
HAL Id: hal-02981573
https://hal.sorbonne-universite.fr/hal-02981573v1

Preprint submitted on 28 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource Efficient Stabilization for Local Tasks despite
Unknown Capacity Links

Lélia Blin, Anaïs Durand, Sébastien Tixeuil

To cite this version:
Lélia Blin, Anaïs Durand, Sébastien Tixeuil. Resource Efficient Stabilization for Local Tasks despite
Unknown Capacity Links. 2020. �hal-02981573�

https://hal.sorbonne-universite.fr/hal-02981573v1
https://hal.archives-ouvertes.fr

Resource Efficient Stabilization for Local Tasks
despite Unknown Capacity Links
Lélia Blin1, Anaïs Durand2, and Sébastien Tixeuil3

1 Sorbonne Université, UPMC Univ Paris 06, CNRS, Université
d’Evry-Val-d’Essonne, LIP6 UMR 7606, 4 place Jussieu 75005, Paris, France.

2 Université Clermont Auvergne, LIMOS, Clermont-Ferrand, France.
3 Sorbonne Université, CNRS, LIP6, FR-75005, Paris, France.

Abstract
Self-stabilizing protocols enable distributed systems to recover correct behavior starting from any
arbitrary configuration. In particular, when processors communicate by message passing, fake
messages may be placed in communication links by an adversary. When the number of such fake
messages is unknown, self-stabilization may require huge resources:

generic solutions (a.k.a. data link protocols) require unbounded resources, which makes them
unrealistic to deploy,
specific solutions (e.g., census or tree construction) require Opn lognq or Op∆ lognq bits of
memory per node, where n denotes the network size and ∆ its maximum degree, which may
prevent scalability.

We investigate the possibility of resource efficient self-stabilizing protocols in this context.
Specifically, we present a self-stabilizing protocol for p∆ ` 1q-coloring in any n-node graph, un-
der the asynchronous message-passing model. The problem of p∆ ` 1q-coloring is considered a
benchmarking problem for local tasks. Our protocol offers many desirable features.

It is deterministic, it converges in Opk∆n2 lognq message exchanges, where k is the bound of
the link capacity in terms of number of messages, and it uses messages on Oplog logn ` log ∆q
bits with a memory of Op∆ log ∆` log lognq bits at each node. The resource consumption of our
protocol is thus almost oblivious to the number of nodes, enabling scalability.

Moreover, a striking property of our protocol is that the nodes do not need to know the
number, or any bound on the number of messages initially present in each communication link
of the initial (potentially corrupted) network configuration. This permits our protocol to handle
any future network with unknown message capacity communication links.

A key building block of our coloring scheme is a spanning directed acyclic graph construction,
that is of independent interest, and can serve as a useful tool for solving other tasks in this
challenging setting.

Keywords and phrases Self-stabilizing algorithm, message passing, unbounded capacity commu-
nication, nodes coloring

Digital Object Identifier 10.4230/LIPIcs...

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

00
2.

05
38

2v
1

 [
cs

.D
C

]
 1

3
Fe

b
20

20

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

1 Introduction

Self-stabilization [9, 10, 23] is a versatile technique that enables recovery after arbitrary
transient faults hit the distributed system, where both the participating processes and the
communication medium are subject to be corrupted. Roughly, a self-stabilizing protocol is
able to bring the system back to a legal configuration, starting from an arbitrary initial,
potentially corrupted, configuration. The core motivation for designing self-stabilizing pro-
tocols has been underlined by Varghese and Jarayam [25], who observed that, whenever
processes can crash and recover, a message-passing distributed system may reach any ar-
bitrary global state, where the local variables stored at the processes may be inconsistent,
and/or the communication links may contain spurious erroneous messages. As the global
state is arbitrary, one may even assume that the local variables at the nodes as well as the
contents of the messages are adversarially set to prevent recovery.

It is worth pointing out that self-stabilization in the presence of fake messages in the
communication links is a challenge. Specifically, it is particularly difficult to ensure recovery
when no upper bound is known on the number of (possibly fake) messages in transit in the
initial configuration. Conversely, if an upper bound is known, then one can reset the system
to a clean configuration by, first, emptying the links, and, second, resetting all local variables
using a protocol that can “trust” the messages. Hence, non surprisingly, the vast majority
of recent works in self-stabilization assumes a weaker adversary than the one we consider in
this paper. In particular, a widely used model of self-stabilization is the state model.

State Model, and Data Link Protocols. In the state model, processes atomically read
the states of their neighboring processes for updating their state. That is, the state model
abstracts away all issues related to corrupted communication media. Indeed, the state model
is motivated by the fact that there exist self-stabilizing data link protocols [1, 6, 11, 12, 16, 19,
24]. The purpose of such protocols is to ensure reliable communications between neighbors
exchanging messages over unreliable communication links. Yet, the use of data link protocols
such as the ones in the aforementioned previous work yields important issues. In particular,
if the initial number of spurious messages in the communication links is unknown, then it
is impossible to design a self-stabilizing data link protocol using bounded memory at each
node [1, 6, 12, 16, 19]. Therefore, one has to relax the constraints on the protocol. Such
a relaxation may consist in designing pseudo-stabilizing data link protocols [6]. However, a
pseudo-stabilizing protocol only guarantees that an infinite suffix of the execution satisfies
the specification of the system, and hence its stabilization time becomes unbounded. Another
relaxation consists of using self-stabilizing data link protocols that are not bounded in terms
of resources. However, such protocols require either unbounded variables [12, 16, 19], or
unbounded code size (a.k.a. aperiodic functions) [1], which is undesirable from a practical
point of view. A third relaxation consists of using randomization [1], but then the correctness
of the system is not certain.

As a consequence, in the framework of data link self-stabilization, previous work often
assume that the initial number of spurious messages present in the communication links is
known to the participating processes. Under this assumption, very efficient self-stabilizing
solutions can be obtained (see, e.g., [24]). Actually, assuming that the number of erroneous
messages initially present in the links is known to the nodes, even stronger self-stabilizing
properties can be guaranteed, such as snap-stabilization [11] (a snap-stabilizing data link
protocol guarantees that reliable communications between participating processes are im-
mediately available after a failure).

Lélia Blin, Anaïs Durand, and Sébastien Tixeuil XX:3

From the above, one can conclude that, while the knowledge of the number of possible
initial spurious messages in the communication links enables the design of efficient self-
stabilizing data link protocols, the lack of this knowledge precludes the existence of bounded-
size self-stabilizing deterministic data link solutions. In other word, when no bound is
known, the use of data link protocols does not provide fully practical solutions for the
design of efficient self-stabilizing protocols. Therefore, one has to focus on self-stabilization
for message-passing systems, without using data links.

Message-Passing Model. Self-stabilizing protocols that operate in message passing sys-
tems with unknown initial link capacity are the most versatile, since they can directly be
executed in newly set up networks whose characteristics were unknown when the protocol
was designed. However, previous works that do not rely on a data link layer require large
messages, large memory, or both. For instance, the versatile census protocol in [8] collects
the entire topology at each node, and therefore requires message and memory of Opn∆ lognq
bits in n-node networks with maximum degree ∆. Similarly, the versatile technique based
on so-called r-operators, where the algebraic properties of the executed protocol guarantees
self-stabilization, has been shown to be quite efficient in general [7, 13, 14]. However, to
our knowledge, in the message passing setting, there exists r-operators only for variants of
tree construction tasks [7]. Moreover, while the size of the messages used by such protocols
remain in Oplognq bits, the memory at each node might grow as much as Ωp∆ lognq bits.

Local tasks. Vertex coloring One may wonder whether the large amount of memory and
communications resources used in the context of unknown capacity links is due to the global
nature of the task to be solved (census, tree construction). Hence, an intriguing question
arises: do local tasks yield high resource consumption when solved self-stabilizingly with
unknown capacity links? A benchmarking local task in the domain of self-stabilization is
that of vertex coloring. In vertex coloring, every process in the network must maintain a color
variable such that, for every two adjacent nodes, the value of their color variables is distinct.
Typically, the number of colors is supposed to be restricted in the range t1, 2, . . . ,∆` 1u in
networks with nodes with maximum degree ∆. Vertex coloring is one of the most studied
tasks in distributed network computing in general, and in self-stabilization in particular, as
witnessed by numerous contributions: [2, 3, 4, 5, 15, 17, 18, 20, 21, 22]. While most previous
work about self-stabilizing vertex coloring considered the state model (see [4, 5, 15, 17, 22]),
a few paper considered the message passing model [2, 18, 20, 21]. However, all existing
solutions for this latter model provide probabilistic guarantees only [2, 18, 20, 21], and most
of them assume some strong or weak forms of synchronous execution model [2, 18, 21].
To our knowledge, there are no deterministic self-stabilizing vertex coloring protocols that
operate in the asynchronous message passing setting, where the number of initial spurious
messages in communication links is unknown to the participating processes.

Our contribution. To this paper, it remains unknown whether resource efficient self-stabilizing
solutions exist when communication links have unknown initial capacity. We show that, for
some local tasks, the answer to this question is positive.

In more details, we establish the following result: without any assumption on the number
of messages present initially (and their content), starting from any configuration, we present
a protocol that is self-stabilizing for the task of vertex coloring and uses Oplog logn`∆ log ∆q
bits of memory per node, and Oplog logn` log ∆q bits of information per message, where n
denotes the number of nodes in the network, and ∆ its maximum degree. A key ingredient of

XX:4 Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

our protocol of independent interest is a symmetry breaking mechanism that locally orients
every link in the network so that the overall orientation is acyclic (hence constructing a
directed acyclic graph in the network), simplifying the design of higher layer algorithms
such as vertex coloring or maximal independent set.

Our work thus paves the way toward resource efficient self-stabilizing protocols for the
most challenging communication model, enabling solutions to remain valid when new net-
works are considered.

2 Model

The communication model consists of a point-to-point communication network described by
a connected graph G “ pV,Eq where the nodes V represent the processes and the set E
represent bidirectional communication channels. Processes communicate by message pass-
ing: a process sends a message to another by depositing the message in the corresponding
channel. We denote by Npvq the set of processes that are neighbors with process v, i.e., such
that there exists a communication link between them and v. Let denote by n the number of
processes and ∆ the degree of the graph. Note that we denote by δpvq the degree of node v.

Communications. The communication model is asynchronous message passing with FIFO
channels (on each link messages are delivered in the same order as they have been sent). The
number of messages per link is bounded by an integer k, however the nodes do not know
k. Qpu, vq “ pmq,mq´1, . . . ,m1q is the queue representing the messages in FIFO order
between u and v, where m1 is the head of the queue and q ď k. We assume each node v is
fair with respect to its input channels: if v receives an infinite number of messages, then a
given message m cannot stay in v’s input channel forever. We denote by M the set of all
possible messages. A node v has access to locally unique port numbers associated with its
adjacent edges. We do not assume any consistency between port numbers of a given edge.
In short, port numbers are constant throughout the execution but two neighboring processes
can associate different port numbers for the communication link between them. We denote
by Portspvq the set of port numbers for the adjacent edges of process v. The port number
associated by v to the edge pv, uq, if it exists, is denoted ptpv, uq.

Execution. Each process v maintains some variables. We denote by varv the value of
variable var at process v. The state of a process is the vector of the values of its variables.
A configuration is the vector of the state of every process and the content of the channels
between every two neighboring processes. We denote by varvpγq the value of variable varv
in configuration γ. Similarly, varvru, γs and Qpγ, v, uq denote the value of the entry u of
array varv in γ and the content of channel Qpv, uq in γ, respectively. The set of every
configuration is denoted Γ.

Let ÞÑ be the binary relation between configurations such that γ ÞÑ γ1 if the system can
reach γ1 from γ by executing an (atomic) step. During a step, some processes: (a) receive
messages (at most one by incoming channel), (b) do some internal computation, and (c) send
some messages (at most one by outgoing channel). An execution is a maximal sequence of
configuration e “ γ0, γ1, . . . , γi, . . . such that @i ą 0, γi´1 ÞÑ γi. Configuration γ0 is the
initial configuration of e.

For the purpose of complexity analysis, we define a round as the smallest execution
fragment such that the two following conditions hold: (i) all messages that were in transit

Lélia Blin, Anaïs Durand, and Sébastien Tixeuil XX:5

at the beginning of the round are received (and processed) by the nodes, and (ii) all nodes
that have no message in transit in their input channels trigger a timeout (and process it).

Identifier. A node v has access to a constant unique identifier idv, but can only access its
identifier one bit at a time, using the Bitvpiq function. The function Bit returns the place of
the bit at one. Specifically, Bitvpiq returns the position (numbered from right to left) of the
ith bit to one (from left to right). Note that since nodes have unique identifiers, they are
allowed to execute unique code. For example, suppose node v has identifier 10 (in decimal
notation), or 1010 (in binary notation). Then, one can implement Bitvpiq as follows for
v “ 1010:

Bitvpiq :“

$

&

%

4 if i=1
2 if i=2
-1 if i ą 2

Since we assume that all identifiers are Oplognq bits long, the Bitv function only returns
values with Oplog lognq bits. Also, when executing Function Bitv, the program counter
only requires Oplog lognq values. In turn, this position can be encoded with Oplog lognq
bits when identifiers are encoded using Oplognq bits, as we assume they are.

Self-stabilization. An algorithm A is self-stabilizing for some specification SP if there
exists a subset of legitimate configurations Γ` Ď Γ such that:

Closure: Γ` is closed, i.e., @γ, γ1 P Γ such that γ ÞÑ γ1, if γ P Γ` then γ1 P Γ`.
Convergence: Γ Ź Γ`, i.e., for any execution e “ γ0, γ1, . . . , γi, . . . of Astarting from
an arbitrary initial configuration γ0 P Γ, Di ě 0 such that γi P Γ`.
Correctness: For any execution e “ γ0, γ1, . . . , γi, . . . of Astarting from a legitimate
configuration γ0 P Γ`, e satisfies the specification SP .

3 Algorithm DAG

The first layer of our solution consists in providing a symmetry-breaking mechanism. Our
approach is to construct a directed acyclic graph (or DAG) based on the unique identifiers
of the nodes: hence an edge is to be oriented from the lower identifier to the higher identi-
fier. Of course, neighboring nodes do not know the identifier of the other, and should not
communicate them directly to each other as it would break the oplognq bits constraint on
messages.

Our algorithm is presented as Algorithm 1. For each adjacent link pv, uq of process v, v
maintains a binary variable Ordrvsppq, where p “ ptpv, uq, as follows. Ordrvsppq represents
the orientation of pv, uq. More precisely, Ordrvsppq equals 0 if v’s identifier is greater than
the identifier of u and 1 otherwise. To update variable Ordrvsppq, v permanently exchanges
its identifier with u in a compact manner using the Bit function and a counter variable
cntv P t1, . . . , rlog Idvsu of size Oplog lognq bits.

When the counter equals to 1, v sends a message to every neighbor u requesting the
position of their own first bit to one (see Line 10). A neighbor u answers by a message
ă 1, B ą, where B is the position of the 1st bit to one of u (see Line 12). Now, if B ą Bitvp1q,
u’s identifier is greater than that of v, and if B ă Bitvp1q, then u’s identifier is smaller than
that of v. Finally, if B “ Bitvp1q, the comparison must continue. When v receives answers
from every neighbor about the 1st position, v increments its counter (see Line 7. Then,
for every neighbor whose status remains unknown (that is, the condition B “ Bitvp1q was

XX:6 Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

satisfied), v requests the value of the 2nd bit, and so on until all link orientations are
established. This comparison process restarts when the node executes function Restartpvq
(see Lines 1-3) that, in particular, sets cntv to 1.

Due to the arbitrary initial configuration, where the link can contain an unknown number
of corrupter messages, this process repeats indefinitely. A "Do forever" process is used to
cope with the case of a deadlock due to an absence of messages (see Lines 21-21). Moreover,
messages ă `, B ą that are received by v when its counter cntv is different than ` are
discarded.

In addition to variables Ordrvsppq and cntv, process v maintains the following variables.
The variable tmpvppq P t0, 1,Ku is a temporary variable used during the computation of
the ordering of the identifiers. When tmpvppq “ K, the orientation of the link pv, uq (if
p “ ptpv, uq) has not been computed yet in this step of the comparison. Moreover, the
variable waitv is a set of port numbers used to remember which neighbors have not yet
responded during the current step of computation of the ordering.

Algorithm 1: DAG Algorithm
1 Function Restart(v) is
2 cntv :“ 1; waitv :“ Portspvq;
3 forall p P Portspvq: tmpvrps :“ K;
4 Function Step(v) is
5 if waitv “ H then
6 if cntv ă rlog idvs then
7 cntv :“ cntv ` 1;
8 waitv :“ tp P Portspvq : tmpvrps “ Ku
9 else Restartpvq ;

10 send ă cntv ą to waitv ;
11 Upon receipt of ă ` ą from port p :
12 send <`,Bitvp`q> to p;
13 Steppvq;
14 Upon receipt of ă `, B ą from port p :
15 if pp P waitvq ^ p` “ cntvq then
16 waitv :“ waitvztpu;
17 if B ą Bitvp`q then Ordvrps :“ 1; tmpvrps :“ 1 ;
18 if B ă Bitvp`q _ pB “ Hq then Ordvrps :“ 0; tmpvrps :“ 0;
19 Steppvq;
20 Do forever :
21 if Dp P Portspvq : pp “ ptpv, uqq ^ pQpu, vq “ Hq then Steppvq ;

We now state the main result about Algorithm 1:

§ Theorem 1. Algorithm 1 solves the spanning DAG construction problem in a self-stabilizing
manner in n-nodes graphs with maximum degree ∆, assuming the message passing model.
If the n node identifiers are in r1, ncs for some c ě 1, then Algorithm 1 uses Oplog logn `
∆ log ∆q bits of memory per node and Oplog lognq bits per message. Moreover, it converges
after in Opk lognq rounds, and the exchange of Opk∆ lognq messages, where k (unknown to
the algorithm) is the maximum number of (potentially corrupted) messages initially present

Lélia Blin, Anaïs Durand, and Sébastien Tixeuil XX:7

in each communication link.

In our algorithm, we use two types of messages: ă `i ą and ă `i, Bi ą, where `i P
t1, . . . , rlognsu and Bi P t´1, . . . , rlognsu. In the sequel, we may use `i to denote both
ă `i ą and ă `i, Bi ą.

Let λm : ΓˆMˆ V ˆ V Ñ N be the following function:

λmpγ,m, u, vq “

"

1 if m “ă `, B ą ^pB ‰ Bitup`qq
0 otherwise

Let λQ : Γˆ V ˆ V Ñ N be the following function:

λQpγ, u, vq “
ÿ

mPQpγ,u,vq

λmpγ,m, u, vq

Let λ,Λ : Γˆ V Ñ N be the following functions:

λpγ, vq “
ÿ

uPNpvq

λQpγ, u, vq and Λpγq “
ÿ

vPV

λpγ, vq

Finally, we define the set of configurations ΓB as follows ΓB “ tγ P Γ : Λpγq “ 0u

§ Lemma 2. ΓŹ ΓB, and ΓB is closed.

Proof. When node v receives message ă `, B ą from v in configuration γ with B ‰ Bitup`q,
v sends in configuration γ1 ą γ a message ă cntv ą (see Function Steppvq of Algorithm 1).
If node u receives message ă ` ą, it sends ă `,Bitup`q ą (see Line 11 of Algorithm 1)
followed by ă cntv ą (see Function Steppvq of Algorithm 1). So, u does not send ă `, B ą

with B ‰ Bitup`q. As a consequence, λQpγ, u, vq ă λQpγ
1, u, vq and Λpγq ă Λpγ1q. Note

that, we obtain λQpγ, u, vq “ 0 after at most k receptions of messages through the port p of
node v (p being the port number of v leading to u). đ

Let define difpv, uq as the first level at which a node v can determine if the identifier of
its neighbor u is lower or greater. More formally:

difpv, uq “ min

` : ` P t1, . . . , rlognsu ^ Bitvp`q ‰ Bitup`q
(

We define predicate Goodpγ, v, uq as follows:
If idv ă idu:

Goodpγ, v, uq ”
“

pcntvpγq ď difpu, vqq ^ ptmpvrγ, us “ Kq
‰

_ (1)
“

pcntvpγq ě difpu, vqq ^ ptmpvrγ, us “ 1q ^ ptpv, uq R waitvpγq
‰

(2)

If idv ą idu:

Goodpγ, v, uq ”
“

pcntvpγq ď difpu, vqq ^ ptmpvrγ, us “ Kq
‰

_ (3)
“

pcntvpγq ě difpu, vqq ^ ptmpvrγ, us “ 0q ^ ptpv, uq R waitvpγq
‰

(4)

Let φppγ, u, vq : Γˆ V ˆ V Ñ N be the following function:

φppγ, u, vq “

$

&

%

0 if pidu ą idvq ^ pOrdvrγ, us “ 1q ^Goodpγ, v, uq
0 if pidu ă idvq ^ pOrdvrγ, us “ 0q ^Goodpγ, v, uq
1 otherwise

XX:8 Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

Let φ : Γˆ V Ñ N and Φ : Γ Ñ N be the following potential functions:

φpγ, vq “
ÿ

uPNpvq

φppγ, u, vq and Φpγq “
ÿ

vPV

φpγ, vq

Finally, we define the set of configurations ΓDAG as the following ΓDAG “ tγ P ΓB : Φpγq “
0u

§ Lemma 3. ΓDAG is closed.

Proof. Let γ P ΓDAG. Let γ1 P Γ such that γ ÞÑ γ1. Without loss of generality, let consider
two neighboring processes u and v such that idv ă idu.

Notice that, since φppγ, u, vq “ 0, Goodpγ, v, uq holds and cntv is incremented at most
once every step or reset to 1 if v executes Restartpvq. In the latter case, v also set tmpvrus
to K so the first line of predicate Good holds. Now, there are three cases:

If cntvpγq ă difpv, uq, then cntvpγ1q ď difpv, uq and the value of variable tmpvrus is not
changed so tmpvrγ, us “ K and the first line of predicate Good holds.
If cntvpγq “ difpv, uq, the value of variable tmpvrus changes only if v executes Restartpvq
(see above) or if v receives a message ă cntv, B ą from u. Since γ P ΓB and by definition
of difpv, uq, B ą Bitvpcntvq and v sets tmpvrus to 1 and removes ptpv, uq from waitpvq.
Thus, the second line of predicate Good holds.
If cntvpγq ą difpv, uq, the value of variable tmpvrus changes only if Restartpvq is exe-
cuted. Otherwise, the second line of predicate Good remains true.

In those three cases, the value of variable Ordvrus can only change to the value of tmpvrus ‰ K
so Ordvrus can only equal 1.

Thus, γ1 P ΓDAG and ΓDAG is closed. đ

§ Lemma 4. ΓB Ź ΓDAG.

Proof. To prove ΓB Ź ΓDAG, we need to prove that every node v executes at least once the
function Restartpvq, because this function initiates again the computation of the DAG for
a node v. Thanks to the function Restartpvq, that puts all the ports number of v in the
set waitv, the comparison of the place of the first bit is restarted for all the neighbors of
v. Moreover, since the counter is also restarted at 1, we compute which neighbors have a
greater identity and which one has a smaller identity.

Only the function Steppvq of Algorithm 1 can call the function Restartpvq see Line 9 .
The function Steppvq is used in three cases:

By the procedure Do forever in order to avoid a deadlock due to an absence of messages
in the network (see Line 21).
When v receives ă ` ą from u, to avoid filling queue Qpv, uq with messages ă `, B ą, as
this would prevent v from updating its own variables (see Line 11).
When v receives ă `, B ą from u, enabling v to update its own variables (see Line 19).

We denote by dispγ, v, uq the distance in the queue of the first message in Qpγ, u, vq that
decreases |waitv|, if it exists:

dispγ, u, vq “ minti : mi P Qpγ, u, vq ^ pmi “ă cntvpγq, Bi ąqu

Otherwise, if such a message does not exist, we handle the last message ă `i ą in Qpγ, v, uq
with `i “ cntvpγq. Note that, if dispγ, u, vq “ 0 and Qpγ, u, vq, v must have received all
messages in Qpγ, u, vq before the reception of messages sent by u after configuration γ.
When u receives ă ` ą from v, u sends two messages: ă `,Bitup`q ą, and ă cntu ą (see

Lélia Blin, Anaïs Durand, and Sébastien Tixeuil XX:9

Lines 11 and 10). As a consequence, the number of messages before ă cntvpγq ą can be
doubled when they are sent in Qpu, vq.

I “ minti : mi P Qpγ, v, uq ^ pmi “ă cntvpγq ąqu

dispγ, v, vq “ I ` |Qpγ, u, vq| ` 2p|Qpγ, v, uq| ´ Iq

If dispγ, u, vq “ 0 ^ dispγ, v, vq “ 0 ^ Qpγ, u, vq Y Qpγ, v, uq ‰ H. In other words,
@m P Qpγ, v, uq, message m is of type ă `, B ą, and @m P Qpγ, u, vq, message m is of type
ă ` ą. As a consequence, when v receives a message ă ` ą, thanks to function Step(v) it
sends a message ă cntv ą, so the distance to a message ă `, B ą at destination u of v is
qpγ, u, vq “ |Qpγ, v, uq Y Qpγ, u, vq| ` 1. Last, if Qpγ, u, vq Y Qpγ, v, uq “ H, then u and v
can execute Do forever (or only u or only v), the maximum distance 2 is obtained when u
and v jointly execute Do forever. Let dpγ, u, vq : Γˆ V Ñ N be the following function:

dpγ, u, vq “

$

’

’

&

’

’

%

dispγ, u, vq if dispγ, u, vq ą 0
dispγ, v, vq if dispγ, u, vq “ 0^ dispγ, v, vq ą 0
qpγ, v, vq if dispγ, u, vq “ 0^ dispγ, v, vq “ 0^Qpγ, u, vq YQpγ, v, uq ‰ H
3 if Qpγ, u, vq YQpγ, v, uq ‰ H

Dpγ, vq “
ÿ

uPwaitv

dpγ, u, vq

Once waitv is empty (see Line 5), v increases cntv, or executes Restartpvq (see Lines 6 and
9). We already proved that in order to reach a configuration where φppγ, u, vq “ 0, v must
execute Restartpvq. To achieve that we define the function ε : Γˆ V Ñ N :

εpγ, vq “

"

rlog idcs´ cntvpγq ` difpu, vq if cntv ą difpu, vq

difpu, vq ´ cntv otherwise

Let α : Γˆ V Ñ N be the following function:

αpγ, vq “ pεpγ, vq, Dpγ, vqq

So, when αpγ, vq “ 0, for all configuration γ1 ě γ, φpγ1, vq “ 0. Let us consider a configura-
tion γ1 ą γ with γ P ΓB, we consider different situations:

waitvpγq “ H, and @u P Qpγ, u, vq “ H, v executes Do forever, and thanks to function
Step(v), v increases or restarts cntv, so αpγ1, vq ă αpγ, vq.
waitvpγq “ H, and Du P Qpγ, u, vq ‰ H, v receives at least one message, so v executes
Step(v), and increases or restarts cntv, so αpγ1, vq ă αpγ, vq.
Now, if waitvpγq ‰ H, only the messages ă `, B ą received by a port in the set waitvpγq
can decrease |waitvpγq| in order to reach waitvpγ1q “ H (with γ1 ą γ), and increases or
restarts cntv .

If @u P waitvpγq, we have Qpγ, u, vq Y Qpγ, v, uq “ H, and function Dpγ, vq returns
3|waitvpγq|, then v executes Do forever. The execution of Do forever triggers the
sending of messages ă cntv ą through every port p P waitvpγq. As a consequence,
function Dpγ, vq returns at most 2|waitvpγq|, so αpγ1, vq ă αpγ, vq.
If Du such that Qpγ, u, vq Y Qpγ, v, uq ‰ H, thanks to function dpγ, u, vq, we obtain
dpγ1, u, vq ă dpγ, u, vq, so αpγ1, vq ă αpγ, vq.

To conclude, we obtain a configuration γ where for every v P V , we have φpγ, vq “ 0,
so Φpγq “ 0. Also, for every configuration γ1 ą γ we have proved that Φpγ1q “ 0. In other
words ΓB Ź ΓDAG. đ

XX:10 Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

§ Lemma 5. Algorithm 1 converges in Opk lognq rounds, and exchanges Opk∆ lognq mes-
sages before convergence.

Proof. We use the potential function Φ to compute the number of rounds, remember that
αpγ, vq “ pεpγ, vq, Dpγ, vqq. Function εpγ, vq is bounded by logn, and Function Dpγ, vq by
2k, so in at most 2k logn rounds, each node v computes its set of links directions in the
DAG. At each round, v reads δpvq messages, so the system converges after Opk∆ lognq
messages. đ

4 Vertex Coloring

We now present our self-stabilizing p∆ ` 1q vertex coloring algorithm whose pseudo-code
is given in Algorithm 2, that is built on top of Algorithm 1. We assume that each node v
knows which neighbor has a lower identifier, and which has a higher one using variables Ord
of Algorithm 1. Each node v maintains a color variable, denoted by cv P t1, . . . , δpvq ` 1u.
In addition, v maintains an array with all the known colors of its neighbors denoted cvrus P
t1, . . . ,∆`1u for each port u. To do so, infinitely often, v send its own color to its neighbors
by sending a message ă cv ą (see Lines 4, 5, 9, and 13). If v has a neighbor u whose color
is identical (in other words, if v detects a conflict) but identifier is lower, v changes its color
for the minimum color not used by its neighbors, by executing function Conflictpv, uq (see
Lines 1-5).

Note that, since the maximum degree of the graph is ∆, the size of cv is bounded by
∆ log ∆.

Algorithm 2: Vertex coloring
1 Function Conflict(v,u) is /* cvrus “ cv */
2 if p@w P Portspvq : pcvrws ‰ Kq ^

`

pcvrws “ cvq ñ pOrdvrws “ 1q
˘

then
3 cv :“ mint1, . . . , δpvquztcvrws : w P Portspvqu;
4 forall w P Portspvq : send ă cv ą to w ;
5 else send ă cv ą to u;
6 Upon receipt of ă c ą from port u :
7 cvrus :“ c;
8 if cvrus “ cv then Conflictpv, uq;
9 else send ă cv ą to u;

10 Do forever :
11 forall u P Portspvq : Qpu, vq “ H
12 if cvrus “ cv then Conflictpv, uq ;
13 else send ă cv ą to u ;

§ Theorem 6. Algorithm 2 solves the vertex coloring problem in a self-stabilizing manner in
n-nodes graph with maximum degree ∆, assuming the message passing model and a spanning
DAG. It uses Op∆ log ∆q bits of memory per node, Oplog ∆q bits per message. Moreover, it
converges after Opnq rounds and exchanges Op∆ k nq messages.

In the following proof, we assume that the oriented graph described by variables Ord is
a spanning DAG.

Lélia Blin, Anaïs Durand, and Sébastien Tixeuil XX:11

§ Lemma 7. Every time process v executes a step, it sends ă cv ą to every neighbor
u P Npvq.

Proof. Each time v executes a step, for every neighbor u P Npvq, there are two cases:
v receives a message from u, so v executes Conflictpv, uq, or sends back ă cv ą to u.
v executes Do forever, so it calls Conflictpv, uq, or sends back ă cv ą to u.

If v calls Conflictpvq, either v sends back ă cv ą to u, or v changes its color and sends the
new one to every neighbor. đ

Let α1 : Γˆ V Ñ N and α2 : Γˆ V Ñ N be the following functions:

α1pγ, vq “ |tu P Npvq : cu “ cvu| and α2pγ, vq “ |tu P Npvq : cvrus ‰ cuu|

Let µ : Γˆ V ˆ t1, . . . ,∆u Ñ N be the following function:

µpγ, v, cq “

"

1 if cv ‰ c

0 otherwise

Let α3 : Γˆ V Ñ N be the following function:

α3pγ, vq “
ÿ

uPNpvq

¨

˝

ÿ

ăcąPQpu,vq

µpγ, u, cq

˛

‚

Let A : Γ Ñ N be the following potential function:

Apγq “
ÿ

vPV

`

α1pγ, vq ` α2pγ, vq ` α3pγ, vq
˘

We define Γα “ tγ P Γ : Apγq “ 0u.

§ Lemma 8. ΓŹ Γα.

Proof. Let dspvq be the minimum distance from process v to a source of the DAG (i.e., a
process with only outgoing edges). First, we show that in finite time, every process v stops
changing its color by induction on dspvq.

Base case: If dspvq “ 0, then v is a source of the DAG and @u P Npvq, Ordvrus “ 0.
Thus, v never changes its color cv (see Line 2).
Induction step: If dspvq “ x ` 1, then @u P Npvq, either Ordvrus “ 0, or dspuq ă
dspvq “ x ` 1. By induction hypothesis, in finite time, @u P Npvq such that dspuq ď x,
the value of cu eventually stops changing. Then, by Lemma 7, u sends ă cu ą to v
infinitely often, so eventually cvrus “ cu. Now, either v never changes its color, or it
gets a new color different from cu. In the second case, v is no longer in conflict with
any neighbor u P Npvq such that dspuq ă dspvq. Node v can only be in conflict with
neighbors w P Npvq such that Ordvrws “ 0, and thus v does not change its color anymore
(see Line 2). Hence, v can change its color at most once.

Once every process stops changing its color forever, a process v cannot send a color
different from its own. Thus, there exists a configuration γa such that, in every subsequent
configuration γ, for every process v, v does not change its color and α3pγ, vq “ 0. More-
over, in finite time, processes update their local knowledge about their neighbors’ colors
(see Lemma 7 and Line 7). Thus, there is a configuration γb after γa such that, in every
configuration γ after γb, for every process v, α2pγ, vq “ 0.

XX:12 Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

Finally, we show that in every configuration after γb, there is no color conflict. Assume by
contradiction that in some configuration γ after γb, there is a color conflict. Let consider the
process v in conflict that has the lowest ID among all such processes. For every u P Npvq
such that cv “ cu, cvrus “ cu “ cv, and curvs “ cv “ cu. Moreover, by assumption,
Ordvrus “ 1 and Ordurvs “ 0. Thus, in finite time, v calls the function Conflict, and
changes its color (see Line 2), a contradiction. So, in every configuration γ after γb, and for
every process v P V , α1pγ, vq “ 0. Hence, Apγq “ 0, and ΓŹ Γα. đ

§ Lemma 9. Γα is closed.

Proof. Let γ ÞÑ γ1 such that γ P Γα. Let v P V and u P Npvq.
First, in γ, cvrus “ cu ‰ cv. Moreover, every message in Qpu, vq contains color cu ‰ cv.

Thus, v does not change its color during step γ ÞÑ γ1. Hence, α1pγ
1, vq “ 0.

Since u and v do not change their color between γ and γ1, and since every message in
Qpu, vq in γ equals cu, then the value of cvrus does not change, and remains equal to cu in
γ1. Hence, α2pγ

1, vq “ 0.
Finally, u does not change its color between γ and γ1, and every message sent by u during

step γ ÞÑ γ1 equals ă cu ą such as every other message in Qpu, vq in γ that u did not treat
during step γ ÞÑ γ1. Thus, α3pγ

1, vq “ 0 đ

§ Lemma 10. Algorithm 2 converges in Opnq rounds and exchanges Op∆ k nq messages
before convergence.

Proof. After one round, the system is purged of all possibly erroneous messages contained
in the initial configuration. Moreover, by Lemma 7, at each round a process v sends its color
ă cv ą to all its neighbors, neighbors that will receive this message during the next round.

Now, consider a process v that changes its color during some round. The last time v
changes its color during the round, it knows the real colors of its neighbors, i.e., @u P Npvq,
cvrus “ cu. So by changing its color, v solves its color conflicts with its neighbors having a
greater identity and does not create any new conflict with them. Since a process can change
its color only if it is in conflict with a node of greater identity, v will not change its color
anymore after this round. Hence, in the worst case, processes stop changing their colors
after Opnq rounds and there is no color conflict anymore.

In the worst case, at each round, a process replies to every message sent by its neighbors
during the previous round. Thus, Op∆ k nq messages are exchanged.

đ

To avoid starvation of one of the algorithms, we compose them using a fair composi-
tion [10], i.e., each process alternatively executes a step of Algorithm 1 and a step of Algo-
rithm 2. As demonstrated in previous work [10], fair composition preserves the property of
self-stabilization.

5 Concluding Remarks

We presented the first deterministic self-stabilizing solution in asynchronous message passing
networks with unknown capacity links that only requires sublogarithmic (in n) memory and
message size, when ∆ is itself sublogarithmic.

Our approach is constructive and modular. In particular, our DAG algorithm layer
solves a fundamental difficulty in many settings with respect to self-stabilization: avoidance
of cyclic behaviors. We believe this can be a valuable asset when solving other problems in
the same setting.

Lélia Blin, Anaïs Durand, and Sébastien Tixeuil XX:13

While our Vertex coloring algorithm layer does not guarantee a locally minimal color-
ing (if an initial configuration is a coloring that is not locally minimal, no conflict is found
and thus recoloring occurs), a simple modification of the protocol permits to achieve this
result: a node v that does not see a conflict but would like a smaller color asks its higher
identity neighbors the authorization to take a new color c, any such neighbor u grants the
authorization unless it has color c (but v didn’t know it), or it itself wants to take a new color
and is waiting for authorization. This mechanism does not create new conflicts, and any
authorization chain length is bounded by the height of our constructed DAG. As a result, a
minimal coloring is obtained, which can then be used for solving the maximal independent
set problem: as it provides a locally minimal coloring, any node with color 0 can be seen as
a member of the maximal independent set.

We believe the DAG and Vertex Coloring can prove useful for other local tasks, such as
minimal dominating set, link coloring, or maximal matching. It would also be interesting to
investigate their utility for solving global tasks (such as tree construction or leader election),
and whether resource efficiency remains in this setting.

One property we retained about communication links is their FIFO behavior. Reliev-
ing this hypothesis in the context of unknown capacity links is likely to generate many
impossibility results, that are left for future work.

References
1 Yehuda Afek and Geoffrey M. Brown. Self-stabilization over unreliable communication

media. Distributed Computing, 7(1):27–34, 1993.
2 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed p∆`

1q-coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and
to restricted-bandwidth models. CoRR, 2017. URL: http://arxiv.org/abs/1712.00285.

3 Samuel Bernard, Stéphane Devismes, Katy Paroux, Maria Potop-Butucaru, and Sébastien
Tixeuil. Probabilistic self-stabilizing vertex coloring in unidirectional anonymous networks.
In ICDCN’10, volume 5935, pages 167–177, 2010.

4 Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien
Tixeuil. Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous
networks. In IPDPS’09, pages 1–8, Rome, Italy, 2009.

5 Lélia Blin and Sébastien Tixeuil. Compact self-stabilizing leader election for general net-
works. In LATIN’18, volume 10807, pages 161–173, 2018.

6 James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. Stabilization and pseudo-
stabilization. Distributed Computing, 7(1):35–42, 1993.

7 Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization with r-
operators revisited. Journal of Aerospace Computing, Information, and Communication
(JACIC), 3(10):498–514, 2006.

8 Sylvie Delaët and Sébastien Tixeuil. Tolerating transient and intermittent failures. Journal
of Parallel and Distributed Computing (JPDC), 62(5):961–981, 2002.

9 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

10 Shlomi Dolev. Self-stabilization. MIT Press, March 2000.
11 Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil. Stabiliz-

ing data-link over non-FIFO channels with optimal fault-resilience. Inf. Process. Lett.,
111(18):912–920, 2011.

12 Shlomi Dolev, Amos Israeli, and Shlomo Moran. Resource bounds for self-stabilizing
message-driven protocols. SIAM J. Comput., 26(1):273–290, 1997.

http://arxiv.org/abs/1712.00285

XX:14 Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

13 Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-operators. Distributed
Computing (DC), 14(3):147–162, 2001.

14 Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with path algebra. Theoret-
ical Computer Science (TCS), 293(1):219–236, February 2003.

15 Sukumar Ghosh and Mehmet Hakan Karaata. A self-stabilizing algorithm for coloring
planar graphs. Distributed Computing, 7(1):55–59, 1993.

16 Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communication protocols. IEEE
Trans. Computers, 40(4):448–458, 1991.

17 Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloring of arbitrary graphs.
In OPODIS’00, pages 55–70, 2000.

18 Ted Herman and Sébastien Tixeuil. A distributed TDMA slot assignment algorithm for
wireless sensor networks. In AlgoSensors’04, number 3121, pages 45–58, 2004.

19 Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7(1):17–26, 1993.

20 Toshimitsu Masuzawa and Sébastien Tixeuil. On bootstrapping topology knowledge in
anonymous networks. ACM Transactions on Adaptive and Autonomous Systems (TAAS),
4(1), 2009.

21 Nathalie Mitton, Bruno Séricola, Sébastien Tixeuil, Eric Fleury, and Isabelle Guérin-
Lassous. Self-stabilization in self-organized multihop wireless networks. Ad Hoc and Sensor
Wireless Networks, 11(1-2):1–34, 2011.

22 Sumit Sur and Pradip K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs.
Inf. Sci., 69(3):219–227, 1993.

23 Sébastien Tixeuil. Algorithms and Theory of Computation Handbook, Second Edition, chap-
ter Self-stabilizing Algorithms, pages 26.1–26.45. Chapman & Hall/CRC Applied Algo-
rithms and Data Structures. CRC Press, Taylor & Francis Group, November 2009.

24 George Varghese. Self-stabilization by counter flushing. SIAM J. Comput., 30(2):486–510,
2000.

25 George Varghese and Mahesh Jayaram. The fault span of crash failures. J. ACM, 47(2):244–
293, 2000.

	1 Introduction
	2 Model
	3 Algorithm DAG
	4 Vertex Coloring
	5 Concluding Remarks

