds So that Σ B (t, •) k+3 ≤ ω t 0 sds sup 0≤s≤t m 1 (f (t -s, x -s•, •)) k+3 = ωt 2 sup 0≤s≤t m 1 (f (t -s, x -s•, •)) k+3
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Unfortunately, m 1 (t) k+3 can't be controlled by M k (t) α because when we apply lemma 3.3 with p = ∞, q = 1, k = 1 (which is the optimal case) we obtain

(4.51) m 1 (t) k+3 ≤ c f l-1 l+3 ∞ M l (t) 4 l+3
with k + 3 = l+3 4 which implies l > k.

Indeed, its seems logical that with the added v in the magnetic part of the Lorentz force, controlling Σ B requires a velocity moment of higher order than with Σ E . Thus Σ B (t, •) k+3 can't be controlled with M k (t), which means we can't deduce a Grönwall inequality on M k (t) with this method.

5. Proof of additional results.

5.1. Proof of propagation of regularity. First we begin by presenting the proof of the propagation of regularity. Here we directly adapt subsection 4.5 of [START_REF] Golse | Mean field kinetic equations[END_REF].

We only present in detail the parts of the proof that involve the added magnetic field.

Remark 5.1. The mass conservation and the energy bound can be directly deduced from the assumptions of 2.3

(5.1)

R 3 ×R 3 f (t, x, v)dxdv = M in = R 3 ×R 3 f in dxdv < ∞ (5.2) 1 2 R 3 ×R 3 |v| 2 f (t, x, v)dxdv + 1 2 R 3 |E(t, x)| 2 dx ≤ E in < ∞ for a.e. t ≥ 0.
Proof. -First step: L ∞ bound for E This step is the same in both magnetized and unmagnetized cases. We have the following bound on E

(5.3) E(t) ∞ ≤ C 1 C T + C 2 M in .
-Second step: L ∞ bound for ρ

We seek to show an inequality of the type

(5.4) f (t, x, v) ≤ h(|v| -A T t) for all t ∈ [0 , T ].
And so we compute (5.5) d dt

R 3 ×R 3 (f (t, x, v) -h(|v| -A T t)) + dxdv.
First we can write

∂ t (f (t, x, v) -h(|v| -A T t)) + = (∂ t f + w (|v| -A T t)A T )1 f (t,x,v)≥h(|v|-A T t) = (-v • ∇ x f -(E + v ∧ B) • ∇ v f + w (|v| -A T t)A T )1 f (t,x,v)≥h(|v|-A T t) = -v • ∇ x (f (t, x, v) -h(|v| -A T t)) + -(E + v ∧ B) • ∇ v (f (t, x, v) -h(|v| -A T t)) + + w (|v| -A T t)       A T -(E + v ∧ B) • v |v| =E• v |v|       1 f (t,x,v)≥h(|v|-A T t)
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A. REGE so finally we obtain (5.6)

d dt R 3 ×R 3 (f (t, x, v) -h(|v| -A T t)) + dxdv = R 3 ×R 3 w (|v| -A T t) A T -E • v |v| 1 f (t,x,v)≥h(|v|-A T t) dxdv. We now choose A T = E ∞ ⇒ A T -E(t, x) • v |v| ≤ 0 a.e.
, and since w ≤ 0 then we have (5.7) d dt

R 3 ×R 3 (f (t, x, v) -h(|v| -A T t)) + dxdv ≤ 0.
So the condition (5.8)

f in (x, v) ≤ h(|v|)
implies that (5.9)

f (t, x, v) ≤ h(|v| -A T t).
Since w in non-increasing, this gives us the L ∞ bound on ρ

(5.10) ρ L ∞ ([0 ,T ]×R 3 ) ≤ R T -Third step: Bound for D x,v f We set (5.11) L(t) := D x f (t) ∞ + D v f (t) ∞ ,
and differentiate the Vlasov equation in x and v to obtain

(∂ t + v • ∇ x + (E + v ∧ B) • ∇ v ) D x f D v f = 0 D x E(t, x) T I D v (v ∧ B(t, x)) D x f D v f with (5.12) D v (v ∧ B(t, x)) =   0 -B 3 (t, x) B 2 (t, x) B 3 (t, x) 0 -B 1 (t, x) -B 2 (t, x) B 1 (t, x) 0   =: A(t, x) so that (5.13) (∂ t +v•∇ x +(E+v∧B)•∇ v )(|D x f |+|D v f |) ≤ (1+|D x E(t, x)|+|A(t, x)|)(|D x f |+|D v f |).
Then setting

(5.14) J(t) := t 0 (1 + D x E(s) ∞ + A(s) ∞ )ds we have (∂ t + v • ∇ x + (E + v ∧ B) • ∇ v ) (|D x f | + |D v f |)e -J(t) ≤ (|D x f | + |D v f |)e -J(t) (|D x E(t, x)| + |A(t, x)| -D x E(t) ∞ -A(t) ∞ ) ≤ 0
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By the maximum principle we thus have

(5.15) (|D x f | + |D v f |)e -J(t) ≤ ( D x f (0) ∞ + |D v f (0)|)e -J(0) = L(0)
and finally (5.16) L(t) ≤ L(0)e J(t) .

-Fourth step: Bound for D x E Like in the unmagnetized case, thanks to an extension of the Calderón-Zygmund inequality, we can bound D x E(t)

(5.17)

D x E(t) ∞ ≤ C (1 + ln (1 + D x ρ(t) ∞ )) .
-Fifth step: Bound for D x ρ

Like in the unmagnetized case, we can show the following bound

(5.18) |D x ρ(t, x)| ≤ R T e J(t)
for all t ∈ [0 , T ] and a.e. x ∈ R 3 .

-Sixth step: Last estimate

Firstly, let's mention that A ∈ L ∞ ([0 , T ] × R 3 ) because B ∈ L ∞ ([0 , T ] × R 3 ). J(t) = t 0 (1 + D x E(s) ∞ + A(s) ∞ )ds ≤ T + t 0 C (1 + ln (1 + D x ρ(s) ∞ )) + A(s) ∞ ds ≤ T (1 + C + A ∞ ) + t 0 Cln 1 + R T e J(s)
≤ln((1+R T )e J(s) )

ds ≤ T (1 + C + A ∞ ) + C T T ln(1 + R T ) + C T t 0 J(s)ds.
Thanks to the Grönwall inequality

(5.19) J(t) ≤ T (1 + C + A ∞ + C T ln(1 + R T ))e T C T .
Thus we obtain the three following estimates (5.20)

D x ρ(t) ∞ ≤ R T exp(T (1 + C + A ∞ + C T ln(1 + R T ))e T C T ) = R T , (5.21) D x E(t) ∞ ≤ C T (1 + ln(1 + R T )). and (5.22) L(t) ≤ L(0) exp(T (1 + C + A ∞ + C T ln(1 + R T ))e T C T ).
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A. REGE 5.2. Proofs regarding uniqueness. Now we turn to the proof of Theorem 2.4, which is a direct adaptation of Loeper's paper [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF].

Proof. To prove our theorem, we only need to adapt subsection 3.2 from [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF].

Thus we consider two solutions of 1.1 f 1 , f 2 with initial datum f 0 . We write the corresponding densities, electric fields and characteristics ρ 1 , ρ 2 , E 1 , E 2 and Y 1 , Y 2 .

We define the following quantity Q

(5.23)

Q(t) = 1 2 R 3 ×R 3 f 0 (x, ξ) |Y 1 (t, x, ξ) -Y 2 (t, x, ξ)| 2 dxdξ
Now we only need to differentiate Q

Q(t) = R 3 ×R 3 f 0 (x, ξ)(Y 1 (t, x, ξ) -Y 2 (t, x, ξ)) • ∂ t (Y 1 (t, x, ξ) -Y 2 (t, x, ξ))dxdξ = R 3 ×R 3 f 0 (x, ξ)(X 1 (t, x, ξ) -X 2 (t, x, ξ)) • (Ξ 1 (t, x, ξ) -Ξ 2 (t, x, ξ))dxdξ + R 3 ×R 3 f 0 (x, ξ)(Ξ 1 (t, x, ξ) -Ξ 2 (t, x, ξ)) • (E 1 (t, X 1 ) -E 2 (t, X 2 ))dxdξ + R 3 ×R 3 f 0 (x, ξ)(Ξ 1 (t, x, ξ) -Ξ 2 (t, x, ξ)) • ((Ξ 1 (t, x, ξ) -Ξ 2 (t, x, ξ)) ∧ B)dxdξ
We notice that the last term (4th line) is bounded by Q(t) (using the Cauchy-Schwartz inequality). Using the analysis from [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF], we conclude that

(5.24) d dt Q(t) ≤ CQ(t) 1 + ln 1 Q(t)
and thus Q(0) = 0 ⇒ Q(t) = 0 for all t ≥ 0.

Lastly, we detail the proof of Proposition 2.5.

Proof. Like in Corollary 3 of [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF], with k 0 > 6, we have sufficient regularity on E to consider the weak characteristics associated to system (1.1). Hence the solution to (1.1) is given by f (t, x, v) = f in (X 0 (t), V 0 (t)) where X 0 (t), V 0 (t) = (X(0; t, x, v), V (0; t, x, v)) and we have Ẋ(s; t, x, v) = V (s; t, x, v) V (s; t, x, v) = E(s, X(s; t, x, v)) + V (s; t, x, v) ∧ B with X(t; t, x, v) = x and V (t; t, x, v) = v. To simplify things, we write X(s) and V (s) for the characteristics. Since k 0 > 6, we can show that E is bounded on [0 , T ] × R 3 so that we can write for s ∈ [0 , t] (using the same notations as in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF]) The condition (2.7) is deduced from this inequality in the same way as in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF] and implies that ρ is bounded.

|v -V (s)| ≤ R(t -s) + ω
6. Appendix. We present a technical estimate on the moments that we separate from the main proof to lighten the presentation, but also because the proofs are identical in both magnetized and unmagnetized cases. One can find the proof of this lemma in [START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF] (pages 43-44). To clarify our work, we present a more detailed version of the proof below. This last inequality indicates that we need to control the q-norm of E(t, •) for any q ≥ l + 3 with M k (t), and this can be done by simply using the weak Young inequality and lemma 3.3 with p = ∞, q = 1, k = 0, r = k+3 3 (6.

2) E(s, •) q = ∇K 3 ρ(t, •) q ≤ C ρ(t, •) k+3 ≤ CM k (t)

3 k+3
with 1 + 1 q = 2 3 + 3 k+3 ⇒ q = 3k+9 6-k which implies that k < 6. Furthermore, we want q ≥ l + 3 ⇔ 6 -k ≤ d ∈ [ 15 11 , 3[ so this implies k > 3.

A. REGE

Finally, with 3 < k < 6, we can choose d ∈ [ 15 11 , 3[ so that l defined by k+3 d = l+3

3 verifies q ≥ l + 3 (q = 3k+9 6-k ). With all this, the interpolation inequalities on L p spaces allow us to write (6.

3) E(s, •) l+3 ≤ E(s, •)

θ 2 E(s, •) θ q θ ∈ [0 , 1].
Using this estimate and Young's classical inequality implies (6.1).

If k ≥ 6 then for all q ∈ ]6 , +∞[ there exists 3 < k < 6 such that (6.4) q = 3 k + 9 6 -k and E(s, •) q ≤ C ρ(t, •) k+3 3

≤ CMk(t) Mk(t) < ∞ because thanks to lemma 3.3 with p = 1, q = ∞, k = k, r =

k+ 3 q k + 3 q + k-k p = 1 we have mk(t) r = Mk(t) ≤ c f k-k k 1 M k (t) k k ≤ CM k (t) k k < ∞
for all 3 < k < 6.

Thus we choose 3 < k < 6 such that q ≥ l + 3 with k+3 d = l+3 3 same as before, and now we try to estimate E(s, •) q with M k (t)

E(s, •) q ≤ C ρ(s, •) k+3 3 ≤ C ρ(s, •) 1-α 1 ρ(s, •) α k+3 3 ≤ C 1 + ρ(s, •) k+3 3 ≤ C(1 + M k (t)) 3 k+3
This last estimate combined with the interpolation inequality (6.3) results in (6.1).

4. 2 .

 2 Control of the electric field with the characteristics. Thanks to Lemma 4.1 which gives us a new representation formula for ρ, we can start to write

4. 2 . 1 .

 21 First estimates. Thanks to the representation formula (4.2) for ρ, E(t, •)

  ) |σ(s, t, x)| ≤ c D(t -s, s, X * (s, x, •)) 3 2 ,w f2 3

1 3 k+3

 13 Furthermore, for any function ψ we have(4.26) 

2 < d ≤ 15 4 (so 15 11 ≤

 2411 Lemma 3.3, the new exponent l verifies k+3 d = l+33 . Furthermore, we saw in Lemma 3.2 that the electric field is uniformly bounded in L d (R 3 ) for 3 d < 3). This implies the following estimate, with k+3 d

4. 3 .Proposition 4 . 7 .

 347 A Grönwall inequality for t ∈ [0 , T ω ]. Now we try to show propagation of moments on [0 , T ω ] by establishing a Grönwall inequality like in[START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF][START_REF] Rhein | Collisionless Kinetic Equations from Astrophysics -The Vlasov-Poisson System[END_REF] while Theorem 2.1 is true for T = T ω .

4. 4 .Proposition 4 . 8 .

 448 Propagation of moments for all time. We conclude the proof of Theorem 2.1 by showing propagation of moments for all time. Since the constant C in our estimate in Proposition 4.7 depends only on T, k, ω, f in 1 , f in ∞ , E in and M k (f in ), we can reiterate the procedure on any time interval I p = [pT ω , (p + 1)T ω ]. Indeed, T, k and ω are constant f (t) 1 and f (t) ∞ are conserved in time, the energy is bounded and M k (f ) is exactly the quantity we are studying. Theorem 2.1 is true for all T > T ω .

  du ≤ R(t -s) + ω t s |V (u) -v| du + ω t s |v| du ≤ (R + ω |v|)(t -s) exp((t -s)ω) ≤ (R + ω |v|)t exp(tω)This manuscript is for review purposes only.where the inequality between lines 2 and 3 is obtained thanks to the basic Grönwall inequality. Hence we can now write|x + vt -X(0)| ≤ (R + ω |v|)t 2 exp(tω)so that we obtain (5.25) f (t, x, v) ≤ sup{f in (y + vt, w), |y -x| ≤ (R + ω |v|)t 2 e ωt , |w -v| ≤ (R + ω |v|)te ωt }

Lemma 6 . 1 . 1 l+3

 611 Let k > 3 and d ∈ ] 3 2 ,15 4 ], then for l such that k+3 d = l+3 3 we have the following estimate on M l (t)(6.1) sup 0≤s≤t M l (s) ≤ C(1 + t) l+3 1 + sup 0≤s≤t M k (s) 3(l+3) k+3 with C = C(k, f in 1 , f in ∞ , E in ).Proof. We first use the differential inequality (4.1)d dt M l (t) ≤ C E(t) l+3 M l (t) ≤ C E(t) l+3which implies M l (t) ≤ M l (0)

3

 3 

  ≤ (ln y(0) + CT ) exp (Ct) ⇔ y(t) ≤ exp (CT exp (Ct)) y(0) exp(Ct) 

	which implies						
	(4.43)	ln y(t)						
				), we have				
						t			
	(4.39)			0 < y(t) ≤ y(0) + C	y(s)(1 + ln y(s))ds
						0			
	thus								
	(4.40)			Cy(t)(1 + ln y(t)) y(0) + C 0 y(s)(1 + ln y(s))ds t	≤ C(1 + ln y(t))ds
	and integrating in time gives				
	(4.41) ln	y(t) y(0)	≤ ln	y(0) + C	t 0 y(s)(1 + ln y(s))ds y(0)	≤ C	0	t	(1 + ln y(s))ds.

Hence t → ln y(t) verifies a classical Grönwall inequality (4.42) ln y(t) ≤ ln y(0) + Ct + C t 0 ln y(s)ds ≤ ln y(0) + CT + C t 0 ln y(s)ds

This manuscript is for review purposes only.
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