Lélia Blin

Anaïs Durand

Sébastien Tixeuil

Resource Efficient Stabilization for Local Tasks despite Unknown Capacity Links

Keywords: Self-stabilizing algorithm, message passing, unbounded capacity communication, nodes coloring Digital Object Identifier 10.4230/LIPIcs

Self-stabilizing protocols enable distributed systems to recover correct behavior starting from any arbitrary configuration. In particular, when processors communicate by message passing, fake messages may be placed in communication links by an adversary. When the number of such fake messages is unknown, self-stabilization may require huge resources: generic solutions (a.k.a. data link protocols) require unbounded resources, which makes them unrealistic to deploy, specific solutions (e.g., census or tree construction) require Opn log nq or Op∆ log nq bits of memory per node, where n denotes the network size and ∆ its maximum degree, which may prevent scalability.

We investigate the possibility of resource efficient self-stabilizing protocols in this context. Specifically, we present a self-stabilizing protocol for p∆ `1q-coloring in any n-node graph, under the asynchronous message-passing model. The problem of p∆ `1q-coloring is considered a benchmarking problem for local tasks. Our protocol offers many desirable features.

It is deterministic, it converges in Opk∆n 2 log nq message exchanges, where k is the bound of the link capacity in terms of number of messages, and it uses messages on Oplog log n `log ∆q bits with a memory of Op∆ log ∆ `log log nq bits at each node. The resource consumption of our protocol is thus almost oblivious to the number of nodes, enabling scalability.

Moreover, a striking property of our protocol is that the nodes do not need to know the number, or any bound on the number of messages initially present in each communication link of the initial (potentially corrupted) network configuration. This permits our protocol to handle any future network with unknown message capacity communication links.

A key building block of our coloring scheme is a spanning directed acyclic graph construction, that is of independent interest, and can serve as a useful tool for solving other tasks in this challenging setting.

Introduction

Self-stabilization [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF][START_REF] Dolev | Self-stabilization[END_REF][START_REF] Tixeuil | Algorithms and Theory of Computation Handbook, Second Edition, chapter Self-stabilizing Algorithms[END_REF] is a versatile technique that enables recovery after arbitrary transient faults hit the distributed system, where both the participating processes and the communication medium are subject to be corrupted. Roughly, a self-stabilizing protocol is able to bring the system back to a legal configuration, starting from an arbitrary initial, potentially corrupted, configuration. The core motivation for designing self-stabilizing protocols has been underlined by Varghese and Jarayam [START_REF] Varghese | The fault span of crash failures[END_REF], who observed that, whenever processes can crash and recover, a message-passing distributed system may reach any arbitrary global state, where the local variables stored at the processes may be inconsistent, and/or the communication links may contain spurious erroneous messages. As the global state is arbitrary, one may even assume that the local variables at the nodes as well as the contents of the messages are adversarially set to prevent recovery.

It is worth pointing out that self-stabilization in the presence of fake messages in the communication links is a challenge. Specifically, it is particularly difficult to ensure recovery when no upper bound is known on the number of (possibly fake) messages in transit in the initial configuration. Conversely, if an upper bound is known, then one can reset the system to a clean configuration by, first, emptying the links, and, second, resetting all local variables using a protocol that can "trust" the messages. Hence, non surprisingly, the vast majority of recent works in self-stabilization assumes a weaker adversary than the one we consider in this paper. In particular, a widely used model of self-stabilization is the state model.

State Model, and Data Link Protocols. In the state model, processes atomically read the states of their neighboring processes for updating their state. That is, the state model abstracts away all issues related to corrupted communication media. Indeed, the state model is motivated by the fact that there exist self-stabilizing data link protocols [START_REF] Afek | Self-stabilization over unreliable communication media[END_REF][START_REF] Burns | Stabilization and pseudostabilization[END_REF][START_REF] Dolev | Stabilizing data-link over non-FIFO channels with optimal fault-resilience[END_REF][START_REF] Dolev | Resource bounds for self-stabilizing message-driven protocols[END_REF][START_REF] Gouda | Stabilizing communication protocols[END_REF][START_REF] Katz | Self-stabilizing extensions for message-passing systems[END_REF][START_REF] Varghese | Self-stabilization by counter flushing[END_REF]. The purpose of such protocols is to ensure reliable communications between neighbors exchanging messages over unreliable communication links. Yet, the use of data link protocols such as the ones in the aforementioned previous work yields important issues. In particular, if the initial number of spurious messages in the communication links is unknown, then it is impossible to design a self-stabilizing data link protocol using bounded memory at each node [START_REF] Afek | Self-stabilization over unreliable communication media[END_REF][START_REF] Burns | Stabilization and pseudostabilization[END_REF][START_REF] Dolev | Resource bounds for self-stabilizing message-driven protocols[END_REF][START_REF] Gouda | Stabilizing communication protocols[END_REF][START_REF] Katz | Self-stabilizing extensions for message-passing systems[END_REF]. Therefore, one has to relax the constraints on the protocol. Such a relaxation may consist in designing pseudo-stabilizing data link protocols [START_REF] Burns | Stabilization and pseudostabilization[END_REF]. However, a pseudo-stabilizing protocol only guarantees that an infinite suffix of the execution satisfies the specification of the system, and hence its stabilization time becomes unbounded. Another relaxation consists of using self-stabilizing data link protocols that are not bounded in terms of resources. However, such protocols require either unbounded variables [START_REF] Dolev | Resource bounds for self-stabilizing message-driven protocols[END_REF][START_REF] Gouda | Stabilizing communication protocols[END_REF][START_REF] Katz | Self-stabilizing extensions for message-passing systems[END_REF], or unbounded code size (a.k.a. aperiodic functions) [START_REF] Afek | Self-stabilization over unreliable communication media[END_REF], which is undesirable from a practical point of view. A third relaxation consists of using randomization [START_REF] Afek | Self-stabilization over unreliable communication media[END_REF], but then the correctness of the system is not certain.

As a consequence, in the framework of data link self-stabilization, previous work often assume that the initial number of spurious messages present in the communication links is known to the participating processes. Under this assumption, very efficient self-stabilizing solutions can be obtained (see, e.g., [START_REF] Varghese | Self-stabilization by counter flushing[END_REF]). Actually, assuming that the number of erroneous messages initially present in the links is known to the nodes, even stronger self-stabilizing properties can be guaranteed, such as snap-stabilization [START_REF] Dolev | Stabilizing data-link over non-FIFO channels with optimal fault-resilience[END_REF] (a snap-stabilizing data link protocol guarantees that reliable communications between participating processes are immediately available after a failure).

From the above, one can conclude that, while the knowledge of the number of possible initial spurious messages in the communication links enables the design of efficient selfstabilizing data link protocols, the lack of this knowledge precludes the existence of boundedsize self-stabilizing deterministic data link solutions. In other word, when no bound is known, the use of data link protocols does not provide fully practical solutions for the design of efficient self-stabilizing protocols. Therefore, one has to focus on self-stabilization for message-passing systems, without using data links.

Message-Passing Model. Self-stabilizing protocols that operate in message passing systems with unknown initial link capacity are the most versatile, since they can directly be executed in newly set up networks whose characteristics were unknown when the protocol was designed. However, previous works that do not rely on a data link layer require large messages, large memory, or both. For instance, the versatile census protocol in [START_REF] Delaët | Tolerating transient and intermittent failures[END_REF] collects the entire topology at each node, and therefore requires message and memory of Opn∆ log nq bits in n-node networks with maximum degree ∆. Similarly, the versatile technique based on so-called r-operators, where the algebraic properties of the executed protocol guarantees self-stabilization, has been shown to be quite efficient in general [START_REF] Delaët | Self-stabilization with roperators revisited[END_REF][START_REF] Ducourthial | Self-stabilization with r-operators[END_REF][START_REF] Ducourthial | Self-stabilization with path algebra[END_REF]. However, to our knowledge, in the message passing setting, there exists r-operators only for variants of tree construction tasks [START_REF] Delaët | Self-stabilization with roperators revisited[END_REF]. Moreover, while the size of the messages used by such protocols remain in Oplog nq bits, the memory at each node might grow as much as Ωp∆ log nq bits.

Local tasks. Vertex coloring One may wonder whether the large amount of memory and communications resources used in the context of unknown capacity links is due to the global nature of the task to be solved (census, tree construction). Hence, an intriguing question arises: do local tasks yield high resource consumption when solved self-stabilizingly with unknown capacity links? A benchmarking local task in the domain of self-stabilization is that of vertex coloring. In vertex coloring, every process in the network must maintain a color variable such that, for every two adjacent nodes, the value of their color variables is distinct. Typically, the number of colors is supposed to be restricted in the range t1, 2, . . . , ∆ `1u in networks with nodes with maximum degree ∆. Vertex coloring is one of the most studied tasks in distributed network computing in general, and in self-stabilization in particular, as witnessed by numerous contributions: [START_REF] Barenboim | Locally-iterative distributed p∆ 1q-coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models[END_REF][START_REF] Bernard | Probabilistic self-stabilizing vertex coloring in unidirectional anonymous networks[END_REF][START_REF] Bernard | Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks[END_REF][START_REF] Blin | Compact self-stabilizing leader election for general networks[END_REF][START_REF] Ghosh | A self-stabilizing algorithm for coloring planar graphs[END_REF][START_REF] Gradinariu | Self-stabilizing vertex coloring of arbitrary graphs[END_REF][START_REF] Herman | A distributed TDMA slot assignment algorithm for wireless sensor networks[END_REF][START_REF] Masuzawa | On bootstrapping topology knowledge in anonymous networks[END_REF][START_REF] Mitton | Self-stabilization in self-organized multihop wireless networks[END_REF][START_REF] Sur | A self-stabilizing algorithm for coloring bipartite graphs[END_REF]. While most previous work about self-stabilizing vertex coloring considered the state model (see [START_REF] Bernard | Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks[END_REF][START_REF] Blin | Compact self-stabilizing leader election for general networks[END_REF][START_REF] Ghosh | A self-stabilizing algorithm for coloring planar graphs[END_REF][START_REF] Gradinariu | Self-stabilizing vertex coloring of arbitrary graphs[END_REF][START_REF] Sur | A self-stabilizing algorithm for coloring bipartite graphs[END_REF]), a few paper considered the message passing model [START_REF] Barenboim | Locally-iterative distributed p∆ 1q-coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models[END_REF][START_REF] Herman | A distributed TDMA slot assignment algorithm for wireless sensor networks[END_REF][START_REF] Masuzawa | On bootstrapping topology knowledge in anonymous networks[END_REF][START_REF] Mitton | Self-stabilization in self-organized multihop wireless networks[END_REF]. However, all existing solutions for this latter model provide probabilistic guarantees only [START_REF] Barenboim | Locally-iterative distributed p∆ 1q-coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models[END_REF][START_REF] Herman | A distributed TDMA slot assignment algorithm for wireless sensor networks[END_REF][START_REF] Masuzawa | On bootstrapping topology knowledge in anonymous networks[END_REF][START_REF] Mitton | Self-stabilization in self-organized multihop wireless networks[END_REF], and most of them assume some strong or weak forms of synchronous execution model [START_REF] Barenboim | Locally-iterative distributed p∆ 1q-coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models[END_REF][START_REF] Herman | A distributed TDMA slot assignment algorithm for wireless sensor networks[END_REF][START_REF] Mitton | Self-stabilization in self-organized multihop wireless networks[END_REF]. To our knowledge, there are no deterministic self-stabilizing vertex coloring protocols that operate in the asynchronous message passing setting, where the number of initial spurious messages in communication links is unknown to the participating processes.

Our contribution. To this paper, it remains unknown whether resource efficient self-stabilizing solutions exist when communication links have unknown initial capacity. We show that, for some local tasks, the answer to this question is positive.

In more details, we establish the following result: without any assumption on the number of messages present initially (and their content), starting from any configuration, we present a protocol that is self-stabilizing for the task of vertex coloring and uses Oplog log n`∆ log ∆q bits of memory per node, and Oplog log n `log ∆q bits of information per message, where n denotes the number of nodes in the network, and ∆ its maximum degree. A key ingredient of our protocol of independent interest is a symmetry breaking mechanism that locally orients every link in the network so that the overall orientation is acyclic (hence constructing a directed acyclic graph in the network), simplifying the design of higher layer algorithms such as vertex coloring or maximal independent set.

Our work thus paves the way toward resource efficient self-stabilizing protocols for the most challenging communication model, enabling solutions to remain valid when new networks are considered.

Model

The communication model consists of a point-to-point communication network described by a connected graph G " pV, Eq where the nodes V represent the processes and the set E represent bidirectional communication channels. Processes communicate by message passing: a process sends a message to another by depositing the message in the corresponding channel. We denote by N pvq the set of processes that are neighbors with process v, i.e., such that there exists a communication link between them and v. Let denote by n the number of processes and ∆ the degree of the graph. Note that we denote by δpvq the degree of node v.

Communications. The communication model is asynchronous message passing with FIFO channels (on each link messages are delivered in the same order as they have been sent). The number of messages per link is bounded by an integer k, however the nodes do not know k. Qpu, vq " pm q , m q´1 , . . . , m 1 q is the queue representing the messages in FIFO order between u and v, where m 1 is the head of the queue and q ď k. We assume each node v is fair with respect to its input channels: if v receives an infinite number of messages, then a given message m cannot stay in v's input channel forever. We denote by M the set of all possible messages. A node v has access to locally unique port numbers associated with its adjacent edges. We do not assume any consistency between port numbers of a given edge.

In short, port numbers are constant throughout the execution but two neighboring processes can associate different port numbers for the communication link between them. We denote by Portspvq the set of port numbers for the adjacent edges of process v. The port number associated by v to the edge pv, uq, if it exists, is denoted ptpv, uq.

Execution. Each process v maintains some variables. We denote by var v the value of variable var at process v. The state of a process is the vector of the values of its variables. A configuration is the vector of the state of every process and the content of the channels between every two neighboring processes. We denote by var v pγq the value of variable var v in configuration γ. Similarly, var v ru, γs and Qpγ, v, uq denote the value of the entry u of array var v in γ and the content of channel Qpv, uq in γ, respectively. The set of every configuration is denoted Γ. Let Þ Ñ be the binary relation between configurations such that γ Þ Ñ γ 1 if the system can reach γ 1 from γ by executing an (atomic) step. During a step, some processes: (a) receive messages (at most one by incoming channel), (b) do some internal computation, and (c) send some messages (at most one by outgoing channel). An execution is a maximal sequence of configuration e " γ 0 , γ 1 , . . . , γ i , . . . such that @i ą 0,

γ i´1 Þ Ñ γ i . Configuration γ 0 is the initial configuration of e.
For the purpose of complexity analysis, we define a round as the smallest execution fragment such that the two following conditions hold: (i) all messages that were in transit at the beginning of the round are received (and processed) by the nodes, and (ii) all nodes that have no message in transit in their input channels trigger a timeout (and process it).

Identifier.

A node v has access to a constant unique identifier id v , but can only access its identifier one bit at a time, using the Bit v piq function. The function Bit returns the place of the bit at one. Specifically, Bit v piq returns the position (numbered from right to left) of the ith bit to one (from left to right). Note that since nodes have unique identifiers, they are allowed to execute unique code. For example, suppose node v has identifier 10 (in decimal notation), or 1010 (in binary notation). Then, one can implement Bit v piq as follows for v " 1010:

Bit v piq :" $ & % 4 if i=1 2 if i=2 -1 if i ą 2
Since we assume that all identifiers are Oplog nq bits long, the Bit v function only returns values with Oplog log nq bits. Also, when executing Function Bit v , the program counter only requires Oplog log nq values. In turn, this position can be encoded with Oplog log nq bits when identifiers are encoded using Oplog nq bits, as we assume they are.

Self-stabilization.

An algorithm A is self-stabilizing for some specification SP if there exists a subset of legitimate configurations Γ Ď Γ such that:

Closure: Γ is closed, i.e., @γ,

γ 1 P Γ such that γ Þ Ñ γ 1 , if γ P Γ then γ 1 P Γ .
Convergence: Γ Ź Γ , i.e., for any execution e " γ 0 , γ 1 , . . . , γ i , . . . of Astarting from an arbitrary initial configuration γ 0 P Γ, Di ě 0 such that γ i P Γ . Correctness: For any execution e " γ 0 , γ 1 , . . . , γ i , . . . of Astarting from a legitimate configuration γ 0 P Γ , e satisfies the specification SP .

Algorithm DAG

The first layer of our solution consists in providing a symmetry-breaking mechanism. Our approach is to construct a directed acyclic graph (or DAG) based on the unique identifiers of the nodes: hence an edge is to be oriented from the lower identifier to the higher identifier. Of course, neighboring nodes do not know the identifier of the other, and should not communicate them directly to each other as it would break the oplog nq bits constraint on messages.

Our algorithm is presented as Algorithm 1. For each adjacent link pv, uq of process v, v maintains a binary variable Ordrvsppq, where p " ptpv, uq, as follows. Ordrvsppq represents the orientation of pv, uq. More precisely, Ordrvsppq equals 0 if v's identifier is greater than the identifier of u and 1 otherwise. To update variable Ordrvsppq, v permanently exchanges its identifier with u in a compact manner using the Bit function and a counter variable cnt v P t1, . . . , rlog Id v su of size Oplog log nq bits.

When the counter equals to 1, v sends a message to every neighbor u requesting the position of their own first bit to one (see Line 10). A neighbor u answers by a message ă 1, B ą, where B is the position of the 1st bit to one of u (see Line 12). Now, if B ą Bit v p1q, u's identifier is greater than that of v, and if B ă Bit v p1q, then u's identifier is smaller than that of v. Finally, if B " Bit v p1q, the comparison must continue. When v receives answers from every neighbor about the 1st position, v increments its counter (see Line 7. Then, for every neighbor whose status remains unknown (that is, the condition B " Bit v p1q was satisfied), v requests the value of the 2nd bit, and so on until all link orientations are established. This comparison process restarts when the node executes function Restartpvq (see Lines 1-3) that, in particular, sets cnt v to 1.

Due to the arbitrary initial configuration, where the link can contain an unknown number of corrupter messages, this process repeats indefinitely. A "Do forever" process is used to cope with the case of a deadlock due to an absence of messages (see . Moreover, messages ă , B ą that are received by v when its counter cnt v is different than are discarded.

In addition to variables Ordrvsppq and cnt v , process v maintains the following variables. The variable tmp v ppq P t0, 1, Ku is a temporary variable used during the computation of the ordering of the identifiers. When tmp v ppq " K, the orientation of the link pv, uq (if p " ptpv, uq) has not been computed yet in this step of the comparison. Moreover, the variable wait v is a set of port numbers used to remember which neighbors have not yet responded during the current step of computation of the ordering. In our algorithm, we use two types of messages: ă i ą and ă i , B i ą, where i P t1, . . . , rlog nsu and B i P t´1, . . . , rlog nsu. In the sequel, we may use i to denote both ă i ą and ă i , B i ą.

Algorithm 1: DAG Algorithm 1 Function Restart(v) is 2 cnt v :" 1; wait v :" Portspvq; 3 forall p P Portspvq: tmp v rps :" K; 4 Function Step(v) is 5 if wait v " H then 6 if cnt v ă rlog id v s then 7 cnt v :" cnt v `1;
Let λ m : Γ ˆM ˆV ˆV Ñ N be the following function:

λ m pγ, m, u, vq " " 1 if m "ă , B ą ^pB ‰ Bit u p qq 0 otherwise
Let λ Q : Γ ˆV ˆV Ñ N be the following function: Proof. When node v receives message ă , B ą from v in configuration γ with B ‰ Bit u p q, v sends in configuration γ 1 ą γ a message ă cnt v ą (see Function Steppvq of Algorithm 1).

λ Q pγ, u, vq "
If node u receives message ă ą, it sends ă , Bit u p q ą (see Line 11 of Algorithm 1) followed by ă cnt v ą (see Function Steppvq of Algorithm 1). So, u does not send ă , B ą with B ‰ Bit u p q. As a consequence, λ Q pγ, u, vq ă λ Q pγ 1 , u, vq and Λpγq ă Λpγ 1 q. Note that, we obtain λ Q pγ, u, vq " 0 after at most k receptions of messages through the port p of node v (p being the port number of v leading to u). đ

Let define dif pv, uq as the first level at which a node v can determine if the identifier of its neighbor u is lower or greater. More formally: dif pv, uq " min : P t1, . . . , rlog nsu ^Bit v p q ‰ Bit u p q (

We define predicate Goodpγ, v, uq as follows:

If id v ă id u : Goodpγ, v, uq " " pcnt v pγq ď dif pu, vqq ^ptmp v rγ, us " Kq ‰ _ (1) " pcnt v pγq ě dif pu, vqq ^ptmp v rγ, us " 1q ^ptpv, uq R wait v pγq ‰ (2)
If id v ą id u :

Goodpγ, v, uq " " pcnt v pγq ď dif pu, vqq ^ptmp v rγ, us " Kq ‰ _ (3) " pcnt v pγq ě dif pu, vqq ^ptmp v rγ, us " 0q ^ptpv, uq R wait v pγq ‰ (4)
Let φ p pγ, u, vq : Γ ˆV ˆV Ñ N be the following function: Finally, we define the set of configurations Γ DAG as the following Γ DAG " tγ P Γ B : Φpγq " 0u § Lemma 3. Γ DAG is closed.

φ p pγ, u, vq " $ & % 0 if pid u ą id v q ^pOrd v rγ, us " 1q ^Goodpγ, v, uq 0 if pid u ă id v q ^pOrd v rγ, us " 0q ^Goodpγ, v,
Proof. Let γ P Γ DAG . Let γ 1 P Γ such that γ Þ Ñ γ 1 . Without loss of generality, let consider two neighboring processes u and v such that id v ă id u .

Notice that, since φ p pγ, u, vq " 0, Goodpγ, v, uq holds and cnt v is incremented at most once every step or reset to 1 if v executes Restartpvq. In the latter case, v also set tmp v rus to K so the first line of predicate Good holds. Now, there are three cases:

If cnt v pγq ă dif pv, uq, then cnt v pγ 1 q ď dif pv, uq and the value of variable tmp v rus is not changed so tmp v rγ, us " K and the first line of predicate Good holds. By the procedure Do forever in order to avoid a deadlock due to an absence of messages in the network (see Line 21). When v receives ă ą from u, to avoid filling queue Qpv, uq with messages ă , B ą, as this would prevent v from updating its own variables (see Line 11). When v receives ă , B ą from u, enabling v to update its own variables (see Line 19).

If cnt v pγq " dif pv,
We denote by dispγ, v, uq the distance in the queue of the first message in Qpγ, u, vq that decreases |wait v |, if it exists: dispγ, u, vq " minti : m i P Qpγ, u, vq ^pm i "ă cnt v pγq, B i ąqu Otherwise, if such a message does not exist, we handle the last message ă i ą in Qpγ, v, uq with i " cnt v pγq. Note that, if dispγ, u, vq " 0 and Qpγ, u, vq, v must have received all messages in Qpγ, u, vq before the reception of messages sent by u after configuration γ. When u receives ă ą from v, u sends two messages: ă , Bit u p q ą, and ă cnt u ą (see Finally, we show that in every configuration after γ b , there is no color conflict. Assume by contradiction that in some configuration γ after γ b , there is a color conflict. Let consider the process v in conflict that has the lowest ID among all such processes. For every u P N pvq such that c v " c u , c v rus " c u " c v , and c u rvs " c v " c u . Moreover, by assumption, Ord v rus " 1 and Ord u rvs " 0. Thus, in finite time, v calls the function Conf lict, and changes its color (see Line 2), a contradiction. So, in every configuration γ after γ b , and for every process v P V , α 1 pγ, vq " 0. Hence, Apγq " 0, and Γ Ź Γ α .

đ § Lemma 9. Γ α is closed.

Proof. Let γ Þ Ñ γ 1 such that γ P Γ α . Let v P V and u P N pvq. First, in γ, c v rus " c u ‰ c v .
Moreover, every message in Qpu, vq contains color c u ‰ c v . Thus, v does not change its color during step γ Þ Ñ γ 1 . Hence, α 1 pγ 1 , vq " 0.

Since u and v do not change their color between γ and γ 1 , and since every message in Qpu, vq in γ equals c u , then the value of c v rus does not change, and remains equal to c u in γ 1 . Hence, α 2 pγ 1 , vq " 0.

Finally, u does not change its color between γ and γ 1 , and every message sent by u during step γ Þ Ñ γ 1 equals ă c u ą such as every other message in Qpu, vq in γ that u did not treat during step γ Þ Ñ γ 1 . Thus, α 3 pγ 1 , vq " 0 đ § Lemma 10. Algorithm 2 converges in Opnq rounds and exchanges Op∆ k nq messages before convergence.

Proof. After one round, the system is purged of all possibly erroneous messages contained in the initial configuration. Moreover, by Lemma 7, at each round a process v sends its color ă c v ą to all its neighbors, neighbors that will receive this message during the next round. Now, consider a process v that changes its color during some round. The last time v changes its color during the round, it knows the real colors of its neighbors, i.e., @u P N pvq, c v rus " c u . So by changing its color, v solves its color conflicts with its neighbors having a greater identity and does not create any new conflict with them. Since a process can change its color only if it is in conflict with a node of greater identity, v will not change its color anymore after this round. Hence, in the worst case, processes stop changing their colors after Opnq rounds and there is no color conflict anymore.

In the worst case, at each round, a process replies to every message sent by its neighbors during the previous round. Thus, Op∆ k nq messages are exchanged. đ

To avoid starvation of one of the algorithms, we compose them using a fair composition [START_REF] Dolev | Self-stabilization[END_REF], i.e., each process alternatively executes a step of Algorithm 1 and a step of Algorithm 2. As demonstrated in previous work [START_REF] Dolev | Self-stabilization[END_REF], fair composition preserves the property of self-stabilization.

Concluding Remarks

We presented the first deterministic self-stabilizing solution in asynchronous message passing networks with unknown capacity links that only requires sublogarithmic (in n) memory and message size, when ∆ is itself sublogarithmic. Our approach is constructive and modular. In particular, our DAG algorithm layer solves a fundamental difficulty in many settings with respect to self-stabilization: avoidance of cyclic behaviors. We believe this can be a valuable asset when solving other problems in the same setting.

While our Vertex coloring algorithm layer does not guarantee a locally minimal coloring (if an initial configuration is a coloring that is not locally minimal, no conflict is found and thus recoloring occurs), a simple modification of the protocol permits to achieve this result: a node v that does not see a conflict but would like a smaller color asks its higher identity neighbors the authorization to take a new color c, any such neighbor u grants the authorization unless it has color c (but v didn't know it), or it itself wants to take a new color and is waiting for authorization. This mechanism does not create new conflicts, and any authorization chain length is bounded by the height of our constructed DAG. As a result, a minimal coloring is obtained, which can then be used for solving the maximal independent set problem: as it provides a locally minimal coloring, any node with color 0 can be seen as a member of the maximal independent set.

We believe the DAG and Vertex Coloring can prove useful for other local tasks, such as minimal dominating set, link coloring, or maximal matching. It would also be interesting to investigate their utility for solving global tasks (such as tree construction or leader election), and whether resource efficiency remains in this setting.

One property we retained about communication links is their FIFO behavior. Relieving this hypothesis in the context of unknown capacity links is likely to generate many impossibility results, that are left for future work.

8 13 Steppvq; 14 21 if

 131421 wait v :" tp P Portspvq : tmp v rps " Ku 9 else Restartpvq ; 10 send ă cnt v ą to wait v ; 11 Upon receipt of ă ą from port p : 12 send < , Bit v p q> to p; Upon receipt of ă , B ą from port p : 15 if pp P wait v q ^p " cnt v q then 16 wait v :" wait v ztpu; 17 if B ą Bit v p q then Ord v rps :" 1; tmp v rps :" 1 ; 18 if B ă Bit v p q _ pB " Hq then Ord v rps :" 0; tmp v rps :" 0; Dp P Portspvq : pp " ptpv, uqq ^pQpu, vq " Hq then Steppvq ; We now state the main result about Algorithm 1: § Theorem 1. Algorithm 1 solves the spanning DAG construction problem in a self-stabilizing manner in n-nodes graphs with maximum degree ∆, assuming the message passing model. If the n node identifiers are in r1, n c s for some c ě 1, then Algorithm 1 uses Oplog log n ∆ log ∆q bits of memory per node and Oplog log nq bits per message. Moreover, it converges after in Opk log nq rounds, and the exchange of Opk∆ log nq messages, where k (unknown to the algorithm) is the maximum number of (potentially corrupted) messages initially present Lélia Blin, Anaïs Durand, and Sébastien Tixeuil XX:7 in each communication link.

ÿ

 mPQpγ,u,vq λ m pγ, m, u, vq Let λ, Λ : Γ ˆV Ñ N be the following functions: λpγ, vq " ÿ uPN pvq λ Q pγ, u, vq and Λpγq " ÿ vPV λpγ, vq Finally, we define the set of configurations Γ B as follows Γ B " tγ P Γ : Λpγq " 0u § Lemma 2. Γ Ź Γ B , and Γ B is closed.

uq 1 otherwise

 1 Let φ : Γ ˆV Ñ N and Φ : Γ Ñ N be the following potential functions:

 uq, the value of variable tmp v rus changes only if v executes Restartpvq (see above) or if v receives a message ă cnt v , B ą from u. Since γ P Γ B and by definition of dif pv, uq, B ą Bit v pcnt v q and v sets tmp v rus to 1 and removes ptpv, uq from waitpvq. Thus, the second line of predicate Good holds. If cnt v pγq ą dif pv, uq, the value of variable tmp v rus changes only if Restartpvq is executed. Otherwise, the second line of predicate Good remains true. In those three cases, the value of variable Ord v rus can only change to the value of tmp v rus ‰ K so Ord v rus can only equal 1.Thus, γ 1 P Γ DAG and Γ DAG is closed. đ § Lemma 4. Γ B Ź Γ DAG . To prove Γ B Ź Γ DAG , we need to prove that every node v executes at least once the function Restartpvq, because this function initiates again the computation of the DAG for a node v. Thanks to the function Restartpvq, that puts all the ports number of v in the set wait v , the comparison of the place of the first bit is restarted for all the neighbors of v. Moreover, since the counter is also restarted at 1, we compute which neighbors have a greater identity and which one has a smaller identity.Only the function Steppvq of Algorithm 1 can call the function Restartpvq see Line 9 . The function Steppvq is used in three cases:

	Proof.

Lines 11 and 10). As a consequence, the number of messages before ă cnt v pγq ą can be doubled when they are sent in Qpu, vq. I " minti : m i P Qpγ, v, uq ^pm i "ă cnt v pγq ąqu dispγ, v, vq " I `|Qpγ, u, vq| `2p|Qpγ, v, uq| ´Iq If dispγ, u, vq " 0 ^dispγ, v, vq " 0 ^Qpγ, u, vq Y Qpγ, v, uq ‰ H. In other words, @m P Qpγ, v, uq, message m is of type ă , B ą, and @m P Qpγ, u, vq, message m is of type ă ą. As a consequence, when v receives a message ă ą, thanks to function Step(v) it sends a message ă cnt v ą, so the distance to a message ă , B ą at destination u of v is qpγ, u, vq " |Qpγ, v, uq Y Qpγ, u, vq| `1. Last, if Qpγ, u, vq Y Qpγ, v, uq " H, then u and v can execute Do forever (or only u or only v), the maximum distance 2 is obtained when u and v jointly execute Do forever. Let dpγ, u, vq : Γ ˆV Ñ N be the following function:

Once wait v is empty (see Line 5), v increases cnt v , or executes Restartpvq (see Lines 6 and 9). We already proved that in order to reach a configuration where φ p pγ, u, vq " 0, v must execute Restartpvq. To achieve that we define the function : Γ ˆV Ñ N : To conclude, we obtain a configuration γ where for every v P V , we have φpγ, vq " 0, so Φpγq " 0. Also, for every configuration γ 1 ą γ we have proved that Φpγ Proof. We use the potential function Φ to compute the number of rounds, remember that αpγ, vq " p pγ, vq, Dpγ, vqq. Function pγ, vq is bounded by log n, and Function Dpγ, vq by 2k, so in at most 2k log n rounds, each node v computes its set of links directions in the DAG. At each round, v reads δpvq messages, so the system converges after Opk∆ log nq messages. đ

Vertex Coloring

We now present our self-stabilizing p∆ `1q vertex coloring algorithm whose pseudo-code is given in Algorithm 2, that is built on top of Algorithm 1. We assume that each node v knows which neighbor has a lower identifier, and which has a higher one using variables Ord of Algorithm 1. Each node v maintains a color variable, denoted by c v P t1, . . . , δpvq `1u.

In addition, v maintains an array with all the known colors of its neighbors denoted c v rus P t1, . . . , ∆ `1u for each port u. To do so, infinitely often, v send its own color to its neighbors by sending a message ă c v ą (see Lines 4, 5, 9, and 13). If v has a neighbor u whose color is identical (in other words, if v detects a conflict) but identifier is lower, v changes its color for the minimum color not used by its neighbors, by executing function Conf lictpv, uq (see Lines 1-5). Note that, since the maximum degree of the graph is ∆, the size of c v is bounded by ∆ log ∆. In the following proof, we assume that the oriented graph described by variables Ord is a spanning DAG. Proof. Let d s pvq be the minimum distance from process v to a source of the DAG (i.e., a process with only outgoing edges). First, we show that in finite time, every process v stops changing its color by induction on d s pvq.

Base case: If d s pvq " 0, then v is a source of the DAG and @u P N pvq, Ord v rus " 0. Thus, v never changes its color c v (see Line 2). Induction step: If d s pvq " x `1, then @u P N pvq, either Ord v rus " 0, or d s puq ă d s pvq " x `1. By induction hypothesis, in finite time, @u P N pvq such that d s puq ď x, the value of c u eventually stops changing. Then, by Lemma 7, u sends ă c u ą to v infinitely often, so eventually c v rus " c u . Now, either v never changes its color, or it gets a new color different from c u . In the second case, v is no longer in conflict with any neighbor u P N pvq such that d s puq ă d s pvq. Node v can only be in conflict with neighbors w P N pvq such that Ord v rws " 0, and thus v does not change its color anymore (see Line 2). Hence, v can change its color at most once.

Once every process stops changing its color forever, a process v cannot send a color different from its own. Thus, there exists a configuration γ a such that, in every subsequent configuration γ, for every process v, v does not change its color and α 3 pγ, vq " 0. Moreover, in finite time, processes update their local knowledge about their neighbors' colors (see Lemma 7 and Line 7). Thus, there is a configuration γ b after γ a such that, in every configuration γ after γ b , for every process v, α 2 pγ, vq " 0.