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Abstract  10 

When placed upside down, a liquid surface is known to fall if it is above a certain size. Gravity 

acting on the lower liquid interface has a destabilizing effect called Rayleigh-Taylor instability1,2. 

Among the many methods that have been developed to prevent the liquid from falling3–6, vertical 

shaking has proved efficient and been studied in detail7–13. Stabilization is the result of the 

dynamical averaging effect of the oscillating effective gravity. Vibrations of liquids also induce 15 

other paradoxical phenomena such as the sinking of air bubbles 14–19 or stabilization of the liquid 

layer above sinking objects20. Here, we show that the dynamic stabilization creates a stable 

buoyancy on the lower interface as if gravity were inverted. Bodies can thus float upside down on 

the lower interface of levitating liquid layers. We take advantage of the excitation resonance of the 

supporting air layer to perform experiments with large levitating liquid volumes up to half a liter 20 

and a width up to 20 cm. The experimental findings are explained by the dynamical stabilization 

of the buoyant equilibrium which exists on the lower interface. This model also predicts a minimal 

excitation needed to withstand falling which is dependent on the floater mass. Experimental 

observations confirm the possibility of selective falling of heavy bodies. Our findings invite us to 

rethink all interfacial phenomena in this exotic and counter-intuitive stable configuration. 25 

 

Maintaining a liquid upside-down is challenging but various situations in which the liquid can be 

sustained are known. In the case of a limited surface size, capillary forces have a stabilizing effect 
21–23. Alternatively, for large but thin liquid layers suspended under a plate, capillarity opposes 

gravity 24,25. In the latter case, the liquid interface does not stay flat but is destabilized in a regular 30 
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pattern of hanging droplets. This instability driven by gravity, known as the Rayleigh-Taylor 

instability, occurs at the interface between two fluids whenever a denser one is placed over a lighter 

one1,2. Several approaches have been used to stabilize the liquid layer such as temperature 

gradients 3, electric 4 or magnetic fields 5, rotational motion 6 and vertical vibrations 7–13. In the 

latter case, the amplitude of the vibration needs to be increased with the surface size. The maximum 5 

amplitude is set by the triggering of another instability called the Faraday instability which tends 

to destabilize fluid surfaces above a certain acceleration threshold 26,27. However, this threshold 

can be raised by increasing the fluid viscosity 28. Hence, the upside-down liquid volume can be 

large provided the viscosity is properly chosen.  

The vertical vibration of a fluid also induces air bubbles to sink below a certain depth in the liquid 10 

defying the well-known Archimedes’ principle 14–20. This effect has been studied for industrial 

applications in gas holdup and mixing in bubble column reactors 29.  

 

Here, we investigate the effect of the vertical vibrations on the buoyancy of bodies immersed in 

levitating liquid layers and in particular at their lower interface. Our experimental setup consists 15 

of a Plexiglas container fixed on a shaker vibrated vertically at frequency ω/2π with an amplitude 

A (Fig. 1a). The container is filled with silicon oil or glycerol with high viscosity (typically ranging 

from 0.2 Pa.s to 1 Pa.s) to increase the Faraday instability threshold 8. Though they have different 

physical properties, both liquids exhibit similar behavior provided that their viscosity is large 

enough. In particular, the wetting conditions appear to have limited influence thanks to dynamical 20 

effects on the contact line. Air bubbles are observed to sink when placed below a critical depth. 

This behavior which defies standard buoyancy can be explained by a simple model taking into 

account the kinetic force, also called the Bjerknes force 30, exerted on the bubble in the oscillating 

bath 14,16 (see Supplementary Materials and Movie 1 for details). By expanding an already sunken 

bubble, we create an air layer trapped below a levitated liquid layer (Fig. 1b and Supplementary 25 

Movie 2). Its lower interface is stabilized by the vertical shaking, preventing the release of the 

trapped air. This air layer is acting as a vertical spring loaded with the liquid mass placed upon it 

and driven by the shaker (Fig. 1c). It can be modeled by a driven damped harmonic oscillator 𝑧 +

2𝛤𝜔&'(𝑧 + 𝜔&'() 𝑧 = 𝐴𝜔)cos(𝜔𝑡) with ωres the resonance frequency of the air layer and Γ the 

damping ratio due to the shearing induced by the relative motion between the levitating liquid 30 

layer and the bath walls (see Supplementary Information). In the laboratory frame, the normalized 
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oscillation amplitude Al(ω)/A and its associated relative phase ϕl(ω)-ϕ compared to the shaker 

clearly show the expected resonance behavior (Fig 1c and 1d). The air layer thus enables the 

enhancement of the excitation amplitude of the shaker by more than one order of magnitude. Near 

resonance, the amplitude is high enough to excite the Faraday instability on both sides of the fluid 

layer (see inset Fig. 1d and Supplementary Movie 3). This resulting “rain” emitted from the lower 5 

interface induces a thinning of the fluid layer which can be avoided by simply reducing the 

excitation amplitude. Provided the spring-mass oscillation is properly tuned, there is no restriction 

in the number of sustained levitating layers which can be piled on top of one another (see Fig. 2e 

and Supplementary Movie 4). 

As mentioned before, the vertical vibrations have a stabilizing effect on the lower fluid interface. 10 

This can be interpreted as a Kapitza effect which consists of a dynamical stabilization of an 

inverted pendulum by vertical shaking 31,32. Solving the Bernoulli equation for the fluid shows that 

the interface height 𝜁 𝑘  at the spatial wavenumber 𝑘 behaves like an inverted pendulum. The 

spatial mode satisfies 𝜁 + 𝜔0(𝑘)
2 + 𝐴𝑙

2𝑘2

2 𝜔2 𝜁 = 0 with 𝜔6 𝑘 ) = −𝑔𝑘 +	(𝛾𝑘;)/𝜌> the gravito-

capillary dispersion relation with inverted gravity. Without vibrations, the oscillator is unstable for 15 

small enough k (ω0(k)2<0) leading to the Rayleigh-Taylor instability while large wave numbers 

are stabilized by capillarity. The last term in the equation arises from the modulation of the 

effective gravity. In gravitational regime, the stabilization is reached for wavenumbers 

satisfying	𝑘 > 2𝑔/𝐴>)𝜔) (see Supplementary Information). The limited size L for the bath sets a 

maximum limit to the observed excitable wavenumber k>2π/L (only anti-symmetric modes 20 

satisfying volume conservation are considered). As a consequence, the stability of the interface is 

obtained for oscillating liquid velocities 	𝑣> = 𝐴>𝜔 above a critical velocity 𝑣>∗ = 𝑔𝐿/𝜋 < 𝑣E	. 

There seems to be no size limit for stabilization. The maximum levitated mass was 0.5 L in a 12x12 

cm2 container, and the max length achieved was 20 cm. The limitations in mass are only due to 

the shaker. In addition, no decay in time was observed and the layers remained stable for arbitrary 25 

long times. Figure 1f shows the oscillating velocity 𝑣>∗ needed to stabilize baths with lengths L up 

to 18 cm (insets show views of levitating layers for L=2 cm and L=18 cm, see Supplementary 

Movie 5). Other effects might have an influence on the stability, such as friction or the flows 

formed at the boundary, but their influence is limited (see Supplementary Information). 
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We now focus on objects floating at the inverted interface of the levitating fluid layer. Archimedes’ 

principle states that the upward buoyant force exerted on an immersed body, whether fully or 

partially submerged, is equal to the weight of the displaced fluid. Although this may seem 

counterintuitive, the transpose symmetric position at the lower interface (see Fig 2a) also exhibits 

an upward buoyant force equal to the weight of displaced liquid. Figure 2b shows the typical 5 

potential exerted on a floating body without taking into account the dynamic effects (see 

Supplementary information for details). The two equilibrium positions associated with each 

interface are clearly visible. However, while the upper position is stable, the lower is not: pushing 

the body down/up would make it fall/float to the upper interface. Taking into account the 

dynamical effect, i.e. the time averaged effect of the oscillations, provides an additional stabilizing 10 

dynamical potential around the two equilibrium positions (see inset Fig. 2b). Averaged small 

displacements Zb of the floater around the two equilibrium positions satisfies the same dynamical 

equation 	𝑍G + 𝜔G) 1 + 𝛼 𝑍G = 0, ωb being the angular frequency associated with the buoyancy 

force and 𝛼 = JK
L

)
	 MNJ

O

)
 the correction induced by the averaged dynamical effects (see 

Supplementary Information for details). While, the dynamical effects increase the stability of the 15 

equilibrium at the upper interface 𝜔G) > 0, 𝛼 > 0 , the unstable static equilibrium at the lower 

interface (𝜔G) < 0) is stabilized by the dynamical effects (α<0). It is interesting to note that similar 

dynamical stabilizations were observed with a washer mounted on a vibrated inverted pendulum20. 

The floater stability is reached for liquid velocity 𝑣> above a critical value given by 𝑣G∗ =

√2𝑔/|𝜔G| < 𝑣>. It is thus possible to have floating bodies with varying density above and below 20 

the levitating liquid layers (see Figure 2c). Hence the vibration not only gives stability of the lower 

horizontal interface of a liquid but also permits a vertical stabilization of the unstable equilibrium 

position that a floater would experience on such interface. This dynamical “anti-gravity” enables 

boats to float on both interfaces (Fig. 1e, see Supplementary Movie 6).33 Note that the drag force 

induced by secondary flows due to recirculation in the liquid layer should not significantly change 25 

the vertical equilibrium position (see Supplementary Movie 2 and Supplementary Information). 

 

The previous stability conditions suggest that the critical fluid velocity to stabilize a floater 𝑣G∗ and 

the liquid layer 𝑣>∗ are different and that sufficiently massive floaters should fall before the layer 

collapses (𝑣G∗ > 𝑣>∗). We performed the experiments in silicon oil with spherical floaters of 30 
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increasing mass, the heaviest one being almost neutrally buoyant (Figure 3). Contrary to light 

floaters which fall with the liquid layer as the excitation amplitude is decreased, heavier floaters 

fall before the levitating layer gets destabilized (see inset Figure 3 and Supplementary Movie 7). 

The theoretical critical velocity 𝑣G can be exactly computed for spheres without any adjustable 

parameters (solid blue line). The expected range of masses for which 𝑣G∗ > 𝑣>∗ is consistent with 5 

the experimental findings (blue area in Fig. 3) and the values 𝑣G∗ are in reasonable agreement. 

Discrepancy occurs for almost neutrally buoyant floaters (as also for buoyant equilibrium 

position). In this limit, new phenomena are observed such as a small relative motion of floaters 

with respect to the surrounding fluid layer which seems to play a significant role in the floater 

equilibrium.  10 

 

This counter-intuitive upside-down buoyancy phenomenon suggests that the stabilization of 

Rayleigh-Taylor instability through vibrations can be considered not only in itself but also as a 

playground for new experiments in unexplored conditions. Under this perspective, many 

phenomena that occur at the interface between air and liquids could be investigated and 15 

reformulated in this new exotic configuration such as transport and segregation.   
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Figure 1 Levitating liquid layer stabilized by Kapitza effect. a, Experimental setup composed 

of a Plexiglas container of various sizes (up to 20 cm in width) attached on a vertically 

oscillating shaker with amplitude A and frequency ω/2π. The liquid is either glycerol or silicon 5 

oil with high viscosity (typically 0.5 Pa.s). The bubbles are created by injecting air with a syringe 

through a long needle. We operate at room temperature (20°C). b, Image sequence of the 

creation of the air layer obtained by injecting air at the bottom of the oscillating liquid bath 
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through a needle. The sinking bubble grows until it completely fills the bottom of the bath (see 

Supplementary Movie 1 and 2). c, Increase of the liquid layer vertical amplitude Al/A  and d, 

relative phase shift ϕl-ϕ of the liquid oscillations compared with that of the shaker as a function 

of the excitation frequency ω/2π. Insets: Schematics of the spring-mass systems composed of the 

air layer loaded with the levitating liquid and image of Faraday instability triggered on the two 5 

opposite surfaces of the levitating liquid layer of silicon oil (see Supplement Movie 3). The 

experimental data (full circles) are fitted with the mass-spring model with fitting parameters 

ω/2π = 103 Hz and Γ = 0.04 (dashed line, see Supplementary Information for details). e, 

Digitally colorized three-quarter views of the oscillating containers with one and two levitating 

liquid layers of silicon oil (see Supplementary Movie 4). f, Threshold excitation velocity Alω for 10 

Kapitza stabilization of the liquid layer as a function of the length L of the container: 

experimental data (circles, error bars correspond to extremal values over 5 experiments) and 

model 𝑣>∗ = 𝑔𝐿/𝜋 (dashed line). Side views of the levitating bath in a 2 cm and 18 cm wide 

container are presented below (see Supplementary Movie 5). 

 15 
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Figure 2 Archimedes’ principle over and under a levitating liquid layer. a, Schematics of the 

force balance at the two opposing interfaces with the buoyant force cancelling the weight of 5 

immersed bodies. b, Typical profile of the static potential along the vertical direction z 

neglecting the dynamical effects. Two equilibrium positions appear at each interface, the lower 

one being unstable. Insets: close up of the potential near the equilibrium positions with the 

addition of the dynamical stabilizing effect (red line, see Supplementary Information). c, Side 

views of 2 cm diameter plastic spheres floating upwards and downwards with lower (left) and 10 

higher density (right). d, Time averaged equilibrium positions for 2 cm diameter spheres with 

varying mass as a function of the immersed volume at the upper (squares) and lower interface 
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(diamonds). Circles are equilibrium positions obtained without shaking. The dashed line is given 

by the Archimedes’ principle with experimentally measured ρl=1.1 kg/L for glycerol. The error 

bars correspond to extremal values over 5 measurements. e, Boats floating above and below over 

and under a levitated liquid layer (see Supplementary Movie 6). 

 5 

Figure 3 Floater and liquid layer stability. Critical velocities for the stability of the liquid layer 

𝑣>∗ and for the floater 𝑣G∗ as a function of the floater mass mb. The experiments are performed in a 

4x5 cm2 container with silicon oil and a spherical floater of 2.5 cm with various masses. The 

model (blue line) based on dynamic stabilization uses the liquid density measured experimentally 

ρ=0.92 kg/L and no adjustable parameter. Above a certain floater mass 𝑣G∗ > 𝑣>∗ (blue area) the 10 

floater can fall while the liquid layer remains stable. The error bars correspond to extremal 

values over 3 measurements. The dashed red line is the mean value of the 𝑣>∗ measurements. 

Inset image sequences of the experiment showing the layer falling at 𝑣>∗ for 𝑚T> = 4.8	g and 

showing the floater falling at 𝑣G∗ for 𝑚G = 6.6	g (see Supplementary Movie 7). 

 15 
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