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Abstract

A simple Bond Charge Model is proposed to predict intrinsic bond energies. Model

parameters can be derived from the topology of the Electron Localization Function and

optimized geometries through classic considerations. Results for carbon-carbon covalent

bonds are shown to be very accurate in different chemical environments. Insight can

be extracted from the application of the model due to its elementary construction

and simple mathematical formulation. The remarkable robustness of the fitted model

highlights how different Density Functional Approximations relate geometries, densities

and energies.

Introduction

The chemical bond is usually regarded as the central concept in chemistry.1 However, its

utility stems from fuzziness, and defining or probing chemical bonds is far from a solved

problem. Analogously, the chemical energy associated with forming or breaking a chemical

bond is awkwardly hard to define in a general fashion.
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The IUPAC states2 that the bond energy (BE) is “the average value of the gas-phase

bond dissociation energies (usually at a temperature of 298 K) for all bonds of the same type

within the same chemical species.” While this definition is suitable from an experimental

and thermodynamical point of view, it clearly misses some desirable properties, as it equates

the strength of bonds that should be very different on an individual level. The C−H BE

energy in methane is, according to this definition, 1
4
of the atomization energy of methane.

However, this does not necessarily mean that each bond breaking step leading to C+4H is

associated with this BE: a more refined perspective is desirable.

Furthermore, in quantum mechanics it is non-trivial to consider a local entity, such as

a chemical bond, and isolate it from the total wave function of the system. Accordingly,

Bond Dissociation Energies (BDEs) are far more used in benchmarking and testing efforts

within quantum chemistry. BDEs can be computed as the energy difference between two

points in the free energy surface. However, the BDE includes both the intrinsic BE, an

equilibrium property related to the strength of the bond, and a certain reorganization energy,

RE, that accounts both for geometric and electronic relaxation that takes place after or while

the bond breaks. Quite often in chemistry, RE governs over BE in the determination of

the thermodynamic pathways: whenever a bond is broken, fragments reorganize to achieve

significant stabilization.

Occasionally, separating RE and BE is reasonably feasible. For instance, and ignoring

finite basis set issues for the moment, the electronic BE of ethene can be calculated as

the electronic energy difference between H2C−−CH2 in its closed-shell singlet state and the

two H2C fragments, with the same geometry, in their triplet 3B1 state (Scheme 1 A). The

triplet multiplicity is formally suitable for the formation of the double bond in ethene. In a

symmetric covalent system, polarization effects can be assumed to be small. In this case, RE

is small compared to BE, as the geometry and electronic state for the methylene fragments

are close to the actual minima. However, the electronic BE of ethyne must in principle be

computed with respect to the 4Σ− quartet state of the methylidine radical, which differs in
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Scheme 1: Energy levels for the homolitic bond breaking of A) ethene into 2 CH2 fragments,
with and without geometrical relaxation in the 3B1 state and B) ethyne into 2 CH fragments
in the 4Σ− state and relaxed to the 2Π state.

energy from the 2Π doublet minima (Scheme 1 B) by more than 40 kcal/mol.

Intrinsic BEs, which we shall refer to as simply BEs, are in principle an equilibrium

property; something hidden on the molecular wave function that characterizes the fuzzy

entity we call a chemical bond. Nevertheless, both chemical bonds and BEs are invaluably

important for the rationalization of chemical phenomena.3–6 Indeed, relating BEs and BDEs

to geometric or electronic features is widespread in the chemical community,7,8 in spite of a

number of troublesome conceptual issues present in different approaches.9

Strictly speaking, equilibrium properties, no matter how obscure, should definitely be

predictable on the basis of other equilibrium properties. In this work, the Bond Charge Model

(BCM) ansatz, based on the electron density, the kinetic energy density and geometrical

considerations will be presented. This approach allows for the calculation of BEs for C−C

bonds within quantum-mechanical accuracy. A posteriori theoretical considerations and

considerable insight can be extracted from the application of the model, examples of which

will be given in the latter sections.
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Computational methods

A set of 59 different Density Functional Approximations (DFAs) in Kohn-Sham Density Func-

tional Theory, Hartree-Fock (HF) and Frozen Core Möller-Plesset second order perturbation

theory (MP2) methods have been used as defined in the Gaussian 09 rev.D01 package.10 The

total array 61 methods will be referred to as the DFA set with numbers 1 to 61 ; the detailed

list can be found in the Supporting Information (SI). A quadruple-ζ def2-QZVP basis set

has been used for all calculations.11 All (intrinsic) BE calculations have been performed pre-

serving the geometry of the fragments as in the original molecule, and adjusting electronic

states to match the proper bond order using the unrestricted formalism. No counterpoise

corrections have been used as per the large size of the basis set. Spin contamination and

basis set superposition errors were monitored and validation calculations can be found in

the SI. Solid state calculations of diamond were performed with VASP 5.4.112–15 using the

HSE06 functional16 with a 550 eV plane wave cutoff. Integration of electron density within

ELF basins was performed with the CRITIC2 program17,18 using the algorithm proposed by

Yu and Trinkle.19 Statistical analysis was performed with the Statsmodels package version

0.9.0.20 Graphics were generated with Chimera 1.11.221 and VESTA 3.4.1.22

Approximate Energy Models of Covalent Bonds

The Bond Charge Model ansatz

The original Bond Charge Model (BCM)23–26 is a simple proposal by Parr and coauthors in

which the potential energy curve W for an homonuclear diatomic molecule with internuclear

distance R is modeled as a sum of three terms (Equation 1): D, which is a bond-specific

constant accounting for the internal energy of the participating atoms, V , which is a Coulomb

term, and T which is a kinetic energy term. Chemical bonds are assumed to be well described

by a negative electronic charge or bond charge, q, between two nuclei with positive charge Z.
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Electrostatic forces lead to a 1/R dependency for V (Equation 2), and a q/R2 dependency

for T which arises from the particle in a box model (Equation 3). Thus, W can be expressed

in terms of a coefficient of the nuclei-bond potential CBN
V , a coefficient of the nuclei-nuclei

potential CNN
V , and a bond kinetic energy coefficient CB

T .

W = D + V + T = D + CBN
V

q

R
+ CNN

V

1

R
+ CB

T

q

R2
(1)

V =
(Z2 − 4qZ)

R
=
Z2

R
− 2

qZ

R/2
= CNN

V

1

R
+ CBN

V

q

R
(2)

T =
qh2

8meν2R2
= CB

T

q

R2
(3)

Where h is Planck constant, me is the mass of the electron, and ν is a variable such as

νR = Rbond, the effective bond length. Assuming that q must compensate nuclear charges

Z to the net charge, the only model parameters are q and ν.

The BCM analytical expression of W allows for the advantageous calculation of equilib-

rium bond lengths Req, harmonic oscillator strengths ke, and bond energies BE (Equations

4-6) among others:

(∂W/∂R)R=Req = CBN
V q + CNN

V + 2CB
T

q

Req

= 0 (4)

(∂2W/∂R2)R=Req =
2

R3
eq

(CBN
V q + CNN

V + 3CB
T q/Req) = ke (5)

WR=Req −D = WR=Req −WR=∞ = −BE = CBN
V

q

Req

+ CNN
V

1

Req

+ CB
T

q

R2
eq

(6)

While the expressions in Equations 1, 2 and 3 can be used to fit experimental Req and BE

values,27 without additional constraint the model has led to unphysical parameters which

hamper interpretation.26 Note that several local minima could coexist in the parametric space

of the original model. On the other hand, were q known, a perfected fit could be performed

using the rightmost expressions in terms of CBN
V , CNN

V and CB
T . Fitting is justified in the

5



case of CB
T in order to capture the unknown value of ν. In principle, CBN

V and CNN
V are

related by CNN
V = (CBN

V )2/16. However, an independent scaling factor for each term can be

added, although the weight of the bond-nuclei term is expected to be higher than the nuclei-

nuclei term both because its an electrostatic interaction over a shorter distance and because,

after all, bonding does take place. This additional degree of freedom can be understood as

a shielding effect: charges are not strictly punctual, particularly so in bonds. Therefore, the

effective Coulomb term for the CBN
V and CNN

V terms should be different.

Defining and calculating the bond charge q is not trivial. It has been suggested that

the localized depiction of chemical bonding given by this model resembles the partitioning

of real space given by the Electron Localization Function (ELF).28,29 In fact, including the

extension to heteroatomic bonds which is not needed here, all model parameters can be

defined and obtained from the topology of the ELF: The bond charge, q, associated with

a covalent bond A−B, is obtained by the integration of the electron density ρ(r) over the

space delimited by the disynaptic ELF basin ΩA,B, and nuclear charges Z correspond to the

integral over the core basins of the bonded atoms, ΩA and ΩB respectively, plus the nuclear

charge. The effective bond path, νReq, can be considered the length of the bond basin ΩA,B.

Consequently, it can be calculated by subtracting the radii of the two core basins from the

total internuclear distance. Multiple bonds may lead to multiple disynaptic basins, each

accounting for an electron pair.

The methodological aspects of the conjoined ELF-BCM have been extensively covered

elsewhere,30 and shown to be valid for covalent bonds. It must be noted that the charge

equalization between Z and q may not be sufficient in the context of the ELF-BCM, as in

general core populations are constant with respect to the chemical environment but bond

population q may migrate towards lone pairs or other bonds in polyatomic systems which

are not directly involved in the bonding interaction.
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Kinetic energy models

Some limitations of the model can be seen by starting from a simple Morse potential, which

is known to be accurate for most dissociation curves. Rewritten, so as to explicitly present

an attractive and repulsive term (Equation 7), it becomes apparent that the equilibrium

well results from the difference in the slopes of two exponential terms. The positive term,

which dominates at small R, has a slope ∝ 2Dee
β(Req−R), while the negative term has a slope

∝ −2Dee
−2β(Req−R). These two slopes are equal in value when R = Req: when R < Req the

negative term dominates and at larger R > Req the positive one does. In the BCM ansatz,

in principle stabilization arises from the Coulombic CBN
V

q
R
term, while destabilization comes

from a combined CNN
V

1
R

+ CB
T

q
R2 term, including kinetic and electrostatic contributions (cf.

Eqs.1-3). The ratio of the slopes of the repulsive and attractive terms in the BCM is thus

proportional to (CNN
V R + 2qCB

T )/qCBN
V R. The first term CNN

V /qCBN
V < 1 for the attractive

term to eventually dominate: the bonded state is stable. However, for most of R and

specially in constrained bonds, the leading term is 2qCB
T /C

BN
V R, which highlights the critical

importance of the kinetic term in the correct description of the bonded state.

W = De(1− e−β(R−Req))2 = De(1 + e−2β(R−Req) − 2e−β(R−Req)) (7)

As it is, the expression for T in the original BCM is not particularly justified. In the

ELF-BCM framework, another expression for T , now represented by the kinetic energy

of a bonding basin ΩB, has been proposed30 based on the kinetic energy density of an

homogeneous electron gas (Equation 8). The original 1/R2 dependence is unaltered.

T = −4πCF
3ν2

q5/3

R2
∝ CΩB

T

q5/3

R2
(8)

where CF is the Fermi constant. This model kinetic energy still suffers from some of the

deficiencies of the original term. Integrating a more sophisticated inhomogeneous kinetic

energy density within ΩB should lead to better results, yet our goal is simplicity. Gradient
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expansions of the kinetic energy density of the homogeneous electron gas involve square

gradients of the density. The integral of such quantities over a volume is related to the

surface integral of the electron density gradient over the interbasin area. Therefore, two

novel kinetic energy terms have been devised that contain a parameter-free damping of q

that scales with R while preserving the limits of the original model at R →∞ and R → 0;

stemming from the assumption that, as the distance increases the interbasin surface of the

bond must increase or decrease following an unknown dependency. The first one, in Equation

12, is meant to dissipate the charge as the bond expands; the proposal in Equation 13 attains

the opposite, dissipating the charge when the bond is contracted. A priori, which behavior is

more representative starting from our crude approximation is not known. Similar damping

expressions can be constructed using the Gauss error function and its complementary as far

as R > 0 in all the parametric space.

Therefore, five different expressions for BE have been constructed, out of which Equations

9 and 10 use the original kinetic energy term without and with the shielding improvement,

Equation 11 implements the kinetic energy as in Equation 8, and Equations 12 and 13

implement two different opposite damping terms.

BE1 = CBN
V

q

Req

+ (CBN
V )2 1

16Req

+ CΩB
T

q

R2
eq

(9)

BE2 = CBN
V

q

Req

+ CNN
V

1

Req

+ CΩB
T

q

R2
eq

(10)

BE3 = CBN
V

q

Req

+ CNN
V

1

Req

+ CΩB
T

q5/3

R2
eq

(11)

BE4 = CBN
V

q

Req

+ CNN
V

1

Req

+ CΩB
T

q
5
3
acot(Req)

R2
eq

(12)

BE5 = CBN
V

q

Req

+ CNN
V

1

Req

+ CΩB
T

q
5
3
atan(Req)

R2
eq

(13)

In the case of symmetric C−C bonds, both
∫

ΩC
ρ(r)dr and the size of ΩC remain constant,
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as the core of the carbon atoms does not participate. Therefore, both Z and ν are constants,

and so the effective bond path νReq does not represent bond strength or bond order, which

in turn ought to be captured by q.

Results and discussion

Application to carbon-carbon bonds

In order to properly parametrize the model, a wide selection of C−C bonds has been consid-

ered, covering different bond orders, relative strengths, geometrical constrains and keeping

possible polarization or non-covalent effects to a minimum. The following molecules have

been considered for this purpose: C3H6 (1), H3C−CH3 (2), C6H6 (3), H3C4−C4H3 (4),

H2C−−CH2 (5), HC−−−C−C−−−CH (6), HC−−−CH (7) and C2 (8). A set of fluorinated analogues

have been included for validation purposes, considering the interest some of these molecules

arise.31–33 It is the case for the gauche- and trans- conformations of 1,2-Difluoroethane (9 and

10), the cis- and trans- isomers of 1,2-Difluoroethylene (11 and 12), and Tetrafluoroethylene

(13). All calculated molecules are shown in Figure 1. The composition of the set is meant to

minimize reorganization phenomena and non-bonded interactions and hence provide fairly

accurate BEs. BEs, internuclear equilibrium distances and ΩCC populations were extracted

accordingly.

For the model to work, it follows that bond order and geometrical strain should be taken

into account by the combination of q and Req. As shown in Figure 2 A and B for simple

molecules, both parameters are in fact known to be weak descriptors of bond strength that

have been previously used in the context of C−C bonds.34 Collinearity with each other is

not high (Figure 2 C).
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1 2 3 4

5 6 7 8

9 10 11 12 13

Figure 1: Calculated molecules in the parametrization set. Hydrogen, carbon and fluorine
atoms are depicted as white, grey and light green balls-and-sticks respectively. Relevant
C−C bonds are colored red.
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Figure 2: Linear correlations between Req, q and BE for the C−C bonds in the molecule
set. All calculations performed at the MP2-FC/def2-QZVP level.

As a first approach, the coefficients were obtained by using the results of the ωB97XD

DFA, which is widely considered appropriate when dealing with covalent bonds in organic

systems.35 Correlation coefficients and parameters for the different models, BE1 to BE5 (see

Equations 10 to 13) are collected in Table 1. Without imposing any additional restraints,

only models 3 and 4 seem to accommodate the physical meaning we want, in which CBN
V

is the only positive (stabilizing) contribution to BE. They also present the best regression

coefficients and F − statistic results, while the kurtosis result for BE4 is significantly closer

to a normal distribution. The inclusion of the electrostatic shielding degree of freedom from

model 1 to model 2 is shown, on the basis of the adjusted R2 value, to be meaningful.

Similarly, the kinetic energy term derived for model 3 achieves a noticeable improvement

over the initial one, although it does increase the kurtosis significantly. As predicted and

hinted in previous work,30 such term is apt for non-strained bonds, hence outliers are found

among the test-set. In particular, Cook’s distance for the C2 molecule in model 3 was found

to be 12.861 while no other molecule has a value superior to 0.1. Thus, the inclusion of the

damping term at short distances in model 4 improves the value of R2 to a quantitative level by

smoothing the anomalous C2 molecule, while preserving the correct physical interpretation

and limits. Similar conclusions can be drawn from other reduced data sets, as reported in

the SI.
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Table 1: Multivariate ordinary least-squares regression parameters CBN
V , CNN

V and CΩB
T for

models BE1 to BE5 (see Equations 10 to 13). The F − statistic is calculated with respect
to the trivial CBN

V = CNN
V = CΩB

T = 1 model.

Model CBN
V CNN

V CΩB
T F − statistic Kurtosis R2 AdjustedR2

BE1 -51.1359 2614.8789 -52.6352 80.0 3.260 0.936 0.924
BE2 -236.1163 305.9522 278.2517 72.2 2.352 0.956 0.943
BE3 150.9831 -42.5211 -39.0838 146.7 6.626 0.978 0.971
BE4 247.6594 -120.5810 -96.6753 401.1 3.519 0.992 0.989
BE5 -26.6361 232.8136 25.2538 54.9 2.203 0.943 0.926

The root mean square (RMS) error of BE4 is 4.2029 kcal/mol, which is in the same

order of magnitude that it can assume for a given DFA. Concluding that BE4 is our best

approximation, a robust linear model was used to fit the same data. The fitting was per-

formed by iterative re-weighted least-squares using Huber weights. Relatively close parame-

ters CBN
V = 229.7770, CNN

V = −96.2613 and CΩB
T = −90.2421 were obtained, all within the

standard errors of the coefficients of the ordinary least-squares model, which corroborates

that outliers or high-leverage molecules are not substantially over-weighted. Note that the

conditions in Equations 4 and 5 are not enforced here with respect to the reference data

because the underlying physics (i.e. preserving the dependency of the terms) and the appli-

cability (reproducing the calculated BEs) are deemed more important. For instance, for a

given equilibrium pair of Req and q to be the BE maxima of model 3, the following equality

must hold (Equation 14):

CΩB
T =

Req(C
NN
V − CBN

V q)

2q5/3
(14)

while the case for the best fit, model 4, is somewhat harder (Equation 15):

CΩB
T =

3Req(1 +R2
eq)(C

NN
V q−

5
3
atan(Req) − CBN

V q1− 5
3
atan(Req))

6 + 6R2
eq − 5Req ln q

(15)

Consequently, the derived parameters produce biased dissociation curves with respect to

R. High fidelity dissociation curves could be obtained by enforcing the expressions above
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with a fixed bond charge q. Such possibilities may be explored in future work.

General trends of the model

Model 4 (Equation 10) was used to fit an extensive database (793 datapoints) including the

complete set of DFAs using an ordinary least-squares model. Results are shown in Figure

3a and Figure 3b with respect to the model terms and q and Req respectively. The collective

model takes CBN
V = 232.2327, CNN

V = −107.4466 and CΩB
T = −88.9169, reasonably close to

previous results, with R2 = 0.985. Various methods introduce additional variability, thus

the kurtosis value increases to 7.036. The RMS error is slightly increased to 5.7890 kcal/mol.

Details and diagnostics of the fitting procedure can be found in the SI. Overall, the model fits

the data at a semi-quantitative level, which is remarkable considering its simplicity and the

variability in the data set. However, it must be noted that the ensemble parameters reported

above are not recommended for in-depth analysis: method-specific parameters should be used

instead, which lead to R2 > 0.99 in most cases, and can be found in the SI for a selection

DFAs.

13



(a) BE with respect to T and V (b) BE with respect to q and Req

Figure 3: Predicted BEs with respect to (a) T and V = VBN+VNN and (b) q and Req.
Reference data points in (a) are shown in green. All energies in kcal/mol.

The high quality of the obtained fit reveals major similarities in the way different DFAs

relate geometries, ELF-given ΩB populations (q) and BEs. In average, all molecules suit

the model irrespective of the calculation method. Average absolute values of standardized

residuals per molecule and method are presented in Figures 4 and 5 respectively. Values per

molecule range from 0.2084 for cyclopropane to 2.1310 for ethyne (7). No particular issues

arise for any of the strained systems; the fact that ethyne is the upper limit is reasonable

considering that it is the only triple bond in the parameter set and still the standardized

residuals are not extremely worrying. C2 (8) has a large standard deviation in this average,

pointing at the difficulties of capturing its correlated character in DFT: different DFAs give

largely different depictions. Method-wise, values range from 0.5113 for Xα to 2.7600 for

HF, which is to be expected. The kinetic term is a correction on top of an homogeneous

electron gas derivation, and so simple DFAs should provide good fits, even if the predicted

BEs are not accurate, while HF is not based on the electron density and suffers from very

inconsistent correlation treatment for different molecules. Most DFAs are evenly treated, as
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shown in Figure 5.

Figure 4: Averaged absolute value of standardized residuals per molecule in the test set.
Molecule 7 corresponds to ethyne, molecule 8 corresponds to C2. Error bars spawn one
standard deviation for the given averages.

Figure 5: Averaged absolute value of standardized residuals per method in the test set.
Method 46 corresponds to HF, method 48 corresponds to the Xα DFA.

As per the fitted curve, general trends can be ascertained. For a fixed q, the model

resembles a dissociation energy curve in an approximate way, as seen in Figure 6. Note that

for any given q, predicted energy minima correspond with extremely short R. In reality,

q changes with R, therefore the energy quickly tends to 0 at long R as the bond charge
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dissipates. Stronger bonds with higher values of q are seen to be sensitive to R. Interestingly,

there is an estimation for the maximum BE for a given q.

Figure 6: Evolution of VNN , VBN and T with R according to the fitted model parameters
(Model 4) for a fixed value of q.

At any given fixed Req, there is a number of shared electrons q that gives a maximal BE,

as shown in Figure 7, which becomes steeper as bond length increases. Note that all the

fluorinated species are perfectly reproduced in the model even when isomers have extremely

similar Req values. This signals that the electronic effects are perceived in the C−C bond

through q and reflected in BE. Note that while C2 remains somewhat of an outlier, it is

reasonably well fitted by the model. This approves the usage of the whole valence density

of the molecule as bond charge q, which corresponds to a formal quadruple bond. It is

important to note that the somewhat outlier nature of ethyne and dicarbon is related to

their particular nature but also influenced by the lack of other molecules with formal bond

orders between 3 and 4 in the test set. This makes the statistical model inherently biased

towards the lower bond orders, even through robust regression techniques.
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Figure 7: Evolution of VNN , VBN and T with q according to the fitted model parameters
(Model 4) for a fixed value of Req.

Example applications

Using DFA-specific parameters, the proposed model is able to recover BEs from equilibrium

properties Req and q. While extrapolating results towards high q and low R (formal bond

orders >3) may not be accurate, interpolation within the single-to-double bond regime should

provide highly accurate results. This is given by the current parametrization set, which is

focused on single and double bonds, and the subsequent fact that residuals are largest for C2

and ethyne. A simple application is comparing the BE of C−C bonds of the cyclopentadienyl

anion (Figure 8a) per se and in ferrocene Fe(C5H5)2 (Figure 8b) in order to evaluate the

differences in strength of the carbon structure upon coordination.
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(a) Cyclopentadienyl anion (b) Ferrocene

(c) Diamond (d) Graphite

Figure 8: ELF depictions of (a) the cyclopentadienyl anion , (b) ferrocene Fe(C5H5)2, (c)
diamond and (d) graphite with an isovalue of 0.85. Carbon, hydrogen and iron atoms shown
as grey, white and orange balls-and-sticks respectively. C−C basins are depicted in green,
while C−H basins are colored light blue.

The optimized geometries and wave functions for both systems at the ωB97XD/def2-

QZVP level give q = 2.9002 and Req,C−C = 1.4067 Å for the anion and q = 2.5414 electrons

and Req,C−C = 1.4182 Å for ferrocene. Coherently, a large amount of charge is transferred to

the formally doubly charged iron atom. In spite of this, BEs of 159.88 and 146.12 kcal/mol

respectively are obtained, which means that each C−C bond becomes 13.76 kcal/mol weaker

in ferrocene. Note that the BE of C−C bonds in benzene is 159.62 kcal/mol at this theory

level, which is almost the same result for the anion. In fact, bond-nuclei attraction VBN is

increased in the anion with respect to the neutral benzene, as given by the extra electron, but
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most of the stabilization is counteracted by an increase in T , rendering the same BE. When

comparing to ferrocene, the small loss in BE per bond (mostly in form of VBN) is globally

justified by the formation of the haptic bond with the metallic center, and explains why the

carbon structure remains similarly stable in the coordinated species. Hence, no significant

improvement in C−C cleavage is in principle expected. Note that the difference in strength

is in agreement with the changes in the stretching C−C frequency from ferrocene, around

1400 cm−1, compared to benzene, around 1500 cm−1.36 Similar analysis may be performed

on transition structures and molecular systems of interest in the context of computational

organic and inorganic chemistry.

Analogously, the presented model may be used to study solid state systems, among which

carbon allotropes are highly important. Optimizing the geometry of diamond using the

HSE06 DFA (Figure 8c) provides a C−C equilibrium distance Req,C−C = 1.5359 Å and the

integration of the valence electron density in the ELF basins gives localized covalent bonds

with q = 2.0052. With the HSE06 parameters (available in the SI) a BE of 113.02 kcal/mol

is obtained, which is analogous to the simple bond in ethane in the set (112.93 kcal/mol).

Note that this result suggests that covalent bonds in diamond are very similar to simple C−C

bonds elsewhere, with any energetic differences arising purely from reorganization terms.

Interestingly, the natural decomposition of the proposed ansatz shows that the alleviation of

nuclear repulsion VNN in diamond is able to counteract the loss of bond-nuclei stabilization.

Graphite, on the other hand, has Req,C−C = 1.4154 Å and q = 2.6667 electrons, which

estimates a BE of 148.42 kcal/mol, in the order of weaker aromatic bonds. This supports the

notion that aromaticity in graphite is slightly different from smaller aromatic hydrocarbons,

which has been suggested previously.37
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Conclusions

In this work a Bond Charge Model is developed based on ELF topological analysis and a

revised kinetic energy term. Fitted to reference data, the model predicts the BE of C−C

bonds from equilibrium properties, achieving quantitataive results within DFT accuracy.

The advantages of the ELF-BCM ansatz, its extreme simplicity and straightforward inter-

pretation, are therefore available for the analysis and interpretation of quantum mechanical

results at a similar level of uncertainty. Further developments in this line should enable a

complete toolkit connecting topological descriptors with energetic features. For instance,

coupling with C−H potentials should provide access to atomization energies of hydrocar-

bons. Modelling potential energy curves or anharmonic frequencies is also possible through

this model. The foundations presented in this work may also be of interest for constructing

more sophisticate machine learning models, yet machine learning may not always be the

answer to regression problems.

Some examples of applications in organometallic and solid state chemistry are provided

in order to illustrate the ease of application and the availability of insight, which we expect

may be of interest in computational studies. The variables of the model may also be obtained

experimentally.
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