Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation

Review information

Review number: 0331

Authors

Lucie Valembois¹, Etienne Audureau², Andrea Takeda³, Witold Jarzebowski⁴, Joël Belmin⁵, Carmelo Lafuente-Lafuente¹

¹Service de Gériatrie à Orientation Cardiologique et Neurologique, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, AP-HP, Université Pierre et Marie Curie, Ivry-sur-Seine, France
²Service de Santé Publique, Hôpital Henri-Mondor, APHP, Université Paris 12 UPEC, Créteil, France
³Institute of Health Informatics Research, University College London, London, UK
⁴Gériatrie à orientation Cardiologique, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
⁵La Triade - Service Hospitalo-Universitaire de Gérontologie, Université Pierre et Marie Curie (Paris 6), Paris, France

Contact person

Carmelo Lafuente-Lafuente

Service de Gériatrie à Orientation Cardiologique et Neurologique
Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, AP-HP, Université Pierre et Marie Curie
7 Avenue de la République
94205 Ivry-sur-Seine
Île-de-France
France

E-mail: c.lafuente@nodo3.net
E-mail 2: carmelo.lafuente@cfx.ap-hop.paris.fr

Abstract
Background

Atrial fibrillation is the most frequent sustained arrhythmia. Atrial fibrillation frequently recurs after restoration of normal sinus rhythm. Antiarrhythmic drugs have been widely used to prevent recurrence, but the effect of these drugs on all-cause mortality and other clinical outcomes is unclear. This is an update of a review previously published in 2007, 2012 and 2015.

Objectives

To determine in patients who have recovered sinus rhythm after having atrial fibrillation, the effects of long-term treatment with antiarrhythmic drugs on death, stroke, embolism, drug adverse effects and recurrence of atrial fibrillation.

Search methods

We updated the searches of CENTRAL in the Cochrane Library, MEDLINE, Embase in January 2019 and ClinicalTrials.gov and WHO ICTRP in February 2019. The reference lists of retrieved articles, recent reviews and meta-analyses were checked.

Selection criteria

Two authors independently selected randomised controlled trials (RCTs) comparing any antiarrhythmic drug with a control (no treatment, placebo, drugs for rate control) or with another antiarrhythmic drug in adults who had atrial fibrillation and in whom sinus rhythm was restored, spontaneously or by any intervention. Post-operative atrial fibrillation was excluded.

Data collection and analysis

Two authors independently assessed quality and extracted data. Studies were pooled, if appropriate, using Mantel-Haenszel Risk Ratios (RR). All results were calculated at one year of follow-up or the nearest time point.

Main results

In this update one new study (100 patients) was included and one study previously included was excluded because of double publication. Finally, a total of 59 randomised controlled trials comprising 20,981 patients were included. Overall, mean follow-up was 10.2 months.

All-cause mortality

High-quality evidence from five RCTs indicated that treatment with sotalol was associated with a higher all-cause mortality rate, compared with placebo or no treatment (RR 2.23, 95% CI 1.03 to 4.81; participants = 1882). The NNTH for sotalol was 102 patients treated for one year to have one excess death. Low-quality evidence from six RCTs strongly suggested that
risk of mortality was higher in people taking quinidine, although the confidence interval also includes the possibility of no difference (RR 2.01, 95% CI 0.84 to 4.77; participants = 1646).

No effect on mortality was apparent with the remaining drugs studied, but less data was available for them and it could be underpowered to detect small increases in mortality. In particular, very few data was available for flecainide (no death reported in any treatment arm in 4 RCTs studying flecainide, participants = 511) and propafenone (only 2 deaths reported in 5 included RCTs, participants = 998).

Withdrawals due to adverse events, Proarrhythmia

All analysed drugs increased withdrawals due to adverse effects compared to placebo or no treatment (Quinidine, RR 1.56; Dronedarone, RR 1.58; Propafenone, RR 1.62; Sotalol, RR 1.95; Metoprolol, RR 3.47; Amiodarone, RR 6.7; Flecainide, RR 15.41). Certainty of the evidence for this outcome was low for amiodarone, dofetilide and flecainide; moderate to high for the remaining drugs.

Virtually all studied antiarrhythmics showed increased pro-arrhythmic effects (counting both tachyarrhythmias and bradyarrhythmias attributable to treatment) (Propafenone, RR 1.32; Dronedarone, RR 1.95; Quinidine, RR 2.05; Amiodarone, RR 2.22; Sotalol, RR 3.55; Flecainide, RR 4.80; Metoprolol, RR 18.14). Certainty of the evidence for this outcome was moderate to high, except for propafenone, which was very low because of small sample size and unclear risk of bias.

Prevention of recurrences of atrial fibrillation

Moderate to high-quality evidence showed that all analysed drugs, including metoprolol, reduced recurrence of atrial fibrillation (Amiodarone, RR 0.52; Flecainide, RR 0.65; Propafenone, RR 0.67; Quinidine, RR 0.83; Sotalol, RR 0.83; Metoprolol, RR 0.83; Dronedarone, RR 0.85).

Clinical outcomes

Only 11 studies reported stroke outcomes. Low to very-low quality evidence showed no apparent effect on stroke rates of antiarrhythmic treatment, with the only exception of dronedarone. High-quality evidence from two RCTs suggested that dronedarone may be associated with reduced risk of stroke (RR 0.66, 95% CI 0.47 to 0.95; participants = 5872). This result, however, is due to a single large study and to date have not be reproduced in other studies.

Seven trials reported data on the incidence of heart failure, which was low. There were no differences in those trials between patients receiving antiarrhythmics and patients receiving placebo or no treatment (Low-quality evidence).

Authors' conclusions

There is high-quality evidence of increased mortality associated with sotalol treatment, and low-quality evidence strongly suggesting increased mortality also with quinidine, when employed for maintaining sinus rhythm in patients with atrial fibrillation. These drugs should
not be employed for this indication, or used with extreme caution. Caution should also be taken when using flecainide, as very few data on mortality is available for this drug when employed for maintaining sinus rhythm, making impossible any reliable estimation, and there is moderate-quality evidence of marked increases in pro-arrhythmia and adverse effects.

Overall, there is evidence showing that antiarrhythmic drugs increase adverse events, increase pro-arrhythmic events and some of them may increase mortality. Conversely, although they reduce recurrences of atrial fibrillation, there is no evidence of any benefit on clinical outcomes. In the light of these results, chronic treatment with antiarrhythmics drugs should not be considered as a first-line treatment for maintaining sinus rhythm in patients with atrial fibrillation.

Plain language summary

Antiarrhythmics for maintaining sinus rhythm after reversing atrial fibrillation

Review question

We reviewed the evidence about the effect of various specific medications (called "antiarrhythmics") on mortality, stroke rate, withdrawals due to adverse effects and recurrences, in people who had recovered normal heart rhythm after suffering atrial fibrillation (a type of heart arrhythmia).

Background

Atrial fibrillation is a disease where the heart rhythm is irregular (this is called arrhythmia) and often, but not always, too fast. Atrial fibrillation may produce complications, either in the heart (heart failure, syncope) or in other organs by causing embolisms, this is, the formation of blood clots in the cavities of the heart that may then travel to other places, for example the brain.

Atrial fibrillation can be reverted, restoring normal heart rhythm, by using medications or a controlled electrical shock. However, a major problem is that atrial fibrillation frequently recurs. A variety of medications have been employed to avoid these recurrences and keep the normal heart rhythm.

Study characteristics

This is an update of a review previously published in 2007, 2012 and 2015, with results of a search in January 2018 incorporated. We found 59 studies testing various antiarrhythmic drugs and involving 20,981 patients. The mean age of patients was 65 years. The most frequent diseases were hypertension and diseases of the arteries and valves of the heart.

Key results and quality of the evidence
The cumulative data from these studies showed that some of these medications (quinidine, disopyramide and sotalol) may cause a small increase in the number of deaths in treated patients (moderate-quality evidence).

The data also showed that several drugs are effective at preventing recurrences of atrial fibrillation (quinidine, disopyramide, flecainide, propafenone, amiodarone, dofetilide, dronedarone, metoprolol and sotalol) but that all of them increased adverse effects (the evidence was of moderate quality for both outcomes).

Less data were available on the risk of embolic stroke (only 11 studies) and no consistent evidence of an effect on this outcome was apparent (low-quality evidence: not enough data and results not similar across studies). Finally, too few studies reported data on heart failure and the use of anticoagulants to be able to analyse the findings.

Thus, it is unclear if the long-term benefits obtained with antiarrhythmic medications in this use outweigh their risks.

Background

Description of the condition

Atrial fibrillation is the most common sustained arrhythmia and its incidence increases substantially with age (Go 2001; Knuiman 2014; Ruigomez 2002). Atrial fibrillation is associated with increased morbidity and mortality, due to stroke, other embolic complications and heart failure (Benjamin 1998; Heeringa 2006; Krahn 1995; Stewart 2002). In developed countries, atrial fibrillation has grown progressively in the last few decades as a contributing cause of hospitalisation and death (Chugh 2014; MMWR 2003; Wattigney 2003).

In people who have atrial fibrillation, normal sinus rhythm is interrupted by periods of atrial fibrillation that may be either symptomatic or asymptomatic. Symptoms can be mild (for example palpitations, breathlessness or reduced effort capacity) or severe, causing syncope, heart failure or acute coronary syndrome. Many of the symptoms caused by atrial fibrillation are related to the degree of tachycardia and can be improved by either controlling heart rate (rate control strategy) or converting atrial fibrillation to normal sinus rhythm by electrical or pharmacological means (rhythm control strategy).

Most patients alternate between atrial fibrillation and sinus rhythm. The frequency and duration of atrial fibrillation are highly variable, both within patients and between patients, and are employed to classify this arrhythmia (ESC 2016; ACC/AHA/ESC 2014; NICE 2014). If the arrhythmia terminates spontaneously, atrial fibrillation is designated as 'paroxysmal', and it may recur afterwards or not. When atrial fibrillation is sustained beyond seven days it is designated as 'persistent'. Termination with pharmacological or electrical intervention does not change the designation. When atrial fibrillation is first detected, and it is not known if it will resolve or persist, it is designated 'recent onset' or simply 'first detected' atrial fibrillation. Finally, 'permanent' atrial fibrillation refers to persistent atrial fibrillation where cardioversion has failed or has not been attempted because it is considered that there is no possibility to restore sinus rhythm. An individual patient can show different classes of atrial fibrillation over time.
Description of the intervention

Many patients recover sinus rhythm spontaneously after an episode of recent onset atrial fibrillation, as many as 70% in some studies (Geleris 2001). Electrical and pharmacological cardioversion are very effective in restoring sinus rhythm, even in long-standing persistent atrial fibrillation. However, a major problem is that recurrence of atrial fibrillation occurs frequently. The risk of recurrence of atrial fibrillation is dependent on age, duration of the atrial fibrillation and the existence and severity of underlying heart disease (Flaker 1995; Frick 2001). The overall rate of recurrence of atrial fibrillation without treatment is high; of patients who have converted to sinus rhythm, only 20% to 30% will remain in sinus rhythm one year later (Gelder 1996; Golzari 1996; AFFIRM 2002).

Long-term antiarrhythmic therapy has been widely used to prevent the recurrence of atrial fibrillation. Antiarrhythmic drugs are usually grouped into four classes following the classification by Vaughan Williams (Vaughan Williams 1984). Class I drugs are those with a direct membrane action (sodium (Na) channel blockade), subdivided to Ia, Ib and Ic depending on specific effects on conduction and repolarization; class II drugs are beta-blockers; class III drugs are those that prolong repolarization; and class IV drugs are calcium channel blockers. There is evidence that several class I, class III and maybe class II antiarrhythmic drugs are more effective than placebo for maintaining sinus rhythm (Miller 2000; Nichol 2002). However, some questions remain concerning the long term use of antiarrhythmic drugs.

How the intervention might work

It has been assumed that keeping patients in sinus rhythm would improve their quality of life and reduce the risks of embolism, stroke, heart failure or increased mortality that are associated with atrial fibrillation (Anter 2009). However, this has not been proven and, unfortunately, many of the trials with antiarrhythmic drugs have focused only on maintenance of sinus rhythm and have not assessed other relevant outcomes (Connolly 2000). Overall, the rhythm control strategy, using antiarrhythmics to maintain sinus rhythm, has not shown any clear benefit on clinical outcomes (for example mortality or stroke) in randomised controlled trials compared to a rate control strategy (Caldeira 2012; Chatterjee 2013; Cordina 2005; Denus 2005; Testa 2005).

Chronic treatment with antiarrhythmic drugs can be associated with severe adverse effects, including the potential induction of life-threatening arrhythmias (a phenomenon called "pro-arrhythmia"). Adverse effects could compromise any benefits of maintaining sinus rhythm, or even outweigh them, leading to worse outcomes overall. In fact, the results of some trials show increased mortality associated with the long-term use of some antiarrhythmics, as in the case with quinidine (Coplen 1990; SPAF 1992) or flecainide (CAST 1991). Finally, it is not known if all antiarrhythmic drugs are equivalent in their effectiveness and safety in the treatment of atrial fibrillation.

Why it is important to do this review

Many trials have studied long-term treatment with diverse antiarrhythmic drugs for maintaining sinus rhythm, sometimes compared to placebo and sometimes compared to other
antiarrhythmic drugs. Attempts to summarise this evidence in systematic reviews of trials or meta-analyses have been incomplete. They were combined in a narrative review (Golzari 1996); trials using different antiarrhythmics and with very dissimilar lengths of treatment were pooled together (Nichol 2002); and outcomes other than sinus rhythm maintenance were not evaluated (Miller 2000). Consequently, we planned to conduct a more exhaustive systematic review of randomised controlled trials studying the long-term use of antiarrhythmic drugs to maintain sinus rhythm and aimed to determine their effects not only on the recurrence of atrial fibrillation but also on other important clinical outcomes.

After the first publication of this review, another meta-analysis on the same subject was published by Freemantle et al (Freemantle 2011). This meta-analysis employed a mixed treatment comparison method, combining the estimates obtained from direct and indirect comparisons in a network of trials. Network meta-analysis represents an interesting extension of traditional pairwise meta-analyses and can potentially provide a more complete overview of a health set. However, appropriate use of these methods requires strict assumptions and standardization (Caldwell 2015). Although assumptions underlying classical pairwise meta-analyses are well understood, those concerning network meta-analysis are more complex and prone to misinterpretation. The conduction of network meta-analysis still poses multiple challenges that should be carefully considered when utilizing such methods (Cipriani 2013; Tonin 2017).

In any case, after the first publication of this review in 2007 and the publication of the meta-analysis by Freemantle et al, several new randomised controlled trials have been published. We have systematically searched, assessed and, when found adequate, included any new trial in this domain in the successive updates of this review.

Objectives

To determine in patients who have recovered sinus rhythm after having atrial fibrillation, the effects of long-term treatment with antiarrhythmic drugs on death, stroke, embolism, drug adverse effects and recurrence of atrial fibrillation.

The primary aim was to assess the effects of any antiarrhythmic drug compared with no antiarrhythmic treatment, that is no treatment, placebo, or treatment for rate control. If several antiarrhythmic drugs appeared to be effective the secondary aim was to compare them.

Methods

Criteria for considering studies for this review

Types of studies

Randomised controlled trials with concealed allocation of participants to intervention or placebo. We excluded studies that were not randomised or that used an overt allocation method, where future assignments could be anticipated (e.g. by date, by entry number, alternating or rotating). We also excluded cross-over studies (as the recurrence rate of AF is not uniform over time), cluster-randomized studies (more prone to selection bias and to local
variations in other intervention applied to AF patients) and studies where duration of follow up was less than six months.

Types of participants

Adults (> 16 years) who had atrial fibrillation of any type and duration and in whom sinus rhythm had been restored, spontaneously or by any therapeutic intervention.

We excluded patients with atrial fibrillation following cardiac surgery as well as patients with any condition causing a life expectancy of less than 12 months.

Types of interventions

To be included, studies must have randomly allocated patients to an intervention group and a control group. The intervention group must have received oral long-term treatment with any available antiarrhythmic drug, at an appropriate dosing regime, aimed at preventing new episodes of atrial fibrillation and maintaining sinus rhythm.

For the primary comparison of the review the control group was no active treatment, this is, any of the following: placebo, no treatment, or drugs for rate control (digoxin, calcium channel blockers, beta-blockers).

For the secondary objective of evaluating differences between antiarrhythmic drugs, the control group could be any of the other antiarrhythmic drugs that have shown effectiveness compared to no antiarrhythmic treatment.

Both groups, intervention and control, had to be similar with regard to cardiac disease (frequency, type and severity) and type of atrial fibrillation (especially duration). Also, both groups must have been treated similarly apart from the experimental therapy, that is:

1. the guidelines used to manage initiation, discontinuation, dose and surveillance of anticoagulation had to be the same in both the intervention and control groups;
2. management and drugs used for hypertension and heart failure had to be similar.

Types of outcome measures

Primary outcomes

1. Mortality, all-cause
2. Stroke, all types
3. Adverse effects: Withdrawals from taking the study drug caused by adverse events
4. Adverse effects: Pro-arrhythmia, including any of the following: sudden death, any new symptomatic arrhythmia (including symptomatic bradycardia), aggravation of existing arrhythmias (i.e. rapid atrial fibrillation) and new appearance on electrocardiogram of QRS or QT widening that leads to stopping treatment (Friedman 1998)

Secondary outcomes
1. Recurrence of atrial fibrillation (number of patients who had a recurrence of atrial fibrillation during follow up)
2. Use of anticoagulation (number of patients started on long-term treatment with anticoagulants at the end of follow up)
3. Heart failure

We analysed all outcomes at 12 months. If a trial did not measure outcomes at these exact time point then the nearest measure point was used (e.g. at 6, 9 or 15 months instead of 12 months).

Search methods for identification of studies

Electronic searches

The searches from 2005 ([Appendix 1](#)), 2010 ([Appendix 2](#)) and 2014 ([Appendix 3](#)) have been updated and were re-run on 31 January 2019 ([Appendix 4](#)).

We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library (2019, Issue 1 of 12), MEDLINE (Ovid, 1946 to 28 January 2019) and Embase (Ovid, 1980 to 2019 week 4).

We also searched two clinical trials registers; ClinicalTrials.gov (www.clinicaltrials.gov) (up to 7 February 2019) and the World Health Organisation International Clinical Trials Registry Platform ([ICTRP](http://apps.who.int/trialsearch/)) (up to 7 February 2019).

The RCT filter for MEDLINE is the Cochrane sensitivity-maximising RCT filter, and for EMBASE, terms as recommended in the Cochrane Handbook have been applied ([Lefebvre 2011](#)).

Searching other resources

In addition, we checked the reference lists of retrieved studies as well as the reference lists of recent guidelines, meta-analyses and general reviews on atrial fibrillation.

We applied no language restrictions.

Data collection and analysis

Selection of studies

The titles (and abstracts where available) were read by the any of the authors and any publication that seemed to possibly meet the above criteria was retrieved. Two independent authors read the full texts of the studies that were retrieved and selected the trials that met the criteria for inclusion. A predefined form was developed and used for this task. The selected trials were compared and any discrepancy resolved by discussion and consensus between the authors. The articles that were finally selected for the review were checked to avoid duplication of data. Records of the selection process were kept and a PRISMA flowchart was prepared ([PRISMA 2009](#)).
Data extraction and management

Two authors (LV, WJ, JB, CLL) extracted data independently using a data collection form specifically developed for this task. When necessary, we contacted the authors of primary studies for additional information. We checked the completed data forms for agreement and resolved any differences by discussion and consensus.

In addition to data relating to the outcomes of the review, we collected information on the following.

1. Study methods and design (randomisation, allocation concealment and blinding).
2. Baseline characteristics of patients (age, gender, frequency and type of heart disease, echocardiographic measures, duration and type of atrial fibrillation, as defined in each study and knowing that definitions employed have not been always consistent).
3. Details of treatments (method of cardioversion employed, time interval between conversion to sinus rhythm and initiation of intervention, antiarrhythmic drugs used and dose, treatment used in control group, concomitant treatments (beta-blockers, angiotensin converting enzyme inhibitors, antiplatelets and warfarin)).
4. Follow-up duration, patients lost to follow up and withdrawals.

Assessment of risk of bias in included studies

Two authors (LV, EA, WJ, JB, CLL) independently assessed the risk of bias of the selected studies across the main domains of risk of bias, as recommended in the *Cochrane Handbook for Systematic Reviews of Interventions* (Higgins 2017): random sequence generation, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data and selective reporting.

Any differences of opinion were resolved by discussion and consensus.

Measures of treatment effect

Risk ratio (RR) was determined for all outcomes as they are all dichotomous variables. If evidence of an effect appeared for any outcome and the control group rates of the outcomes were broadly similar, we calculated the number needed to treat to benefit (NNTB) or number needed to treat to harm (NNTH) to prevent or produce, respectively, one adverse outcome for the specified duration of treatment. We used the pooled RR and the pooled rate from the control groups.

Unit of analysis issues

There was no cross-over trial or cluster randomised trial included in this review. For trials with multiple timepoints, only data at one year (or the nearest timepoint) was included. For trials comparing two antiarrhythmics and placebo/no treatment, the placebo (or no treatment) group was spliced into two groups with smaller sample size, to include two different comparisons.

Dealing with missing data
We analysed the data on the basis of intention to treat. By default, missing patients were considered not to have experienced an event and we used the randomized number of patients as the denominator. Nevertheless, the worst-case scenario intention-to-treat-analysis was also carried out for all outcomes as a sensitivity analysis.

Assessment of heterogeneity

Heterogeneity was tested using the Mantel-Haenszel Chi² test and the I² statistic (Higgins 2011). If important heterogeneity was found, we searched for an explanation based on the differences in clinical characteristics of the included studies. If the studies were found to be clinically very dissimilar they were not statistically combined.

Assessment of reporting biases

Funnel plots were used to test for the presence of publication bias, based on the data for each primary and secondary outcome.

Data synthesis

Data were pooled using RevMan software (Version 5.3). If no heterogeneity was found, Mantel-Haenszel RRs were calculated for all outcomes using a fixed-effect model. If heterogeneity between studies was observed, RRs were calculated using a random-effects model.

Data for all antiarrhythmic drugs were pooled and analysed individually (for each specific drug).

Summary of findings

We created a Summary of findings table using the following outcomes: all-cause mortality, withdrawals due to adverse effects, pro-arrhythmia, stroke and recurrence of AF. We used the five GRADE considerations (study limitations, consistency of effect, imprecision, indirectness and publication bias) to assess the quality of a body of evidence as it relates to the studies which contribute data to the meta-analyses for the prespecified outcomes. We used methods and recommendations described in Section 8.5 and Chapter 12 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011) using GRADEpro software (https://gradepro.org/). Each comparison - a) antiarrhythmics compared with placebo / no treatment; b) antiarrhythmics compared between themselves - got a separate Summary of findings table. We justified all decisions to downgrade the quality of studies using footnotes and we made comments to aid reader's understanding of the review where necessary.

Judgements about evidence quality were made by two review authors (LV, EA, WJ, JB, CLL) working independently, with disagreements resolved by discussion or involving a third author (JB or CLL). Judgements were justified, documented and incorporated into reporting of results for each outcome.

Subgroup analysis and investigation of heterogeneity
Predefined subgroup analyses were:

1. paroxysmal atrial fibrillation and persistent atrial fibrillation;
2. patients with heart failure opposed to patients who had never developed heart failure;
3. studies where warfarin was mandatory versus those where warfarin was discretionary; and
4. patients with a structurally normal heart (‘lone’ atrial fibrillation).

Sensitivity analysis

Sensitivity analyses were performed by selectively pooling:

1. studies having the lower risk of bias, defined as low risk of bias at least in the following domains: allocation concealment, blinding and incomplete outcome data, for all outcomes.
2. studies including the greatest number of patients (i.e. > 200 patients).

In addition, the worst-case scenario intention-to-treat-analysis (this is, considering all missing patients as having events) was also carried out for all outcomes to test if any potential difference might have arisen due to losses to follow up.

Results

Description of studies

Results of the search

We found a total of 6,332 references and assessed 205 articles in more detail for the previous publication of this review ([Lafuente-Lafuente 2015](#)). We retrieved, translated, when needed, and assessed articles in Chinese, English, French, German, Italian, Spanish and Swedish. Finally, 59 studies fulfilled the inclusion criteria and had useable data. They comprised 20,981 patients in total.

Compared with the previous publication of this review in 2015, which searched the medical literature until January 2014, we read 2185 additional references (LV, CLL, AT), assessed in detail 21 new articles (LV, EA, CLL, WJ), included one new randomised controlled trial ([Chun 2014](#)) and identified one ongoing study ([Park 2017](#)). The new included trial compared dronedarone and propafenone, added 100 more patients and reported only AF recurrence rates, but not mortality or adverse events.

On the contrary, during our process of checking papers for double publication we became aware that the data from one study we had previously included, SVA-4 2008a, was already reported in another included publication ([ASAP 2003](#)) and we amended that.

Figure 1 illustrates the selection of articles, following the PRISMA model. Agreement between authors was good for both selecting studies and extracting the data. Details of each included study are shown in the **Characteristics of included studies** table, and the reasons for exclusion are shown in the **Characteristics of excluded studies** table.
Included studies

Patients

Entry criteria differed between studies in several aspects. In some trials atrial fibrillation was documented in the past history but patients were in sinus rhythm at the time of inclusion, while in other trials patients were in atrial fibrillation and needed to be converted to sinus rhythm (only those converted were included in the review). The duration of atrial fibrillation when persistent, or the time from the last documented episode of atrial fibrillation when paroxysmal, were highly variable (from one month to one year, or no time limit in some studies). Some of the studies required atrial fibrillation to be symptomatic while others did not. A few studies (six in total) enrolled both patients with atrial fibrillation or atrial flutter. When available, only data from patients with atrial fibrillation were used.

Regarding the type of atrial fibrillation, 8 studies included exclusively paroxysmal or recent onset atrial fibrillation, 28 studies included only persistent atrial fibrillation (i.e. lasting more than 7 days), and the remaining 23 studies included both types. Overall, 48% of the pooled population had persistent or permanent atrial fibrillation.

The mean age of patients varied from 46 to 72 years in the included studies and was 64.8 years in the pooled population. The proportion of patients having underlying heart disease varied widely, from 29% to 100%, with only one study selectively including patients without structural heart disease (FAPIS 1996). The most frequent diseases were coronary artery disease (5% to 50% of patients), hypertension, and valvular abnormalities (less frequent in recent studies). The mean left ventricle ejection fraction was greater than 50% in almost all trials but with five exceptions (DIAMOND 2001; Kalusche 1994; Nergardh 2007; Plewan 2001; Vijayalaskshmi 2006).

Interventions

Twenty nine trials (accumulating 13,443 patients) compared an antiarrhythmic with a control, 12 trials (4536 patients) compared two different antiarrhythmics and a control, and 18 trials (3,002 patients) compared two or more antiarrhythmics with each other. The comparator used in the 41 trials with control groups was a placebo in 32 trials, a beta-blocker in 2 trials (DAPHNE 2008; Plewan 2001), digoxin in 1 trial (Steinbeck 1988) and no treatment in 6 trials (Flec-SL 2012; Hillestad 1971; Santas 2012; Sodermark 1975; Van Gelder 1989; Vijayalaskshmi 2006).

Drugs included in this review, for which at least one well designed randomised controlled trial was found, were (a) class Ia: quinidine, disopyramide; (c) class Ic: flecainide, propafenone; (d) class II (beta-blockers): metoprolol; (e) class III: amiodarone, dofetilide, dronedarone and sotalol.

Follow up

The most frequent length of follow up was one year. It was shorter in 17 trials (6 to 9 months) and longer in 6 trials (15 to 19 months). Five trials followed patients for two years or more (AFFIRM Substudy 2003; ATHENA 2009; Kochiadakis 2000; Kochiadakis 2004a; Kochiadakis 2004b). We extracted and pooled all outcomes at one year of follow up or the nearest time point available. For studies with shorter duration of follow up the last
observation available was employed. Overall, the mean follow-up of the pooled population analysed was 10.2 months.

Excluded studies

Main reasons for exclusion of studies were not being actually controlled or randomized (43 studies), having a follow-up shorter than 6 months (16 studies) and including in the control group patients who did not revert to sinus rythm (10 studies). Additional details on excluded studies are given in the Characteristics of excluded studies table.

Risk of bias in included studies

Asymmetry was found in the funnel plot of withdrawals because of adverse effects on treatment with sotalol (Figure 2). It showed fewer small studies on the left side (this is, there were more small studies showing a trend to more withdrawals on active treatment). However, funnel plots for other outcomes with sotalol were symmetric, so we think the risk of substantial publication bias is low. Funnel plots for the remaining drugs were symmetric.

The results of the assessment of the risk of bias of included studies across different domains are showed in Figure 3 and Figure 4.

Allocation (selection bias)

All included studies were described as randomised controlled trials. However, only a minority detailed how the random number sequence was generated (18 studies, 30.5%) or how the allocation of patients was concealed (17 studies, 28.8%). Because of lack of details, the risk of bias on these items is unclear for the remaining studies.

Blinding (performance bias and detection bias)

The majority of trials comparing an antiarrhythmic versus a control were described as blinded (of 41 trials: 25 were double-blind and 5 single-blind, the remaining 11 were open-label). In contrast, most trials comparing two or more different antiarrhythmics were open-label (15 out of 18). However, only 17 of the 25 studies said to be double-blind adequately reported the method of blinding (and it was adequate in all cases). Nonetheless, we think that the risk of bias associated to this lack of adequate blinding is not very high because: (a) most outcomes assessed in this review are objective ones: recurrence of AF and pro-arrhythmia were established by ECG records, mortality and stroke are hard outcomes; (b) results from adequately double-blind studies and open-label studies are very consistent; (c) well described, adequate blinding was more frequent in studies comparing an active drug with no active treatment, which is the main comparison of the review.

Incomplete outcome data (attrition bias)

Withdrawals and dropouts were adequately reported in the majority of studies. The percentage of patients lost to follow up was detailed in 47 out of the 59 included trials and was small (5% to 10%). However, virtually all studies followed patients until atrial fibrillation recurred or until treatment was stopped for any reason, and no longer. Data for some outcomes, like mortality, were therefore not extensive.
Selective reporting (reporting bias)

All studies but three (Chun 2014; DAPHNE 2008; Santas 2012) had data on all-cause mortality, all but two (ASAP 2003; PITAGORA 2008) on atrial fibrillation recurrence rates, and all but three (AFIB 1997; Chun 2014; Santas 2012) presented data for adverse effects, either withdrawals or pro-arrhythmia (Table 1). Other outcomes were less frequently reported: in studies with a placebo or no treatment arm, stroke was reported in 11 trials, heart failure in 2 trials and actual frequency of anticoagulation in none. All studies reported the outcomes they have prespecified in the way they had prespecified.

Other potential sources of bias

Conflict of interest could exist as almost all the studies included in the review were funded by the company manufacturing the antiarrhythmic drug tested.

Effects of interventions

All outcomes were calculated at one year of follow up or the nearest time point (overall mean follow-up was 10.2 months).

Imputing missing patients as events (the worst-case intention-to-treat scenario) generally did not modify the results, so the best-case intention-to-treat analysis (missing patients counted as being free of events) was reported as the default; where differences existed details are given.

All-cause mortality

The all-cause mortality rate was low (0% to 5.1% at 1 year). The only exception to this generally low mortality rate was the DIAMOND study (DIAMOND 2001). This trial recruited patients with advanced heart failure and had an overall all-cause mortality of 31% at 1 year.

The quantity and quality of data on mortality varied markedly between drugs. We could not find any data on mortality with flecainide and very few data with disopyramide and propafenone.

More data was available for other drugs. We found evidence suggesting an increase in the risk of death with two drugs, quinidine and sotalol. For the remaining drugs studied, available evidence did not show any apparent effect in mortality.

No important heterogeneity between studies was detected for this outcome with any of the drugs studied.

Drugs with very few or no data on mortality

Disopyramide

Only one study reported all-cause mortality in people taking disopyramide compared with placebo/no treatment. It included only 92 participants and had a very wide confidence
interval for mortality that includes both possible benefits and harms (Analysis 2.1: RR 5.00, 95% CI 0.25 to 101.37; I² = 0%, low-quality evidence).

Counting missing participants as having died did not change this finding (Analysis 2.2). No other sensitivity analysis could be carried out.

Propafenone

Of the five included trials (998 patients), only two studies reported any death, one each. The confidence interval was wide, including both possible benefits and harms, and the results varied markedly between the main analysis (Analysis 3.1) (RR 0.19, 95% CI 0.02 to 1.68; participants = 212; studies = 2; I² = 0%) and the sensitivity analysis which treated missing participants as having died (Analysis 3.2) (RR 1.28, 95% CI 0.45 to 3.62; participants = 406; studies = 3; I² = 19%). Restricting the analysis to the only study at low risk of bias (Analysis 3.3) did not differ from the main analysis.

Overall, the evidence for this outcome is very low-quality, meaning that we are uncertain of the effect of propafenone on mortality.

Flecainide

None of the four trials we found studying flecainide (511 patients in total) reported any death from any cause. Thus, this outcome could not be analysed.

Drugs associated with an increase in mortality

Quinidine

All-cause mortality was reported by six studies which compared quinidine with placebo or no treatment (Analysis 1.1). The GRADE rating was low-quality for this outcome. The pooled RR suggested that risk of mortality was higher in people taking quinidine compared with placebo or no treatment, although the confidence interval also includes the possibility of a lower or similar mortality rate (RR 2.01, 95% CI 0.84 to 4.77; participants = 1646; studies = 6; I² = 0%). This corresponds to eight deaths per 1,000 in the control group and 15 per 1,000 (95% CI 6 to 36 per 1,000) in the quinidine group.

Sensitivity analysis which treated missing patients as having died (Analysis 1.2) increased the RR slightly, but was not substantially different to the main analysis (RR 2.12, 95% CI 0.96 to 4.67; participants = 1646; studies = 6; I² = 0%).

Conversely, sensitivity analysis of quinidine studies at low risk of bias (Analysis 1.5), or studies with more than 200 participants (Analysis 1.6), left only two studies (PAFAC 2004; SOPAT 2004) in which no difference in all-cause mortality was apparent compared with controls (RR 1.29, 95% CI 0.34 to 4.92; participants = 1234; studies = 2; I² = 0%). These two trials were more recent, employed a lower dose of quinidine (320 to 480 mg/day) than other studies (800 to 1800 mg/day) and combined quinidine with verapamil. However, when comparing those two studies against older, higher dose studies (Analysis 1.3), the test for subgroup differences did not indicate that the effect differed between those two groups (P=0.4).
Other sensitivity analysis did not differ from the main analysis (Analysis 1.4: persistent atrial fibrillation).

Sotalol

High-quality evidence from five RCTs indicated that people taking sotalol had a higher all-cause mortality rate than those with placebo or no treatment (Analysis 9.1; RR 2.23, 95% CI 1.03 to 4.81; participants = 1882; studies = 5; I² = 0%) (Figure 7). This corresponds to eight deaths per 1,000 in the control group and 19 (95% CI 9 to 40) in the sotalol group. The NNTH for sotalol was 102 patients treated for one year to have one excess death, with a wide 95% CI of 33 to 4167.

This association with increased mortality persisted in all sensitivity analyses undertaken, either counting missing patients as deaths (Analysis 9.2) (RR 2.02, 95% CI 1.28 to 3.20; participants = 2757; studies = 10; I² = 0%), restricting to those studies at low risk of bias (Analysis 9.4) or which included only persistent atrial fibrillation (Analysis 9.3), analysis which were identical since they both contained the same studies (RR 2.51, 95% CI 1.06 to 5.98; participants = 1311; studies = 3; I² = 0%). An even larger effect was seen when restricting the analysis to just those studies with at least 200 participants (Analysis 9.5) (RR 2.65, 95% CI 1.16 to 6.09; participants = 1826; studies = 4; I² = 0%).

Drugs with no apparent effect on mortality

For the remaining drugs studied, available evidence did not show any apparent difference in mortality with respect to placebo / no treatment. However, data for mortality was rarely extensive and the data obtained could be underpowered to detect mild differences in mortality for several of the drugs studied.

Metoprolol

Two studies (moderate-quality evidence) were pooled that compared metoprolol with placebo or no treatment. The main analysis obtained very wide confidence intervals (Analysis 5.1) (RR 2.02, 95% CI 0.37 to 11.05; participants = 562; studies = 2; I² = 47%). Results did not change in any of the sensitivity analyses (Analysis 5.2; Analysis 5.3; Analysis 5.4; Analysis 5.5).

Amiodarone

Moderate-quality evidence from two studies comparing amiodarone with placebo or no treatment (Analysis 6.1) produced wide confidence intervals (RR 1.66, 95% CI 0.55 to 4.99; participants = 444; studies = 2; I² = 10%). This finding did not change in any of the sensitivity analyses (Analysis 6.2; Analysis 6.3).

Dofetilide

Moderate-quality evidence from three RCTs Analysis 7.1 (RR 0.98, 95% CI 0.76 to 1.27; participants = 1183; studies = 3; I² = 0%) gave no evidence of a difference in all-cause mortality rate between dofetilide and placebo / no treatment groups. Sensitivity analyses did not differ substantially from the main analysis (Analysis 7.2; Analysis 7.4; Analysis 7.3; Analysis 7.5).
Dronedarone

High-quality evidence from three RCTs (Analysis 8.1) showed no clear difference in all-cause mortality between dronedarone and placebo/no treatment (RR 0.86, 95% CI 0.68 to 1.09; participants = 6071; studies = 3; $I^2 = 0\%$). The ATHENA 2009 study dominates this analysis, taking 97% of the weight in the meta-analysis.

There was very little difference between this main result and the different sensitivity analyses (Analysis 8.2; Analysis 8.3; Analysis 8.4; Analysis 8.5).

Head to head comparisons

In direct comparisons between antiarrhythmics, no differences in mortality was observed (Table 2).

Withdrawals due to adverse effects

Withdrawals due to adverse effects were more frequent with all studied drugs:

Quinidine

Moderate-quality evidence suggested a higher number of withdrawals due to adverse events in the quinidine group than in the placebo/no treatment controls (Analysis 1.7), although the confidence interval does include the possibilities of a slightly smaller number of withdrawals and also of no difference between groups (RR 1.56, 95% CI 0.87 to 2.78; participants = 1669; studies = 7; $I^2 = 67\%$). This corresponds to 163 withdrawals per 1,000 people in the control group and 254 (95% CI 142 to 452) in the quinidine group.

There was high heterogeneity in the main analysis, which seemed to be related to two more recent studies (PAFAC 2004; SOPAT 2004) which employed lower doses of quinidine and combined it with verapamil. A subgroup analysis based in the age/dose of the studies (Analysis 1.8) suggested there is a real difference between these two studies and older studies which employed a higher dose of quinidine (test for subgroup differences, p=0.009). In older, higher-dose studies, approximately three times more people withdrew due to adverse effects, compared to placebo/no treatment (RR 3.05, 95% CI 1.29 to 7.22; participants = 435; studies = 5; $I^2 = 29\%$). In more recent, lower-dose studies, there was no evidence of a difference in withdrawals (RR 0.88, 95% CI 0.61 to 1.27; participants = 1234; studies = 2; $I^2 = 51\%$).

The results of sensitivity analysis varied depending on whether they included mostly older studies, as the analysis of studies on permanent atrial fibrillation, which showed an increase of withdrawals with quinidine (Analysis 1.9); or whether they included mainly the two more recent studies, which showed no difference with controls (Analysis 1.10, Analysis 1.11).

Disopyramide

Low-quality evidence from two RCTs indicated a more than three-fold higher risk of withdrawal due to adverse events among people taking disopyramide compared with placebo or no treatment, although the confidence interval also includes the possibility of similar risks of withdrawal due to adverse events (Analysis 2.4 RR 3.68, 95% CI 0.95 to 14.24; participants = 146; studies = 2; $I^2 = 0\%$). This corresponds to 28 withdrawals per 1,000
people in the control group and 104 (95% CI 27 to 401) per 1,000 in the disopyramide group. The result of sensitivity Analysis 2.5 is identical to the main analysis. No further sensitivity analyses were possible.

Propafenone

Moderate-quality evidence indicated a higher risk of withdrawals due to adverse events in people taking propafenone compared with those in placebo/no treatment groups (Analysis 3.4; RR 1.62, 95% CI 1.07 to 2.46; participants = 1098; studies = 5; $I^2 = 0\%$). Corresponding numbers of withdrawals due to adverse events were 61 per 1,000 in the control group and 99 (95% CI 65 to 150) per 1,000 in the propafenone group. The NNTH for propafenone was 26 patients treated for one year to have one excess withdrawal (95%CI 11 to 234).

Restricting the analysis to the only study with more than 200 participants indicated a lack of evidence for a difference between groups (Analysis 3.5; RR 1.29, 95% CI 0.79 to 2.11; participants = 523; studies = 1).

Flecainide

Only one very small RCT (Van Gelder 1989) reported withdrawals due to adverse events (Analysis 4.3) (RR 15.41, 95% CI 0.91 to 260.19; participants = 73; studies = 1; low-quality evidence). Seven people taking flecainide withdrew due to adverse events, compared with none in the control arm. The RR reflects a higher risk of withdrawal due to adverse events when taking flecainide, but the confidence interval is wide enough to include no difference between groups and even a small chance of a lower risk, but the very few people in this analysis limit the usefulness of this result. As there was just one study, all possible sensitivity analyses were identical to the main results.

Metoprolol

High-quality evidence from two RCTs found that the risk of withdrawing due to adverse events was more than three times higher among people taking metoprolol than people on placebo/no treatment (Analysis 5.6; RR 3.47, 95% CI 1.48 to 8.15; participants = 562; studies = 2; $I^2 = 0\%$). This represents 21 per 1,000 people on placebo/no treatment withdrawing due to adverse effects, compared with 74 (95% CI 31 to 173 per 1,000 people on metoprolol. The NNTH was 19 patients treated for one year to have one excess withdrawal (95%CI 7 to 99).

All sensitivity analysis were similar to the main results (Analysis 5.7; Analysis 5.8; Analysis 5.9).

Amiodarone

Pooled analysis of four RCTs found low-quality evidence that the risk of withdrawing due to an adverse event was more than six times higher for people taking amiodarone than for people taking placebo/no treatment (Analysis 6.4; RR 6.70, 95% CI 1.91 to 23.45; participants = 319; studies = 4; $I^2 = 0\%$). This corresponds to seven people out of 1,000 taking placebo/no treatment withdrawing, compared with 49 per 1,000 (95% CI 14 to 172) taking amiodarone. The NNTH for amiodarone was 25 patients treated for one year to have one excess withdrawal (95%CI 6 to 157).
Sensitivity analysis restricted to the only study at low risk of bias (Analysis 6.6) had a very wide confidence interval (RR 4.98, 95% CI 0.65 to 38.29; participants = 99; studies = 1).

Dofetilide

Low-quality evidence from two RCTs suggested withdrawals due to adverse effects may be higher in people taking dofetilide, but the wide confidence interval also includes the possibility that there is the same risk (or a lower risk) as for people taking placebo/no treatment (Analysis 7.6; RR 1.77, 95% CI 0.75 to 4.18; participants = 677; studies = 2; I² = 0%). The risk is 34 per 1,000 in the placebo/no treatment group compared with 61 (95% CI 26 to 144) per 1,000 people taking dofetilide. Sensitivity analyses were identical to the main result (Analysis 7.7; Analysis 7.8).

Dronedarone

Three RCTs showed moderate-quality evidence of a higher risk of withdrawals due to adverse effects among people taking dronedarone (Analysis 8.6; RR 1.58, 95% CI 1.34 to 1.85; participants = 6071; studies = 3; I² = 31%). This corresponds to a risk of 77 withdrawals per 1,000 people in the placebo/no treatment group and of 122 withdrawals per 1,000 people taking dronedarone (95% CI 104 to 143). The NNTH was 22 patients treated for one year to have one excess withdrawal (95%CI 15 to 38).

The ATHENA 2009 study had 82.5% of the weight in the main meta-analysis, so the sensitivity analyses are heavily influenced by this large study. When it was included, they were very similar to the main analysis (Analysis 8.8; Analysis 8.9). The analysis of studies on permanent atrial fibrillation did not include the ATHENA trial and and had a very wide confidence interval (Analysis 8.7; RR 14.51, 95% CI 0.90 to 234.74).

Sotalol

Results from 12 RCTs were pooled in Analysis 9.6 (RR 1.95, 95% CI 1.23 to 3.11; participants = 2688; studies = 12; I² = 56%). The risk of withdrawing due to an adverse event is almost twice as high in people taking sotalol as in people taking placebo or no treatment, with a risk of 94 withdrawals per 1,000 in the control group and 183 (95% CI 116 to 293) per 1,000 in the sotalol group. The corresponding NNTH was 11 patients treated for one year to have one excess withdrawal (95%CI 5 to 46).

Evidence was rated as moderate-quality due to suspected publication bias. Although there was an I² of 56% we did not downgrade for heterogeneity, because subgroup analysis Analysis 9.7 showed a difference between a subgroup containing the PAFAC 2004 and SOPAT 2004 studies, and a subgroup containing the other studies (p=0.009 from test for subgroup differences).

Sensitivity analyses all showed all an increase in withdrawals on sotalol, giving estimates which were very similar to the main analysis (permanent atrial fibrillation, Analysis 9.8), lower (low risk of bias studies, Analysis 9.9; RR 1.27, 95% CI 1.00 to 1.60; participants = 1686; studies = 4; I² = 78%), or slightly lower (studies with at least 200 participants, Analysis 9.10; RR 1.81, 95% CI 0.97 to 3.35; participants = 1900; studies = 5; I² = 79%)

Head to head comparisons
In direct comparisons between antiarrhythmics (Table 3), quinidine appeared to caused more withdrawals than flecainide or other class I drugs. Amiodarone seemed to produce fewer withdrawals than class I drugs combined, but did not show any difference compared with dronedarone or sotalol. Sotalol, in turn, caused more withdrawals than dofetilide or betablockers.

Pro-arrhythmia

Virtually all studied antiarrhythmics showed increased pro-arrhythmic effects (counting both bradyarrhythmias and tachyarrhythmias attributable to treatment).

Ventricular arrhythmias (torsades, ventricular tachycardia (VT), ventricular fibrillation (VF), widening QRS or QT leading to stopping treatment, sudden death or unexplained syncope) were the most frequent pro-arrhythmic events reported with dofetilide (100% of all pro-arrhythmic events), quinidine (94%) and flecainide (69%), while symptomatic bradyarrhythmias (sinus bradycardia leading to stopping treatment, atrio-ventricular block) were more frequent with metoprolol (94% of all events) and amiodarone (69%). Others drugs demonstrated both types of pro-arrhythmic events: propafenone (63% ventricular events, 39% bradycardia), sotalol (61% ventricular events, 39% bradycardia) and dronedarone (41% ventricular events, 59% bradycardia).

Quinidine

High-quality evidence from seven RCTs (Analysis 1.12) showed that the risk of pro-arrhythmia was twice as high in people taking quinidine compared with people in placebo/no treatment groups, although the confidence interval doesn't exclude the possibility of no difference between groups (RR 2.05, 95% CI 0.95 to 4.41; participants = 1676; studies = 7; I^2 = 0%). This represents 11 cases per 1,000 in the control group and 22 (95% CI 10 to 48) in the quinidine group.

In a way very similar to the analysis of withdrawals due to adverse effects, the results of sensitivity analysis varied depending whether they included mostly older, higher-dose studies, as the analysis of studies on permanent atrial fibrillation, which showed an increase of pro-arrhythmia with quinidine (Analysis 1.14); or whether they included mainly the two more recent, lower-dose studies (PAFAC 2004, SOPAT 2004) which showed no difference with controls (Analysis 1.15, Analysis 1.16). However, a subgroup analysis comparing older studies with more recent ones did not find a difference between groups (test for difference between subgroups P = 0.41) for this outcome (Analysis 1.3).

Disopyramide

No disopyramide studies reported pro-arrhythmia.

Propafenone

Three RCTs reported pro-arrhythmia, but the very low-quality evidence and wide confidence intervals means that we are uncertain of the effect of propafenone on this outcome (Analysis 3.6 RR 1.32, 95% CI 0.39 to 4.47; participants = 381; studies = 3; I^2 = 8%). Sensitivity analysis restricted to the only study at low risk of bias (Analysis 3.7) shows a lack of
evidence for a difference between groups (RR 0.49, 95% CI 0.09 to 2.75; participants = 102; studies = 1).

Flecainide

Risk of pro-arrhythmia was over four times higher among people taking flecainide than placebo/no treatment (Analysis 4.6; RR 4.80, 95% CI 1.30 to 17.77; participants = 511; studies = 4; $I^2 = 0$%; moderate-quality evidence). This corresponds to a risk of six per 1,000 among people taking placebo or no treatment, compared with a risk of 30 (95% CI 8 to 112) for people taking flecainide. The NNTH for flecainide was 44 patients treated for one year to have one excess pro-arrhythmic event (95%CI 10 to 556).

All sensitivity analysis suggested an increased risk of pro-arrhythmia with flecainide, but their confidence intervals were wider and included the possibility of no difference between groups (Analysis 4.7; Analysis 4.8; Analysis 4.9).

Metoprolol

High-quality evidence showed an important increase of pro-arrhythmia with metoprolol, compared to placebo (Analysis 5.10; RR 18.14, 95% CI 2.42 to 135.66; participants = 562; studies = 2; $I^2 = 0$%) due mainly to symptomatic bradyarrhythmias (94% of all pro-arrhythmic events). In the pooled population, pro-arrhythmic events were reported in no patient on placebo and in 60 patients per 1,000 on treatment with metoprolol. The corresponding NNTH was 19 patients treated for one year to have one excess bradyarrhythmia (95%CI 2 to 235).

All sensitivity analyses showed results similar to the main analysis (Analysis 5.11; Analysis 5.12; Analysis 5.13).

Amiodarone

Moderate quality evidence suggested an increase in pro-arrhythmia with amiodarone compared to placebo/no treatment, but the confidence interval included the possibility of no difference (or even a reduction) (Analysis 6.7; (RR 2.22, 95% CI 0.71 to 6.96; participants = 673; studies = 4; $I^2 = 0$%). This corresponds to a risk of eight per 1,000 with placebo/no treatment and of 18 (95%CI 6 to 57) with amiodarone. Symptomatic bradyarrhythmias represented 69% of events with amiodarone.

Sensitivity analyses gave similar results, the only difference was that they pooled fewer studies and confidence intervals were larger (Analysis 6.8; Analysis 6.9; Analysis 6.10).

Dofetilide

Moderate-quality evidence found a five-fold increase in pro-arrhythmic events with dofetilide compared to placebo/no treatment (Analysis 7.9; RR 5.50, 95% CI 1.33 to 22.76; participants = 1183; studies = 3; $I^2 = 0$%). That corresponds to two cases per 1,000 in the control group and 13 (95%CI 3 to 53) with dofetilide. The NNTH for dofetilide was 111 patients treated for one year to have one excess pro-arrhythmic event (95%CI 23 to 1515).
Sensitivity analyses did not differ to the main analysis (Analysis 7.10; Analysis 7.11; Analysis 7.12)

Dronedarone

Moderate-quality evidence from two RCTs suggested and increase of pro-arrhythmia with dronedarone compared with placebo, but the confidence interval included the possibility of no difference or even a benefit on this outcome (Analysis 8.6; RR 1.95, 95% CI 0.77 to 4.98; participants = 5872; studies = 2; I² = 78%). This represents 18 cases per 1,000 in the placebo group and 36 (95%CI 14 to 91) in patients taking dronedarone.

In sensitivity analysis, there was only one study (ATHENA 2009) rated as low risk of bias or including more than 200 patients. This study found an increased risk of pro-arrhythmia with dronedarone compared to placebo (Analysis 8.11; Analysis 8.12; RR 2.94, 95% CI 2.08 to 4.15, participants = 4628)

Sotalol

Moderate-quality evidence showed increased pro-arrhythmia rates on sotalol compared to placebo/no treatment (Analysis 9.11; RR 3.55, 95% CI 2.16 to 5.83; participants = 2989; studies = 12; I² = 20%). This corresponds to 12 cases per 1,000 in the control group and 41 (95%CI 25 to 68) in patients treated with sotalol. The corresponding NNTH was 33 patients treated for one year to have one excess pro-arrhythmic event (95%CI 17 to 72).

All sensitivity analyses were very similar to the main analysis (Analysis 9.13; Analysis 9.14; Analysis 9.15).

Head to head comparisons

In direct comparisons between antiarrhythmics (Table 4), amiodarone seemed to produce fewer pro-arrhythmic events than class I drugs combined, but did not show clear differences compared with dronedarone or sotalol. No other differences between drugs were observed.

Stroke

Data available for this outcome was limited. Only 11 of the 41 studies with a control group (placebo or no treatment arm) reported stroke outcomes (ATHENA 2009; Benditt 1999; Carunchio 1995; EURIDIS ADONIS 2007; Flec-SL 2012; Hillestad 1971; Karlson 1998; Lloyd 1984; SAFE-T 2005; Sodermark 1975; SOPAT 2004) and we were uncertain that reporting of stroke was complete. The reported stroke rate was very low (1% to 2% at 1 year).

Drugs with no data on stroke

No data on stroke was reported in any included study for propafenone, metoprolol and dofetilide.

Drugs with no apparent effect on stroke
Low to very-low quality evidence showed no apparent effect on stroke rates - compared to placebo or no treatment - with the following drugs:

- **Quinidine** ([Analysis 1.17](#)); RR 0.97, 95% CI 0.25 to 3.83; participants = 1107; studies = 4; $I^2 = 0\%$)
- **Dysopiramide** ([Analysis 2.7](#)); RR 0.31, 95% CI 0.03 to 2.91; participants = 146; studies = 2; $I^2 = 0\%$)
- **Flecainide** ([Analysis 4.10](#)); RR 2.04, 95% CI 0.11 to 39.00; participants = 362; studies = 1; $I^2 = 0\%$
- **Amiodarone** ([Analysis 6.11](#)); RR 1.15, 95% CI 0.30 to 4.39; participants = 399; studies = 1; $I^2 = 0\%$
- **Sotalol** ([Analysis 9.16](#)); RR 1.47, 95% CI 0.48 to 4.51; participants = 1161; studies = 3; $I^2 = 0\%$

The corresponding sensitivity analyses, when these were possible, did not show any notable difference with the main analyses.

Dronedarone

High-quality evidence from two RCTs suggested that dronedarone may be associated with reduced risk of stroke ([Analysis 8.13](#); RR 0.66, 95% CI 0.47 to 0.95; participants = 5872; studies = 2; $I^2 = 0\%$). This corresponds to a risk of stroke of 27 per 1,000 on people receiving placebo and 18 per 1,000 (13 to 25) on people taking dronedarone. The corresponding NNTB would be 109 patients treated for one year to prevent one stroke (95%CI 70 to 741).

This result, however, is due to a single large study, [ATHENA 2009](#), which accounted for 94.6% of the weight in the meta-analysis. Sensitivity analysis restricted to studies with more than 200 patients included the same two studies and produced identical results ([Analysis 8.14](#)).

Atrial fibrillation recurrence

All antiarrhythmic drugs included in this review, including metoprolol, reduced the risk of recurrence of atrial fibrillation. Recurrence rates of atrial fibrillation at 1 year were high: 69% to 84% in controls not receiving antiarrhythmic treatment, reduced to 43% to 67% in patients treated with antiarrhythmics.

Details for each individual drug are as follows:

Quinidine

High-quality evidence showed a reduction in atrial fibrillation recurrences with quinidine ([Analysis 1.21](#); RR 0.83, 95% CI 0.78 to 0.88; participants = 1624; studies = 7; $I^2 = 0\%$). Recurrence rates at one year were 80.5% in patients on placebo or no treatment and 66.8% (62.8 to 70.8) in patients on quinidine. The NNTB for quinidine was 7 patients treated for one year to avoid one recurrence (95%CI 6 to 10).

Results of sensitivity analyses did not differ from the main analysis ([Analysis 1.22](#); [Analysis 1.23](#); [Analysis 1.24](#))
Disopyramide

Evidence for disopyramide was low-quality because it consisted of two small RCTs with unclear risk of bias. It suggests disopyramide reduces recurrences of atrial fibrillation (Analysis 2.9; RR 0.77, 95% CI 0.59 to 1.01; participants = 146; studies = 2; I² = 0%). This corresponds to a recurrence rate, at 6 months to 1 year, of 69.0% in the control group and 53.1% (40.7 to 69.7) in the group treated with disopyramide. Both studies included only patients with permanent atrial fibrillation (Analysis 2.10) and no other sensitivity analysis was possible.

Propafenone

Moderate-quality evidence from five RCTs indicated that propafenone reduced atrial fibrillation recurrences by about a third (Analysis 3.8; RR 0.67, 95% CI 0.61 to 0.74; participants = 1098; studies = 5; I² = 0%). Recurrence rate was 73.0% in controls and 48.9% (44.5 to 54.0) in patients treated with propafenone. The corresponding NNTB was 4 patients treated for one year to avoid one recurrence (95%CI 3 to 5).

Results from sensitivity analyses were very similar (Analysis 3.9; Analysis 3.10).

Flecainide

High-quality evidence showed that flecainide reduces atrial fibrillation recurrences also by about a third (Analysis 4.14; RR 0.65, 95% CI 0.55 to 0.77; participants = 511; studies = 4; I² = 29%). That corresponded to a recurrence rate of 69.8% in people not treated or on placebo and of 45.4% (38.4 to 53.8) in people taking flecainide. The NNTB for flecainide was 4 patients treated for one year to avoid one recurrence (95%CI 3 to 6).

Results from sensitivity analysis did not differ substantially (Analysis 4.15; Analysis 4.16; Analysis 4.17).

Metoprolol

Moderate-quality evidence from two RCTs suggests that metoprolol reduces recurrences of atrial fibrillation, compared with placebo, but the confidence interval includes the possibility of no difference (Analysis 5.14; RR 0.83, 95% CI 0.68 to 1.02; participants = 562; studies = 2; I² = 59%). The corresponding recurrence rates were 72.0% in people receiving placebo and 59.7% (49.0 to 73.4) in people treated with metoprolol. All sensitivity analyses included the same two trials and obtained identical results (Analysis 5.15; Analysis 5.12) except the analysis restricted to studies including more than 200 patients, which included only one study and showed no difference between metoprolol and placebo (Analysis 4.17).

Amiodarone

High-quality evidence showed a reduction of atrial fibrillation recurrences with amiodarone of about a half, compared to placebo or no treatment (Analysis 6.14; RR 0.52, 95% CI 0.46 to 0.58; participants = 812; studies = 6; I² = 33%). This corresponded to a recurrence rate of 81.2% in people not receiving active treatment and of 42.2% (37.3 to 47.1) in people receiving amiodarone. The NNTB for amiodarone was 3 patients treated for one year to avoid one recurrence (95%CI 2 to 4).
All sensitivity analyses obtained very similar results (Analysis 6.15; Analysis 6.16; Analysis 6.17).

Dofetilide

Moderate-quality evidence indicated that dofetilide reduces recurrences of atrial fibrillation, compared to placebo, by about a quarter (Analysis 7.13; RR 0.72, 95% CI 0.61 to 0.85; participants = 1183; studies = 3; $I^2 = 79\%$). Recurrence rates were 84.2% in people taking placebo and 60.6% (51.4 to 71.6) in people taking dofetilide. The corresponding NNTB was 4 patients treated for one year to avoid one recurrence (95%CI 3 to 8).

Substantial heterogeneity existed between studies on dofetilide for this outcome ($I^2 = 79\%$, $P = 0.008$). All studies showed the same direction of effect (that is, a reduction of atrial fibrillation recurrences) and the heterogeneity was probably caused by differences in the characteristics of recruited patients.

Sensitivity analyses did not differ from the main analysis (Analysis 7.14; Analysis 7.15; Analysis 7.16).

Dronedarone

Moderate-quality evidence from two RCTs showed a reduction of recurrences of atrial fibrillation with dronedarone of about 15% (Analysis 8.15; RR 0.85, 95% CI 0.80 to 0.91; participants = 1443; studies = 2; $I^2 = 0\%$). This corresponded to a recurrence rate of 76.6% in people treated with placebo and of 65.1% (61.3 to 69.7) in people treated with dronedarone. The NNTB for dronedarone was 9 patients treated for one year to avoid one recurrence (95%CI 7 to 15).

Results from sensitivity analyses were quasi identical (Analysis 8.16; Analysis 8.17).

Sotalol

High-quality evidence found a reduction of atrial fibrillation recurrences of about a fifth with sotalol compared with placebo or no treatment (Analysis 9.20; RR 0.83, 95% CI 0.80 to 0.87; participants = 3179; studies = 14; $I^2 = 54\%$). The corresponding recurrence rates were 78.8% in patients not receiving an antiarrhythmic and 65.4% (63.1 to 68.6) in patients receiving sotalol. The NNTB for sotalol was 7 patients treated for one year to avoid one recurrence (95%CI 6 to 10).

No substantial difference with the main analysis appeared in any of the sensitivity analyses (Analysis 9.21; Analysis 9.22; Analysis 9.23).

Head to head comparisons

In direct comparisons between antiarrhythmics (Table 5), amiodarone appeared to reduce the recurrence of atrial fibrillation more than the combined class I drugs, more than dronedarone and more than sotalol. No other differences were apparent in head to head comparisons between antiarrhythmics.

Other outcomes
Chronic anticoagulation with warfarin was mandatory (that is, every patient received anticoagulation therapy throughout the whole follow-up period) in only three studies (Channer 2004; Hillestad 1971; Van Gelder 1989). In the rest of the studies the decision on anticoagulation use was left to the judgement of the attending physician. Unfortunately, no trial reported the actual frequency of anticoagulation in the different treatment groups during follow up.

Seven trials reported some data on the incidence of heart failure (ATHENA 2009; DYONISOS 2010; FAPIS 1996; Hohnloser 1995; Kuhlkamp 2000; PRODIS 1996; Reimold 1993), which was low. There were no differences in those trials between patients receiving antiarrhythmics and patients receiving placebo or no treatment.

Subgroup analysis

Twenty-three of the studies with a control group (placebo or no treatment) included only patients with persistent atrial fibrillation. The mean duration of atrial fibrillation in those studies varied greatly, from 3 to 36 months. Only four studies exclusively included patients with paroxysmal atrial fibrillation. The remaining studies included patients with both paroxysmal and persistent atrial fibrillation; none reported outcomes separately by type of atrial fibrillation.

It was not possible to compare subgroups of patients with permanent and paroxysmal atrial fibrillation for any given antiarrhythmic drug. Therefore, we analysed separately patients with permanent atrial fibrillation - for the outcomes and drugs that was possible - but as a sensitivity analysis.

Other planned subgroup analyses (patients with heart failure, studies where warfarin was mandatory versus those where it was discretionary, patients with a structurally normal heart) were not possible as separate data for each group of patients were seldom available. A more detailed analysis by left ventricular function or by the New York Heart Association (NYHA) class was not possible either, for the same reason.

Discussion

In the third update of this systematic review we have found and included just one new randomised controlled trial which added little additional information (100 patients, reported only AF recurrence rates). Conversely, we excluded a previously included study as we become aware its data were already reported in another included study. Additionnally, we have restructured the analysis of the review to treat each drug separately, in order to present all analysis and results in a clearer way. In the end, some of the results regarding specific antiarrhythmics and conclusions of the review have changed.

Summary of main results

The primary aim of this review was to determine if long-term treatment with antiarrhythmics carried any clinical benefit to patients in addition to maintenance of sinus rhythm. Consequently, we focused on all-cause mortality, stroke, embolism and also potential adverse effects of treatment as the main outcomes.
Concerning all-cause mortality, we found that no antiarrhythmic produced a benefit on mortality and that some antiarrhythmics, sotalol and very probably quinidine, actually were associated with an increase in all-cause mortality. Results for sotalol are particularly strong and the certainty of evidence is high: included studies had a low risk of bias for this outcome; results were consistent in all sensitivity analysis, replicating the results of the main analysis and indicating a clear association with increased mortality. The mortality rate in the pooled population was low, 0.8% in control patients (placebo or no treatment), but it was doubled in patients receiving sotalol. The mean NNTH was estimated at 102 patients treated for one year to have one excess death.

The results suggesting an increase in mortality also with quinidine are less solid. The confidence interval included the possibility of no difference and when the analysis was restricted to more recent, larger and high-quality studies, two studies remained (PAFAC 2004, SOPAT 2004) which showed no increase in all-cause mortality in the active treatment groups. A possible explanation is that both studies used a lower dose of quinidine than earlier trials and that quinidine was combined with verapamil, which has been shown to reduce some of the pro-arrhythmic effects of quinidine, such as accelerated atrio-ventricular conduction. Finally, the proportion of patients having structural heart disease was lower in the PAFAC and SOPAT studies than in earlier trials. Therefore, the certainty of the evidence pointing to increased all-cause mortality with quinidine was rated as low.

It is important to note that our data does not allow us to exclude a small increase in mortality with other antiarrhythmics, similar to those observed with quinidine and sotalol. Pooled data for other drugs included fewer studies and patients than for quinidine or sotalol and could be underpowered to detect effects that are of small size. In particular, we found very few data on mortality with flecainide. This is concerning because this drug has been shown to induce an excess of mortality in some trials (CAST 1991) and it showed a high risk of pro-arrhythmia in our review, similar to that of sotalol. The combined flecainide data had only a fifth of the patients included for sotalol and, despite the fact that several of the included studies stated that they analysed mortality, no death at all was reported in any treatment group. Thus, we are very unsure about what the effect of long-term treatment with flecainide in mortality might be. Similarly, the combined data for amiodarone for this outcome included four times less patients than with sotalol, so our power to detect small increases in mortality was very limited. Amiodarone has a well known high toxicity profile, showed in our analysis one of the highest risk of withdrawing treatment due to adverse effects (RR 6.70, 95% CI 1.91 to 23.45) and was associated, in other meta-analysis employing different methods, to a possible increase in mortality (Freemantle 2011; Piccini 2009) (See below: Agreements and disagreements with other studies or reviews).

With respect to adverse effects, virtually all the antiarrhythmics showed more withdrawals from treatment due to adverse effects and were associated to increased pro-arrhythmic events, compared with patients receiving placebo or no treatment. It is important to remember that we employed an extended definition of pro-arrhythmia that included severe, symptomatic bradycardia and AV blocks. Metoprolol was associated with an increase in pro-arrhythmia, precisely because an increased incidence of severe bradycardias. Of all antiarrhythmics, quinidine at higher doses and sotalol appeared to be the drugs with more withdrawals because of adverse events both compared to controls and to other antiarrhythmics. Withdrawal rates with quinidine were as high as 25% in the pooled population analysed. Amiodarone, even if it compared favourably with class I drugs combined, had a very high RR (6.70) for increasing withdrawals compared to placebo. Moreover, these were the results at one year follow up,
and the adverse effects of amiodarone are known to increase in frequency over time (Harris 1983; Lafuente-Lafuente 2009).

Regarding other outcomes, our results show that all the antiarrhythmic drugs studied reduce the recurrence of atrial fibrillation. The effectiveness of antiarrhythmics, however, was limited: they reduced recurrences by 20% to 50% compared to controls, which means that atrial fibrillation still occurred in many patients (43% to 67%) treated with antiarrhythmics, at one year. Amiodarone seemed to be the most effective drug in preventing recurrences as it had the lowest RR and in head to head comparisons it was better than combined class I drugs, dronedarone or sotalol. In spite of this, atrial fibrillation recurred at one year in 43% of patients treated with amiodarone.

Above all, we did not found any evidence of any clinical benefit derived from this reduction of recurrences of atrial fibrillation. The results on mortality showed no benefit with any drug, rather the contrary, as we have already discussed. Much fewer data existed on stroke or heart failure, but what data we found showed no difference between patients receiving active antiarrhythmic treatment and those not receiving it. The only exception was a single study (ATHENA 2009) in which the stroke rate was lower in the dronedarone arm than in the placebo arm. This finding was not confirmed by other studies of dronedarone. This lack of observable clinical benefit from the reduction of atrial fibrillation recurrences can have several explanations: a) any potential benefit obtained with antiarrhythmics might be erased by the associated toxicity and increased pro-arrhythmic events; b) clinical evolution and prognosis might be determined in many patients mostly by their underlying heart disease, rather than by atrial fibrillation itself.

An interesting result of this review is that metoprolol, a beta-blocker, also showed a reduction in atrial fibrillation recurrence, based on the pooled data from two high-quality randomised controlled trials (Kuhlkamp 2000; Nergardh 2007). Besides, no difference in preventing recurrences was found between beta-blockers and sotalol in two other trials (DAPHNE 2008 comparing sotalol against metoprolol or atenolol, and Plewan 2001 against bisoprolol). The effect of beta-blockers in reducing the recurrence of atrial fibrillation could be due to their ability to suppress atrial extrasystoles, known to be a frequent precipitant of paroxysmal atrial fibrillation (Haïssaguerre 1998). Beta-blocker effects might also relate to antihypertensive and anti-Ischaemic actions or to their effect in reducing cardiac remodelling associated with coronary artery disease or heart failure. Metoprolol was associated, however, like most active drugs here studied, to increased withdrawals due to adverse effects and increased cases of severe, symptomatic bradycardia.

Overall completeness and applicability of evidence

Data on all-cause mortality, recurrence of atrial fibrillation and main adverse drug events was reported by most of the included trials. We also intended to analyse other clinically relevant outcomes such as the frequency of systemic embolism and use of long-term anticoagulation, or the influence of heart failure and structural heart disease in the response to treatment. Unfortunately data on those outcomes were sparse, if reported at all. In the few trials where they were reported, the frequencies of stroke and heart failure were very low, perhaps because the populations that were included were low risk. The frequency of use of anticoagulants during the follow up was not reported in any study.
Similarly, we wanted to analyse the influence of structural heart disease on effectiveness, specially with respect to left ventricular ejection fraction and left atrial size, and the influence of duration of atrial fibrillation before cardioversion. These are factors well known to influence the risk of recurrence of atrial fibrillation. Unfortunately this analysis was not possible as separate data were not available for those patients subgroups.

This lack of data for some clinical outcomes is the main limitation of our review. Another limitation could be that in many studies patients were followed up until atrial fibrillation recurred, and not thereafter, hence additional events between that point and the complete one year of follow up might have been missed. Also, the populations included in most studies were at low risk of events, the mean age of included patients was 64 years old and most of them had a normal left ventricular ejection fraction. We do not know if our results can be extrapolated to other patient populations, especially older patients and those with a reduced left ventricular ejection fraction.

Finally, it is important to remember that maintaining sinus rhythm by using long-term antiarrhythmic drugs is only one possible step in the more general 'rhythm control' strategy, and antiarrhythmic drugs should be put within the perspective of the global strategy chosen for the patient (ACC/AHA/ESC 2014; NICE 2014). Other therapies have proven to be useful to prevent or reduce recurrence of atrial fibrillation in selected patients, especially catheter ablation (APAF 2006; Oral 2006; Terasawa 2009); and antiarrhythmics have been occasionally used for terminating recurrences (Alboni 2004). However, the effects of these therapies on the important clinical endpoints of all-cause mortality, stroke, incidence of heart failure are still not well known. A different Cochrane review has studied the effectiveness of catheter ablation for paroxysmal and persistent atrial fibrillation (Chen 2012).

Quality of the evidence

Two areas of concern regarding the risk of bias of included studies were present: (a) a lack of details, in about 70% of studies, on the procedures followed for randomisation and for concealing the allocation of patients; and (b) a lack of double-blinding in approximately 60% of studies. The lack of details on the randomisation and concealing procedures can probably be explained, at least partly, by the fact that many of the studies were conducted in the eighties and nineties, when the standards for reporting research methods were less developed. Also, it was very difficult to obtain additional data from authors for studies so old. The lack of blinding concerned specially studies comparing two antiarrhythmics and much less studies comparing an antiarrhythmic with no active treatment. Nevertheless, these concerns did not allow us to consider the evidence as "high quality".

On the other hand, despite the potential sources of bias, there were two other characteristics that increased our confidence in the results of the review: (a) Consistency of results: for each analysis, there were always several studies available and results are very consistent across individual studies, despite their differences in blinding or in the description of the allocation procedures; (b) Objective outcomes: with the only exception of withdrawals because of adverse effects, the outcomes analysed were measured objectively (ECG records) or are hard outcomes (stroke, mortality), which reduces the risk of bias associated to the lack of blinding.
In the end, we judged the available evidence for most analysed outcomes (all-cause mortality, withdrawals due to adverse effects, pro-arrhythmia and recurrence of atrial fibrillation) as of moderate quality.

Potential biases in the review process

We are not aware of any potential bias in the review process. There were very few disagreements between reviewers regarding the inclusion and exclusion of candidate studies. There were also few disagreements regarding the data extracted from included studies. Disagreements were easily resolved by discussion and consensus in all cases.

Agreements and disagreements with other studies or reviews

A previous meta-analysis by Coplen et al found that quinidine increased all-cause mortality (Coplen 1990). A meta-analysis by Nichol et al found no difference in all-cause mortality with any antiarrhythmic, but most of the trials that they pooled had very short follow-up periods (Nichol 2002).

A more recent network meta-analysis, using a mixed treatment comparison method (where the estimates obtained from direct and indirect comparisons are combined in a network of trials), also found an increase in all-cause mortality associated with sotalol (Freemantle 2011). This meta-analysis, as well as a different meta-analysis that compared amiodarone and dronedarone (Piccini 2009), raised the possibility of an increase in mortality associated with amiodarone treatment compared with placebo. This result, however, appeared in exploratory analysis (restricted to inclusion of larger studies) and not in the main analysis. Quinidine was not studied in the meta-analysis by Freemantle et al.

Authors' conclusions

Implications for practice

There is high-quality evidence of increased all-cause mortality associated with sotalol treatment. Consequently, this drug should not be used for this indication (maintaining sinus rhythm in patients who had atrial fibrillation). If employed, it should be with extreme caution and very closely monitored.

Similarly, quinidine should neither be employed for this indication, or used with extreme caution, as there is low-quality evidence suggesting that its use is also associated with increased mortality, as well as moderate-quality evidence of a marked increase in withdrawals due to adverse events and high-quality evidence of increased pro-arrhythmic events.

Caution should also be taken when using flecainide. This drug has been shown to induce an excess of mortality in some trials in other heart conditions (CAST 1991). Very few data on mortality is available for this drug when employed for maintaining sinus rhythm, making impossible any reliable estimation of mortality in patients with atrial fibrillation. It exists,
however, moderate-quality evidence of an important increase in pro-arrhythmic events with flecainide.

Overall, given: a) the concerns regarding increased mortality with several drugs; b) the modest effectiveness of antiarrhythmic drugs for preventing recurrences of atrial fibrillation; c) the evidence of increased adverse events with all drugs studied; d) the evidence of increased pro-arrhythmic events with most drugs studied, and; e) the absence of evidence of any benefit obtained with these drugs on clinical endpoints; chronic treatment with antiarrhythmics drugs should not be considered as a first-line treatment for maintaining sinus rhythm in patients with atrial fibrillation. Other treatments, or strategies, with fewer associated adverse events, or higher effectiveness, should be considered before: no treatment at all, rate control strategy (Caldeira 2012, Chatterjee 2013), pulmonary veins catheter ablation (Khan 2014, CASTLE-AF 2018) or, in selected patients with paroxysmal atrial fibrillation, episodic, very short-term use of antiarrhythmics (in hospital or as a "pill-in-the-pocket" approach, Alboni 2004, Saborido 2010).

Implications for research

Adequate evidence exists for some outcomes (withdrawals, pro-arrhythmia and atrial fibrillation recurrences) for all drugs included in this review. There is good evidence regarding mortality for several antiarrhythmics, but there is an important lack of data on mortality for some drugs, specially flecainide and propafenone, and limited data for other drugs, like amiodarone, which does not allow to exclude small increases in mortality with them.

Available evidence is limited by the lack of systematic assessment in many studies of important clinical outcomes: stroke, heart failure, and functional measures (exercise capacity, quality of life). Trials studying antiarrhythmic drugs should measure their effects on these outcomes in addition to prevention of arrhythmia recurrences. Pending questions include the effects of antiarrhythmics on these clinical outcomes, and the effects in specific subgroups of patients, specifically patients with heart failure or reduced left ventricular ejection fraction, and older patients.

Finally, new drugs or other procedures that are more effective in preventing atrial fibrillation recurrence or are associated with fewer adverse effects, or both, would be desirable.

Acknowledgements

We thank all the trial authors who answered our request for additional data; Professor Charles Caulin for his most valuable suggestions; Dr Barbara Stadler for translating articles from German, Lone Gale for helping with articles in Swedish, Dr Qian Zhang for translating from Chinese; Dr Miguel Angel Longas-Tejero, Pr Stéphane Mouly and Pr Jean-François Bergmann for their help in previous versions of this review; and all the staff of Cochrane Heart Group for their most important help and support.

Contributions of authors
CL-L and JB: prepared and designed the review,

CL-L: searched for primary studies and contacted authors of primary studies when needed.

LV, AT, WJ: screened search results, and retrieved papers.

LV, EA, WJ, JB and CL-L: assessed papers for inclusion and risk of bias.

LV, EA, WJ and CL-L: extracted data.

CL-L and AT performed analysis and interpreted data.

LV and WJ: interpreted data and reviewed the manuscript.

CL-L, AT and JB: wrote the review.

Declarations of interest

Lucie Valembois: none known.

Etienne Audureau: none known

Andrea Takeda: none known

Witold Jarzebowski: none known

Joël Belmin: none known

Carmelo Lafuente-Lafuente has received consultant fees (less than EUR 5000 total) from Sanofi-Aventis, in 2009 and 2010, for helping to conduct a study (a mixed treatment comparison meta-analysis) on several antiarrhythmic drugs for the management of atrial fibrillation. Sanofi-Aventis is the manufacturer of amiodarone and dronedarone, two of the antiarrhythmics studied in this review. He also received personal fees from Bayer Healthcare and BMS, outside this work.

Differences between protocol and review

Some of the original planned outcomes and planned subgroup analyses could not be performed because the data needed were not recorded or not reported in the original studies. Some planned outcomes were thus modified:

- All-cause mortality and cardiovascular mortality were virtually identical in all studies, so we chose to report only all-cause mortality.
- We finally analysed only stroke instead the originally planned "embolic complications (stroke and peripheral embolism combined)" as data for peripheral embolism lacked;
- Heart failure was added as a secondary outcome, because it is an important outcome in these patients.
Other modifications included in the successive updates with respect to the original protocol were:

- Assessment of the risk of bias of included studies was expanded to comply with the new Cochrane MECIR methodological requirements;
- We decided to report risk ratios instead Peto odds ratios, as originally done, because risk ratios are more interpretable by clinicians and non-statisticians.
- Initially, we analysed data not only by each individual drug but also grouped by pharmacological class, following the classification of Vaughan Williams (Vaughan Williams 1984). However, individual antiarrhythmics are very different one from another even inside the same class and it is not clear what would be the clinical implications of grouping them by classes. Consequently, after discussion, we decided to analyze data only by individual drugs.
- We decide to drop out several drugs that have never been marketed for this indication (never proved to be effective): aprindine (class IB), bidisomide (class IB) and azimilide (class III).

Summary of findings tables

1 Quinidine compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Quinidine compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation
Setting: Hospital / community
Intervention: Quinidine
Comparison: placebo or no treatment

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Risk with placebo or no treatment</th>
<th>Risk with Quinidine</th>
<th>Relative effect (95% CI)</th>
<th>Ν of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis</td>
<td>Study population</td>
<td>8 per 8 per</td>
<td>RR 2.01 (0.84 to 4.77)</td>
<td>1646 (6 RCTs)</td>
<td>⊕ ⊕ ⊝ ⊝</td>
<td>LOW 1 2</td>
<td></td>
</tr>
<tr>
<td>follow up: median 12 months</td>
<td>1,000</td>
<td>1,000</td>
<td>(6 to 36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withdrawals due to</td>
<td>Study population</td>
<td>163 per 169 per</td>
<td>1.56 (0.87, 2.86)</td>
<td>1669 (7 RCTs)</td>
<td>⊕ ⊕ ⊕ ⊝</td>
<td>MODERATE</td>
<td>Heterogeneity was high for the</td>
</tr>
</tbody>
</table>
adverse effects - main analysis, but the test for subgroup differences indicated that the RR was higher in older studies which used a higher dose.

Pro-arrhythmia - main analysis, but the test for subgroup differences indicated that the RR was higher in older studies which used a higher dose.

Stroke - main analysis, but the test for subgroup differences indicated that the RR was higher in older studies which used a higher dose.

Atrial fibrillation recurrence - main analysis, but the test for subgroup differences indicated that the RR was higher in older studies which used a higher dose.

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Footnotes

1 Downgraded one level for study limitations: majority of studies were at low or unclear risk of bias for at least one of the key domains (allocation concealment, blinding, incomplete outcome data)
2 Downgraded one level for imprecision: confidence interval includes no effect, the possibility of a beneficial effect, and a strong harmful effect.

3 Not downgraded for study limitations, as the 2 studies contributing majority of weight were at low risk for key domains (allocation concealment, blinding, incomplete outcome data)

4 Not downgraded for inconsistency: although heterogeneity was high for the main analysis, this was partially explained by subgroup analysis.

5 Downgraded one level for imprecision: confidence interval includes possibility of no effect or small beneficial effect as well as harmful effect.

6 Not downgraded for imprecision, although CI just includes null

7 Downgraded one level for imprecision: confidence interval includes both important benefits and harms, and event rate was very low.

2 Disopyramide compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Disopyramide compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation
Setting: Hospital / community
Intervention: Disopyramide
Comparison: placebo or no treatment

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects’ (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No. of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis follow up: mean 12 months</td>
<td>Study population 0 per 1,000 0 per 1,000 (0 to 0)</td>
<td>RR 5.00 (0.25 to 101.37)</td>
<td>92 (1 RCT)</td>
<td>⊕⊕⊕⊕ [LOW]</td>
<td></td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - main analysis follow up: range 6 to 12 months</td>
<td>Study population 28 per 1,000 104 per 1,000 (27 to 401)</td>
<td>RR 3.68 (0.95 to 14.24)</td>
<td>146 (2 RCTs)</td>
<td>⊕⊕⊕⊕ [LOW]</td>
<td></td>
</tr>
<tr>
<td>Pro-arrhythmia - not reported</td>
<td>Study population - - - - - -</td>
<td>RR 0.31 146</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Individual antiarrhythmics follow up: range 6 to 12 months

28 per 1,000 (1 to 82) (0.03 to 2.91) (2 RCTs) VERY LOW

Atrial fibrillation

Study population

Recurrence - main analysis

RR 0.77 146 (0.59 to 1.01) (2 RCTs) LOW

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Footnotes

1 Not downgraded for study limitations: study had unclear blinding but this is less relevant for this outcome.

2 Downgraded by two levels for imprecision: very small sample size and wide confidence intervals including both important benefits and harms.

3 Downgraded by one level for study limitations: both studies had unclear risk of bias for one of the key domains.

4 Downgraded by one level for imprecision: very small sample size

3 Propafenone compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Propafenone compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation

Setting: Hospital / community

Intervention: Propafenone
Comparison: placebo or no treatment

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Nº of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis follow up: range 6 to 15 months</td>
<td>Risk with placebo or no treatment</td>
<td>RR 0.19 (0.02 to 1.68)</td>
<td>212 (2 RCTs)</td>
<td>⊕⊕⊕⊕ VERY LOW</td>
<td>1</td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - main analysis follow up: range 6 to 15 months</td>
<td></td>
<td>RR 1.62 (1.07 to 2.46)</td>
<td>1098 (5 RCTs)</td>
<td>⊕⊕⊕ ⊝ MODERATE</td>
<td>1</td>
</tr>
<tr>
<td>Pro-arrhythmia - main analysis follow up: range 6 to 15 months</td>
<td></td>
<td>RR 1.32 (0.39 to 4.47)</td>
<td>381 (3 RCTs)</td>
<td>⊕⊕⊕⊕ VERY LOW</td>
<td>2</td>
</tr>
<tr>
<td>Stroke - not reported</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - main analysis follow up: range 6 to 15 months</td>
<td></td>
<td>RR 0.67 (0.61 to 0.74)</td>
<td>1098 (5 RCTs)</td>
<td>⊕⊕⊕ ⊝ MODERATE</td>
<td>1</td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; **RR:** Risk ratio; **OR:** Odds ratio;

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect.

Footnotes

1 Downgraded by one level for study limitations. All studies had unclear or high risk of bias in at least one of the three key domains (allocation concealment, blinding, incomplete outcome data).

2 Downgraded by two levels for imprecision due to small sample size and confidence interval wide enough to include both important benefit and harm.

4 Flecainide compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Flecainide compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation

Setting: Hospital / community

Intervention: Flecainide

Comparison: placebo or no treatment

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>№ of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis</td>
<td>Study population see comment</td>
<td>-</td>
<td>(0 RCTs)</td>
<td>⊕⊕⊕⊝ LOW</td>
<td>-</td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - main analysis follow up: mean 6 months</td>
<td>Study population 0 per 1,000 194 per 1,000 (? to ?)</td>
<td>RR 15.41 (0.91 to 260)</td>
<td>73 (1 RCT)</td>
<td>⊕⊕⊕⊕ MODERATE</td>
<td>3</td>
</tr>
<tr>
<td>Pro-arrhythmia - main analysis follow up: range 6 to 12 months</td>
<td>Study population 6 per 1,000 30 per 1,000 (8 to 112)</td>
<td>RR 4.80 (1.30 to 17.7)</td>
<td>511 (4 RCTs)</td>
<td>⊕⊕⊕⊕ MODERATE</td>
<td>3</td>
</tr>
<tr>
<td>Stroke - main analysis follow up: mean 6 months</td>
<td>Study population 0 per 1,000 ? per 1,000 (0 to 0)</td>
<td>RR 2.04 (0.11 to 39)</td>
<td>362 (1 RCT)</td>
<td>⊕⊕⊕⊕ LOW</td>
<td>1 2</td>
</tr>
</tbody>
</table>
Atrial fibrillation recurrence - main analysis follow up: range 6 to 12 months

<table>
<thead>
<tr>
<th>Study population</th>
<th>RR 0.65 (0.55 to 0.77)</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.8 per 100</td>
<td>511</td>
<td>HIGH</td>
</tr>
<tr>
<td>45.4 per 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(38.4 to 53.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Footnotes

1. Not downgraded for study limitations. The only included study was at high risk of bias for blinding (less relevant for this outcome) but low risk for other key domains.

2. Downgraded by two levels for imprecision due to small sample size and wide confidence interval that included both possible harm and no effect.

3. Downgraded by one level for study limitations; all studies were at high or unclear risk of bias in at least one of the key domains.

4. Not downgraded for study limitations. Majority of weight came from 2 largest studies which were at high risk of bias for blinding (less relevant for this outcome) but low risk for other key domains.

5 Metoprolol compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Metoprolol compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation

Setting: Hospital / community

Intervention: Metoprolol

Comparison: placebo or no treatment
<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>№ of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk with placebo or no treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause mortality - main analysis follow up: mean 6 months</td>
<td>Study population 4 per 1,000 (1 to 39)</td>
<td>RR 2.02 (0.37 to 11.1)</td>
<td>562 (2 RCTs)</td>
<td>⊕⊕⊕⊕ MODERATE</td>
<td></td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - main analysis follow up: mean 6 months</td>
<td>Study population 21 per 1,000 (31 to 173)</td>
<td>RR 3.47 (1.48 to 8.1)</td>
<td>562 (2 RCTs)</td>
<td>⊕⊕⊕⊕ HIGH</td>
<td></td>
</tr>
<tr>
<td>Pro-arrhythmia - main analysis follow up: mean 6 months</td>
<td>Study population 0 per 1,000 (0 to 0)</td>
<td>RR 18.14 (2.42 to 135.6)</td>
<td>562 (2 RCTs)</td>
<td>⊕⊕⊕⊕ HIGH</td>
<td></td>
</tr>
<tr>
<td>Stroke - not reported - main analysis follow up: mean 6 months</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - main analysis follow up: mean 6 months</td>
<td>Study population 72.0 per 100 (49.0 to 73.4)</td>
<td>RR 0.83 (0.68, 1.02)</td>
<td>562 (2 RCTs)</td>
<td>⊕⊕⊕⊕ MODERATE</td>
<td></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;
GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Footnotes
1 Downgraded by one level for imprecision. Confidence interval includes both possible harm and possible benefit.

2 Downgraded by one level for inconsistency: high I2 indicated heterogeneity and this could not be explored in subgroup analysis due to only 2 studies being included.

6 Amiodarone compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Amiodarone compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation

Setting: Hospital / community

Intervention: Amiodarone

Comparison: placebo or no treatment

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects * (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>№ of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - Main analysis follow up: range 6 to 12 months</td>
<td>Risk with placebo or no treatment</td>
<td>RR 1.66 (0.55 to 4.99)</td>
<td>444 (2 RCTs)</td>
<td>MODERATE</td>
<td>1</td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - Main analysis follow up: range 6 to 16 months</td>
<td>Study population 26 per 1,000 (14 to 129)</td>
<td>RR 6.70 (1.91 to 23.45)</td>
<td>319 (4 RCTs)</td>
<td>LOW 2 3</td>
<td></td>
</tr>
<tr>
<td>Pro-arrhythmia - Main analysis follow up: range 6 to 16 months</td>
<td>Study population 8 per 1,000 (6 to 57)</td>
<td>RR 2.22 (0.71 to 6.96)</td>
<td>673 (4 RCTs)</td>
<td>MODERATE</td>
<td>1 4</td>
</tr>
<tr>
<td>Stroke - Main analysis follow up: mean 12 months</td>
<td>Study population 23 per 1,000 (7 to 100)</td>
<td>RR 1.15 (0.30 to 4.39)</td>
<td>399 (1 RCT)</td>
<td>LOW 5</td>
<td></td>
</tr>
<tr>
<td>Atrial</td>
<td>Study population</td>
<td>RR 0.52 (12)</td>
<td>812</td>
<td>MODERATE</td>
<td></td>
</tr>
</tbody>
</table>
fibrillation 81.2 per 100 42.2 per 100 (0.46 to 0.58) (37.3 to 47.1) 0.58 (6 RCTs) HIGH 4
recurrence - 100 12 months

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Footnotes
1 Downgraded by one level for imprecision: confidence interval includes both possible benefit and harm
2 Downgraded by one level for study limitations: majority of weight was from studies with unclear or high risk of bias in key domains.
3 Downgraded by one level for imprecision: small sample size
4 Not downgraded for study limitations, as the majority weight was from studies at low risk of bias in all key domains.
5 Downgraded by two levels for imprecision: small sample size and wide confidence interval which includes both possible benefit and harm.

7 Dofetilide compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Dofetilide compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation
Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation
Setting: Hospital / community
Intervention: Dofetilide
Comparison: placebo or no treatment
<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>№ of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk with placebo or no treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause mortality - Main analysis follow up: mean 12 months</td>
<td>Study population 193 per 1,000 (1,000 (146 to 245)</td>
<td>RR 0.98 (0.76 to 1.27)</td>
<td>1183 (3 RCTs)</td>
<td>⊕⊕⊕⊝ MODERATE</td>
<td></td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - Main analysis follow up: mean 12 months</td>
<td>Study population 34 per 1,000 (61 per 1,000 (26 to 144)</td>
<td>RR 1.77 (0.75 to 4.2)</td>
<td>677 (2 RCTs)</td>
<td>⊕⊕⊝ ⊝ LOW</td>
<td></td>
</tr>
<tr>
<td>Pro-arrhythmia - Main analysis follow up: mean 12 months</td>
<td>Study population 2 per 1,000 (13 per 1,000 (3 to 53)</td>
<td>RR 5.50 (1.33 to 22.8)</td>
<td>1183 (3 RCTs)</td>
<td>⊕⊕⊕⊝ MODERATE</td>
<td></td>
</tr>
<tr>
<td>Stroke - not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - Main analysis follow up: mean 12 months</td>
<td>Study population 84.2 per 100 (60.6 per 100 (51.4 to 71.6)</td>
<td>RR 0.0.72 (0.61, 0.85)</td>
<td>1183 (3 RCTs)</td>
<td>⊕⊕⊕⊝ MODERATE</td>
<td></td>
</tr>
</tbody>
</table>

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect
1 Downgraded by one level for study limitations: majority of studies had unclear risk of selection bias.

2 Downgraded by one level for imprecision: confidence interval includes both possible benefit and harm.

3 Not downgraded for study limitations as 51% of weight came from a study with low risk of bias across all domains (but other 2 studies had unclear risk of selection bias).

4 Downgraded by one level for heterogeneity due to very high I^2 value (79%)

8 Dronedarone compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Dronedarone compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation

Setting: Hospital / community

Intervention: Dronedarone

Comparison: placebo or no treatment

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>№ of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td></td>
<td>RR 0.86 (0.68 to 1.09)</td>
<td>6071 (3 RCTs)</td>
<td>⊕⊕⊕⊕ HIGH</td>
<td></td>
</tr>
<tr>
<td>Main analysis follow up:</td>
<td>range 6 to 12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withdrawals</td>
<td>Study population</td>
<td>RR 1.58 (1.34 to 1.85)</td>
<td>6071 (3 RCTs)</td>
<td>⊕⊕⊕ MODERATE</td>
<td>1</td>
</tr>
<tr>
<td>Main analysis follow up:</td>
<td>range 6 to 12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-arrhythmia</td>
<td>Study population</td>
<td>RR 1.95 (0.77, 4.98)</td>
<td>5872 (2 RCTs)</td>
<td>⊕⊕ MODERATE</td>
<td>2</td>
</tr>
<tr>
<td>Main analysis follow up:</td>
<td>range 6 to 12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mean 12 months
Stroke - Main analysis follow up: mean 12 months

<table>
<thead>
<tr>
<th></th>
<th>Study population</th>
<th>RR</th>
<th>95% CI</th>
<th>N</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>18</td>
<td>5872</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/100</td>
<td>1/100</td>
<td>(0.47 to 0.95)</td>
<td>(2 RCTs)</td>
</tr>
</tbody>
</table>

Atrial fibrillation recurrence - Main analysis follow up: range 6 to 12 months

<table>
<thead>
<tr>
<th></th>
<th>Study population</th>
<th>RR</th>
<th>95% CI</th>
<th>N</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>76.6</td>
<td>65.1</td>
<td>1443</td>
<td>MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76/100</td>
<td>65/100</td>
<td>(0.80 to 0.91)</td>
<td>(2 RCTs)</td>
</tr>
</tbody>
</table>

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Footnotes

1 Downgraded by one level for study limitations: 83% of weight came from a study with unclear blinding, which could be relevant to this outcome.

2 Downgraded by one level for inconsistency due to very high I² of 78%.

3 Downgraded by one level for study limitations: most weight came from a study with unclear allocation concealment.

9 **Sotalol compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation**

Sotalol compared to placebo or no treatment for maintaining sinus rhythm after cardioversion of atrial fibrillation

Patient or population: adults in sinus rhythm after cardioversion of atrial fibrillation
Setting: Hospital / community
Intervention: Sotalol
Comparison: placebo or no treatment

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Risk with</td>
<td>Risk with</td>
</tr>
<tr>
<td>placebo</td>
<td>no Sotalol</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause</td>
<td>Study population 8 per 1,000</td>
</tr>
<tr>
<td>mortality</td>
<td>RR 2.23 (1.03 to 4.81)</td>
</tr>
<tr>
<td>Main</td>
<td>(95% CI) 19 per 1,000</td>
</tr>
<tr>
<td>analysis</td>
<td>(9 to 40)</td>
</tr>
<tr>
<td>follow up:</td>
<td></td>
</tr>
<tr>
<td>range 6 to</td>
<td>Study population 94 per 1,000</td>
</tr>
<tr>
<td>12 months</td>
<td>RR 1.95 (1.23, 3.11)</td>
</tr>
<tr>
<td></td>
<td>(116 to 293)</td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - Main analysis follow up: range 6 to 19 months; median 12 months</td>
<td>Study population 12 per 1,000</td>
</tr>
<tr>
<td></td>
<td>RR 3.55 (2.16 to 5.83)</td>
</tr>
<tr>
<td>Pro-arrhythmia - Main analysis follow up: median 12 months</td>
<td>Study population 7 per 1,000</td>
</tr>
<tr>
<td></td>
<td>RR 1.47 (0.48 to 4.51)</td>
</tr>
<tr>
<td>Stroke - Main analysis follow up: range 6 to 12 months</td>
<td>Study population 78.8 per 100</td>
</tr>
<tr>
<td></td>
<td>RR 0.83 (0.80 to 0.87)</td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - Main analysis follow up: range 6 to 19 months; median 12 months</td>
<td>Study population 78.8 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% confidence interval) is based on the relative risk.
CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Footnotes

1 Not downgraded for study limitations. Although the majority of studies had unclear or high risk of bias in at least one of the key domains, the majority of the weight was from studies at low risk of bias in key domains.

2 Not downgraded for inconsistency. \(I^2 \) was 56% for the main analysis but this was partially explained by subgroup analysis.

3 Downgraded by one level for publication bias: forest plot appears to be asymmetrical.

4 Downgraded by one level for imprecision: confidence interval includes both possible benefit and harm

5 Not downgraded for publication bias: funnel plot appears to be broadly symmetrical.

6 Not downgraded for inconsistency. \(I^2 \) was 54% but the forest plot had good overlap in confidence intervals, so a fixed effect model was used to maintain the weight of the few larger studies.

Additional tables

1 Number of studies assessing each primary outcome

<table>
<thead>
<tr>
<th>Primary outcomes</th>
<th>N° Trials reporting (N° participants)</th>
<th>N° Trials NOT reporting (N° participants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>39 (17 586)</td>
<td>3 * (393)</td>
</tr>
<tr>
<td>Cardiovascular mortality</td>
<td>same as total mortality</td>
<td>same as total mortality</td>
</tr>
<tr>
<td>Stroke</td>
<td>11 (9 139)</td>
<td>30 (8 840)</td>
</tr>
<tr>
<td>Adverse effects (Proarrhythmia and Withdrawals due to adverse effects)</td>
<td>39 (16 558)</td>
<td>3 ** (1 421)</td>
</tr>
</tbody>
</table>

Footnotes
Out of 41 studies comparing an active drug with a control group receiving no antiarrhythmic (total 17,979 patients)

** AFIB 1997, Chun 2014, Santas 2012. Others studies did not reported pro-arhythemia but reported withdrawals: DAPHNE, Niu, Villani

2 Head to head trials: all cause mortality

<table>
<thead>
<tr>
<th>Drug 1 vs. drug 2</th>
<th>drug 1</th>
<th>drug 2</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug 1 vs. Drug 2</td>
<td>events</td>
<td>total</td>
<td>events</td>
</tr>
<tr>
<td>Disopyramide vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODIS 1996</td>
<td>1</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>0</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>Quinidine vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richiardi 1992</td>
<td>0</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>2</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Quinidine vs. Sotalol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOPAT 2004</td>
<td>2</td>
<td>518</td>
<td>2</td>
</tr>
<tr>
<td>SOCESP 1999</td>
<td>0</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>PAFAC 2004</td>
<td>9</td>
<td>377</td>
<td>13</td>
</tr>
<tr>
<td>Kalusche 1994</td>
<td>1</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Juul-Moller 1990</td>
<td>1</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>Flecaainide vs. Propafenone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliot 1996</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>Amiodarone vs. Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITAGORA 2008</td>
<td>6</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>AFFIRM Substudy 2003</td>
<td>10</td>
<td>106</td>
<td>26</td>
</tr>
<tr>
<td>Amiodarone vs. Dronedarone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYONISOS 2010</td>
<td>5</td>
<td>255</td>
<td>2</td>
</tr>
<tr>
<td>Amiodarone vs. Sotalol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFE-T 2005</td>
<td>13</td>
<td>267</td>
<td>15</td>
</tr>
<tr>
<td>PITAGORA 2008</td>
<td>6</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>AFFIRM Substudy 2003</td>
<td>15</td>
<td>131</td>
<td>24</td>
</tr>
<tr>
<td>Sotalol vs. Class I drugs other than quinidine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reimold 1993</td>
<td>2</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>AFFIRM Substudy 2003</td>
<td>13</td>
<td>88</td>
<td>17</td>
</tr>
<tr>
<td>Sotalol vs. Dofetilide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERALD 2000</td>
<td>0</td>
<td>108</td>
<td>1</td>
</tr>
</tbody>
</table>
3 Head to head trials: withdrawals due to adverse events

<table>
<thead>
<tr>
<th>Drug 1 vs. drug 2</th>
<th>drug 1</th>
<th>drug 2</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>events</td>
<td>total</td>
<td>events</td>
</tr>
<tr>
<td>Disopyramide vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>2</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>PRODIS 1996</td>
<td>4</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Quinidine vs. Flecainide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naccarelli 1996</td>
<td>35</td>
<td>117</td>
<td>22</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>2</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Quinidine vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>4</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>Naccarelli 1996</td>
<td>35</td>
<td>117</td>
<td>22</td>
</tr>
<tr>
<td>Richiardi 1992</td>
<td>23</td>
<td>98</td>
<td>10</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>2</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Quinidine vs. Sotalol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hohnloser 1995</td>
<td>10</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Juul-Moller 1990</td>
<td>22</td>
<td>85</td>
<td>11</td>
</tr>
<tr>
<td>Kalusche 1994</td>
<td>7</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>PAFAC 2004</td>
<td>94</td>
<td>377</td>
<td>96</td>
</tr>
<tr>
<td>SOCESP 1999</td>
<td>10</td>
<td>63</td>
<td>7</td>
</tr>
<tr>
<td>SOPAT 2004</td>
<td>87</td>
<td>518</td>
<td>53</td>
</tr>
<tr>
<td>Flecainide vs. Propafenone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliot 1996</td>
<td>2</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>FAPIS 1996</td>
<td>10</td>
<td>97</td>
<td>9</td>
</tr>
<tr>
<td>Amiodarone vs. Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFFIRM Substudy 2003</td>
<td>20</td>
<td>154</td>
<td>47</td>
</tr>
<tr>
<td>Kochiakakis 2004a</td>
<td>17</td>
<td>72</td>
<td>2</td>
</tr>
<tr>
<td>PITAGORA 2008</td>
<td>5</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>Villani 1992</td>
<td>3</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>Vitolo 1981</td>
<td>1</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Amiodarone vs. Dronedarone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYONISOS 2010</td>
<td>45</td>
<td>255</td>
<td>32</td>
</tr>
<tr>
<td>Amiodarone vs. Sotalol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFFIRM Substudy 2003</td>
<td>20</td>
<td>154</td>
<td>21</td>
</tr>
<tr>
<td>Kochiakakis 2000</td>
<td>11</td>
<td>65</td>
<td>3</td>
</tr>
<tr>
<td>Niu 2006</td>
<td>5</td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>PITAGORA 2008</td>
<td>6</td>
<td>70</td>
<td>0</td>
</tr>
</tbody>
</table>
Vijayalaskshmi 2006 1 22 4 33 0.38 (0.04, 3.14)
Sotalol vs. Class I drugs other than quinidine
AFFIRM Substudy 2003 21 135 47 121 0.40 (0.25, 0.63)
Kochiadakis 2004b 5 85 5 86 1.01 (0.30, 3.37)
Reimold 1993 6 50 4 50 1.50 (0.45, 4.99)
Sotalol vs. Dofetilide
EMERALD 2000 16 108 22 321 2.16 (1.18, 3.96)
Sotalol vs. Other Beta-blockers
DAPHNE 2008 11 69 2 66 5.26 (1.21, 22.84)
Plewan 2001 4 64 3 64 1.33 (0.31, 5.72)

Footnotes
4 Head to head trials: pro-arrhythmia

<table>
<thead>
<tr>
<th>Drug 1 vs. drug 2</th>
<th>drug 1</th>
<th>drug 2</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disopyramide vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>0</td>
<td>29</td>
<td>1 28 0.32 (0.01, 7.59)</td>
</tr>
<tr>
<td>PRODIS 1996</td>
<td>1</td>
<td>31</td>
<td>1 25 0.81 (0.05, 12.26)</td>
</tr>
<tr>
<td>Quinidine vs. Flecaainide</td>
<td>10</td>
<td>117</td>
<td>7 122 1.49 (0.59, 3.78)</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>2</td>
<td>15</td>
<td>1 15 2.00 (0.20, 19.78)</td>
</tr>
<tr>
<td>Quinidine vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>1</td>
<td>28</td>
<td>0 29 3.10 (0.13, 73.12)</td>
</tr>
<tr>
<td>Naccarelli 1996</td>
<td>10</td>
<td>117</td>
<td>7 122 1.49 (0.59, 3.78)</td>
</tr>
<tr>
<td>Richiardi 1992</td>
<td>2</td>
<td>98</td>
<td>2 102 1.04 (0.15, 7.24)</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>2</td>
<td>15</td>
<td>1 15 2.00 (0.20, 19.78)</td>
</tr>
<tr>
<td>Quinidine vs. Sotalol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hohnloser 1995</td>
<td>3</td>
<td>25</td>
<td>1 25 3.00 (0.33, 26.92)</td>
</tr>
<tr>
<td>Juul-Moller 1990</td>
<td>1</td>
<td>85</td>
<td>1 98 1.15 (0.07, 18.15)</td>
</tr>
<tr>
<td>Kalusche 1994</td>
<td>1</td>
<td>41</td>
<td>2 41 0.50 (0.05, 5.30)</td>
</tr>
<tr>
<td>PAFAC 2004</td>
<td>17</td>
<td>377</td>
<td>20 383 0.86 (0.46, 1.62)</td>
</tr>
<tr>
<td>SOCESP 1999</td>
<td>2</td>
<td>63</td>
<td>3 58 0.61 (0.11, 3.54)</td>
</tr>
<tr>
<td>SOPAT 2004</td>
<td>8</td>
<td>518</td>
<td>2 264 2.04 (0.44, 9.53)</td>
</tr>
<tr>
<td>Flecaainide vs. Propafenone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliot 1996</td>
<td>0</td>
<td>48</td>
<td>4 49 0.11 (0.01, 2.05)</td>
</tr>
<tr>
<td>FAPIS 1996</td>
<td>2</td>
<td>97</td>
<td>1 103 2.12 (0.20, 23.05)</td>
</tr>
<tr>
<td>Amiodarone vs. Other Beta-blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFFIRM Substudy 2003</td>
<td>5</td>
<td>154</td>
<td>20 121 0.20 (0.08, 0.51)</td>
</tr>
<tr>
<td>Study Reference</td>
<td>N1</td>
<td>N2</td>
<td>N1</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Disopyramide vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>16</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>PRODIS 1996</td>
<td>10</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>Quinidine vs. Flecainide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naccarelli 1996</td>
<td>93</td>
<td>117</td>
<td>93</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>10</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Quinidine vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>16</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>Naccarelli 1996</td>
<td>93</td>
<td>117</td>
<td>93</td>
</tr>
<tr>
<td>Richiardi 1992</td>
<td>57</td>
<td>98</td>
<td>53</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>10</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Quinidine vs. Sotalol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hohnloser 1995</td>
<td>7</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>Juul-Moller 1990</td>
<td>49</td>
<td>85</td>
<td>50</td>
</tr>
<tr>
<td>Kalusche 1994</td>
<td>15</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>PAFAC 2004</td>
<td>244</td>
<td>377</td>
<td>255</td>
</tr>
</tbody>
</table>

Footnotes

5 Head to head trials: atrial fibrillation recurrence

<table>
<thead>
<tr>
<th>Study Reference</th>
<th>N1</th>
<th>N2</th>
<th>N1</th>
<th>N2</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disopyramide vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>16</td>
<td>29</td>
<td>16</td>
<td>28</td>
<td>0.97 (0.61, 1.53)</td>
</tr>
<tr>
<td>PRODIS 1996</td>
<td>10</td>
<td>31</td>
<td>11</td>
<td>25</td>
<td>0.73 (0.37, 1.44)</td>
</tr>
<tr>
<td>Quinidine vs. Flecainide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naccarelli 1996</td>
<td>93</td>
<td>117</td>
<td>93</td>
<td>122</td>
<td>1.04 (0.91, 1.19)</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>10</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>1.67 (0.81, 3.41)</td>
</tr>
<tr>
<td>Quinidine vs. other Class I drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd 1984</td>
<td>16</td>
<td>28</td>
<td>16</td>
<td>29</td>
<td>1.04 (0.65, 1.64)</td>
</tr>
<tr>
<td>Naccarelli 1996</td>
<td>93</td>
<td>117</td>
<td>93</td>
<td>122</td>
<td>1.04 (0.91, 1.19)</td>
</tr>
<tr>
<td>Richiardi 1992</td>
<td>57</td>
<td>98</td>
<td>53</td>
<td>102</td>
<td>1.12 (0.87, 1.44)</td>
</tr>
<tr>
<td>Steinbeck 1988</td>
<td>10</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>1.67 (0.81, 3.41)</td>
</tr>
<tr>
<td>Quinidine vs. Sotalol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hohnloser 1995</td>
<td>7</td>
<td>25</td>
<td>12</td>
<td>25</td>
<td>0.58 (0.28, 1.23)</td>
</tr>
<tr>
<td>Juul-Moller 1990</td>
<td>49</td>
<td>85</td>
<td>50</td>
<td>98</td>
<td>1.13 (0.87, 1.47)</td>
</tr>
<tr>
<td>Kalusche 1994</td>
<td>15</td>
<td>41</td>
<td>21</td>
<td>41</td>
<td>0.71 (0.43, 1.18)</td>
</tr>
<tr>
<td>PAFAC 2004</td>
<td>244</td>
<td>377</td>
<td>255</td>
<td>383</td>
<td>0.97 (0.88, 1.08)</td>
</tr>
<tr>
<td>Study</td>
<td>N1</td>
<td>N2</td>
<td>N3</td>
<td>N4</td>
<td>Odds Ratio (95% CI)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----------------------</td>
</tr>
<tr>
<td>SOCESP 1999</td>
<td>25</td>
<td>63</td>
<td>20</td>
<td>58</td>
<td>1.15 (0.72, 1.84)</td>
</tr>
<tr>
<td>SOPAT 2004</td>
<td>375</td>
<td>518</td>
<td>198</td>
<td>264</td>
<td>0.97 (0.88, 1.05)</td>
</tr>
<tr>
<td>Flecaïnide vs. Propafenone</td>
<td></td>
<td></td>
<td>19</td>
<td>48</td>
<td>0.75 (0.48, 1.16)</td>
</tr>
<tr>
<td>Aliot 1996</td>
<td></td>
<td></td>
<td>30</td>
<td>97</td>
<td>1.06 (0.70, 1.62)</td>
</tr>
<tr>
<td>Amiodarone vs. Class I drugs</td>
<td></td>
<td></td>
<td>60</td>
<td>106</td>
<td>0.55 (0.35, 0.85)</td>
</tr>
<tr>
<td>Amiodarone vs. Dronedarone</td>
<td></td>
<td></td>
<td>14</td>
<td>35</td>
<td>0.78 (0.59, 1.01)</td>
</tr>
<tr>
<td>Amiodarone vs. Sotalol</td>
<td></td>
<td></td>
<td>36</td>
<td>50</td>
<td>0.97 (0.77, 1.24)</td>
</tr>
<tr>
<td>Sotalol vs. Class I drugs other than quinidine</td>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td>0.46 (0.16, 1.32)</td>
</tr>
<tr>
<td>Sotalol vs. Dofetilide</td>
<td></td>
<td></td>
<td>32</td>
<td>50</td>
<td>0.90 (0.59, 1.42)</td>
</tr>
<tr>
<td>References to studies</td>
<td></td>
<td></td>
<td>74</td>
<td>108</td>
<td>1.12 (0.96, 1.31)</td>
</tr>
<tr>
<td>Dronedarone vs. Propafenone</td>
<td></td>
<td></td>
<td>57</td>
<td>69</td>
<td>1.07 (0.74, 1.55)</td>
</tr>
</tbody>
</table>

Footnotes

References to studies

Included studies

A-COMET-I 2006

A-COMET-II 2006

AFFIRM Substudy 2003

AFIB 1997

Aliot 1996

ASAP 2003

Connolly SJ, Schnell DJ, Page RL, Wilkinson WE, Marcello SR, Pritchett EL, Azimilide Supraventricular Arrhythmia Program Investigators. Symptoms at the time of arrhythmia recurrence in patients receiving azimilide for control of atrial fibrillation or flutter: results
from randomized trials. American Heart Journal 2003;146(3):489-93. [CRSREF: 6980553; MEDLINE: PMID: 12947368; Other: ISSN: 0002-8703]

A-STAR 2006

[CRSSTD: 6980558]

ATHENA 2009

Published and unpublished data [CRSSTD: 6980560]

Bellandi 2001

[CRSSTD: 6980563]

Benditt 1999

[CRSSTD: 6980569]

Byrne-Quinn 1970

[CRSSTD: 6980571]

Carunchio 1995

[CRSSTD: 6980573]

Channer 2004

Published and unpublished data [CRSSTD: 6980575]

Chun 2014

[CRSSTD: 6980577]

DAFNE 2003

[CRSSTD: 6980579]

DAPHNE 2008

[CRSSTD: 6980581]

DIAMOND 2001

Dogan 2004

DYONISOS 2010

Published data only (unpublished sought but not used) [CRSSTD: 6980590]

EMERALD 2000

EURIDIS ADONIS 2007

Published and unpublished data [CRSSTD: 6980597]

FAPIS 1996

[CRSSTD: 6980601]

Flec-SL 2012

[CRSSTD: 6980604]

GEFACA 2001

[CRSSTD: 6980606]

Hillestad 1971

[CRSSTD: 6980608]

Hohnloser 1995

[CRSSTD: 6980610]

Juul-Moller 1990

[CRSSTD: 6980612]

Kalusche 1994

Karlson 1998

Kochiadakis 2000

Kochiadakis 2004a

Kochiadakis 2004b

Kuhlkamp 2000

Lloyd 1984

Naccarelli 1996

Nergardh 2007

Nergårdh AK, Rosenqvist M, Nordlander R, Frick M. Maintenance of sinus rhythm with metoprolol CR initiated before cardioversion and repeated cardioversion of atrial fibrillation:

Niu 2006

[CRSSTD: 6980635]

Okishige 2000

[CRSSTD: 6980637]

PAFAC 2004

[CRSSTD: 6980639]

PITAGORA 2008

[CRSSTD: 6980642]

Plewan 2001

[CRSSTD: 6980644]

PRODIS 1996

[CRSSTD: 6980646]

RAFT 2003

[CRSSTD: 6980648]

Reimold 1993

[CRSSTD: 6980650]

Reimold SC, Cantillon CO, Friedman PL, Antman EM. Propafenone versus sotalol for suppression of recurrent symptomatic atrial fibrillation. American Journal of Cardiology 1993;71(7):558-63. [CRSREF: 6980651; MEDLINE: PMID: 8438741; Other: ISSN: 0002-9149]

Richiardi 1992

[CRSSTD: 6980652]

SAFE-T 2005

[CRSSTD: 6980654]

SAFIRE-D 2000

[CRSSTD: 6980657]

Santas 2012

Published data only (unpublished sought but not used) [CRSSTD: 6980659]

Singh 1991

[CRSSTD: 6980661]

SMART 2002

[CRSSTD: 6980663]

SOCESP 1999

[CRSSTD: 6980665]

Veloso HH, de Paola AA. Analysis of atrial fibrillation recurrence during therapy with sotalol or quinidine. Researchers of +SOCESP [Analise da recorrência de fibrilação atrial durante terapia com sotalol ou quinidina. Investigadores da SOCESP]. Arquivos Brasileiros de
* de Paola AA, Veloso HH. Efficacy and safety of sotalol versus quinidine for the maintenance of sinus rhythm after conversion of atrial fibrillation. SOCESP Investigators. American Journal of Cardiology 1999;84(9):1033-7. [CRSREF: 6980667; MEDLINE: PMID: 10569659; Other: ISSN: 0002-9149]

Sodermark 1975

[CRSSTD: 6980668]

SOPAT 2004

[CRSSTD: 6980670]

Steinbeck 1988

[CRSSTD: 6980673]

Stroobandt 1997

[CRSSTD: 6980675]

Van Gelder 1989

Vijayalaskshmi 2006

Villani 1992

Vitolo 1981

Excluded studies

Aberg 1968

[CRSSTD: 6980686]

Adamyan 2015

[CRSSTD: 6980689]

AF-CHF 2002

[CRSSTD: 6980691]

* Atrial Fibrillation and Congestive Heart Failure (AF-CHF) investigators. Rationale and design of a study assessing treatment strategies of atrial fibrillation in patients with heart failure: the Atrial Fibrillation and Congestive Heart Failure (AF-CHF) trial. American Heart Journal 2002;144(4):597-607. [CRSREF: 6980693; MEDLINE: PMID 12360154; Other: ISSN 0002-8703, EMBASE 2002364426]

AFFIRM 2002

[CRSSTD: 6980694]

Anderson 1994

[CRSSTD: 6980698]

Andromeda 2008

[CRSSTD: 6980702]

Antman 1990

[CRSSTD: 6980704]

Aros 1978

Babuty 1999

Beck 1978

Berns 1987

Berns E, Rinkenberger RL, Jeang MK, Dougherty AH, Jenkins M, Naccarelli GV. Efficacy and safety of flecainide acetate for atrial tachycardia or fibrillation. American Journal of Cardiology 1987;59(15):1337-41. [CRSREF: 6980716; MEDLINE: PMID: 3109229; Other: ISSN: 0002-9149]

Blevins 1987

Blomstrom 1984

Boissel 1981

Brodsky 1987

CHF-STAF 1998

Chun 1995

Connolly SJ, Hoffert DL. Usefulness of propafenone for recurrent paroxysmal atrial fibrillation. American Journal of Cardiology 1989;63(12):817-9. [CRSREF: 6980732; MEDLINE: PMID: 2648787; Other: ISSN 0002-9149]

Cuan-Perez M, Ortiz A. Comparative study of quinidine, propranolol and diphenylhydantoin for preventing recurrence in post-cardioversion auricular fibrillation [Estudio comparativo entre quinidina, propranolol y difenil-hidantoinato para prevenir la recaida en fibrilacion auricular post-cardioversion]. Archivos del Instituto de Cardiologia de Mexico 1971;41(3):278-84. [CRSREF: 6980739; MEDLINE: PMID: 5566599; Other: ISSN 0020-3785]
Darkner 2014

Di Biase 2016

Enriquez 2014

ERAFT 2002

Faivre 1970

Faivre G, Polu JM. Disopyramide in the preparation for electric shock in atrial fibrillation and in the maintenance of subsequent sinus rhythm [La disopiramide nella preparazione allo shock elettrico della fibrillazione atriale e nel mantenimento dell'ulteriore ritmo sinusale]. Minerva Medica 1970;61(71 Suppl):3745-7. [CRSREF: 6980749; MEDLINE: PMID: 5454439; Other: ISSN 0026-4806]

Farkowski 2012

Fernández 1998

Feyrer 2014

Fragakis 2012

Frances 1985

Galperin 2014

Gold 1986

Gosselink 1992

Graboyes 1983

Gramley 2011

Grigoriyan 2011

[CRSSTD: 6980771]

Gu 2012

[CRSSTD: 6980773]

GUSTO 2002

[CRSSTD: 6980775]

Hammill 1988

[CRSSTD: 6980777]

Hartel 1970

[CRSSTD: 6980779]

Hartel 1974

Hopson 1996

Horowitz 1985

HOT-CAFE 2003

Ishiguro 2008

[CRSSTD: 6980793]

J-BAF 2009

[CRSSTD: 6980795]

Jong 2006

[CRSSTD: 6980797]

J-RHYTHM 2009

[CRSSTD: 6980799]

Kanoupakis 2004

[CRSSTD: 6980801]

Kennelly 1977

[CRSSTD: 6980803]

Kerr 1988

Khitri 2012

Komatsu 2006

Kosior 2001

Kosior 2009

Kyles 1991

Lardoux 1996

Lau 1992

Lee 2014

Levi 1973

Li 2004

Lobe 2013

Lodziński 2014

Maĭkov 2015

Maĭkov EB, Iuricheva IuA, Mironov NJu, Sokolov SJu, Golitsyn SP, Rozenshtraukh LV, Chazov EI. [Refralon (niferidil) is a new class III antiarrhythmic agent for pharmacological cardioversion for persistent atrial fibrillation and atrial flutter] [Article in Russian]. Terapevticheskii arkhiv 2015;87(1):38-48. [CRSREF: 6980835; DOI: 10.17116/terarkh201587138-48]

Manios 2003

Manios EG, Mavrakis HE, Kanoupakis EM, Kallergis EM, Dermitzaki DN, Kambouraki DC, et al. Effects of amiodarone and diltiazem on persistent atrial fibrillation conversion and
recurrence rates: a randomized controlled study. Cardiovascular Drugs and Therapy 2003;17(1):31-9. [CRSREF: 6980837; MEDLINE: PMID: 12843685; Other: ISSN: 0920-3206]

Martin 1986

[CRSSTD: 6980838]

Mary-Rabine 1990

[CRSSTD: 6980840]

Massacci 1991

[CRSSTD: 6980842]

Meng 2015

[CRSSTD: 6980844]

Mizutani 1995

[CRSSTD: 6980846]

Mont 2014

[CRSSTD: 6980848]

Nedostup 1990

[NEDOSTUP: 6980850]

Nedostup AV, Alekseevskia MA, Novikov ID, Maevskiaia IV. A comparison of the efficacy of quinidine and kordaron as agents to stabilize the recovered sinus rhythm in patients with the permanent form of atrial fibrillation [Sravnenie effektivnosti khinidina i kordarona kak sredstv stabilizatsii vosstanovlennogo sinusovogo ritma u bol'nykh s postoianno formo mertsatel'no aritmii]. Terapevticheskii Arkhiv 1990;62(9):47-51. [CRSREF: 6980851; MEDLINE: PMID: 2281406; Other: ISSN: 0040-3660]

Opolski 1997

[CRSSTD: 6980852]

PEPS 2002

[CRSSTD: 6980854]

PIAF 2000

[CRSSTD: 6980856]

Pietersen 1991

Piot 1998

Porterfield 1989

PSVT 1995

Qin 2016

RACE 2002

[CRSSTD: 6980869]

Rakhmanova 2014

Published data only (unpublished sought but not used) [CRSSTD: 6980871]

Rasmussen 1981

[CRSSTD: 6980873]

Resnekov 1971

[CRSSTD: 6980875]

STAF 2003

[CRSSTD: 6980877]

Steeds 1999

[CRSSTD: 6980879]

Tonet 1986

Torp-Pedersen 2011

Touboul 1995

Van Wijk 1989

VEPARAF 2003

Wanless 1997

[CRSSTD: 6980893]

Zehender 1992

[CRSSTD: 6980895]

Zeriouh 2014

[CRSSTD: 6980898]

Ongoing studies

Park 2017

Other references

Additional references
ACC/AHA/ESC 2014

Alboni 2004

Anter 2009

APAF 2006

Benjamin 1998

Caldeira 2012

Caldwell 2015

CAST 1991

CASTLE-AF 2018

Chatterjee 2013

Chen 2012

Chugh 2014

Cipriani 2013

Connolly 2000

Coplen 1990

Cordina 2005

Denus 2005

ESC 2016

Freemantle 2011

Frick 2001

Friedman 1998

Friedman PL, Stevenson WG. Proarrhythmia. American Journal of Cardiology 1998;82(8A):50N-8N. [MEDLINE: PMID: 9809901; Other: ISSN: 0002-9149]

Gelder 1996

Geleris 2001

Go 2001

Golzari 1996

Harris 1983

Haïssaguerre 1998

Heeringa 2006

Higgins 2011

Higgins 2017

Khan 2014

Knuiman 2014

Krahn 1995

Lafuente-Lafuente 2009

Lefebvre 2011

Miller 2000

MMWR 2003

NICE 2014
Nichol 2002

Oral 2006

Piccini 2009

PRISMA 2009

Ruigomez 2002

Saborido 2010

SPAF 1992

Stewart 2002

Terasawa 2009

Testa 2005

Tonin 2017

Vaughan Williams 1984

Wattigney 2003

Other published versions of this review

Lafuente-Lafuente

Lafuente-Lafuente 2012

Lafuente-Lafuente C, Longas-Tejero MA, Bergmann JF, Belmin J. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database of
Lafuente-Lafuente 2015

Classification pending references

Data and analyses

1 Quinidine vs. placebo / no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 All-cause mortality - main analysis</td>
<td>6</td>
<td>1646</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.01 [0.84, 4.77]</td>
</tr>
<tr>
<td>1.2 All-cause mortality - sensitivity analysis ITT</td>
<td>6</td>
<td>1646</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.12 [0.96, 4.67]</td>
</tr>
<tr>
<td>Worst case: missing patients counted as events</td>
<td>6</td>
<td>1646</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.01 [0.84, 4.77]</td>
</tr>
<tr>
<td>1.3 All-cause mortality - subgroup analysis: older and recent studies</td>
<td>6</td>
<td>1646</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.01 [0.84, 4.77]</td>
</tr>
<tr>
<td>1.3.1 Older studies, higher dose</td>
<td>4</td>
<td>412</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.74 [0.85, 8.83]</td>
</tr>
<tr>
<td>1.3.2 More recent studies, lower dose</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.29 [0.34, 4.92]</td>
</tr>
<tr>
<td>1.4 All-cause mortality - sensitivity analysis: Persistent atrial fibrillation</td>
<td>5</td>
<td>865</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.82 [0.73, 4.53]</td>
</tr>
<tr>
<td>1.5 All-cause mortality - Sensitivity analysis: Low risk of bias studies</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.29 [0.34, 4.92]</td>
</tr>
<tr>
<td>1.6 All-cause mortality - Sensitivity analysis: Studies > 200 patients</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.29 [0.34, 4.92]</td>
</tr>
<tr>
<td>1.7 Withdrawals due to adverse effects - main analysis</td>
<td>7</td>
<td>1669</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>1.56 [0.87, 2.78]</td>
</tr>
<tr>
<td>1.8 Withdrawals due to adverse effects - subgroup analysis: older and recent studies</td>
<td>7</td>
<td>1669</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>1.56 [0.87, 2.78]</td>
</tr>
<tr>
<td>Section</td>
<td>Studies</td>
<td>Patients</td>
<td>Risk Ratio (M-H, Method, 95% CI)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>1.8.1 Older studies, higher dose</td>
<td>5</td>
<td>435</td>
<td>Risk Ratio (M-H, Random, 3.05 [1.29, 7.22] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.8.2 More recent studies, lower dose</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Random, 0.88 [0.61, 1.27] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.9 Withdrawals due to adverse effects - sensitivity analysis: Persistent atrial fibrillation</td>
<td>5</td>
<td>877</td>
<td>Risk Ratio (M-H, Random, 2.19 [0.99, 4.87] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.10 Withdrawals due to adverse effects - Sensitivity analysis: Low risk of bias studies</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Fixed, 0.85 [0.66, 1.08] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.11 Withdrawals due to adverse effects - Sensitivity analysis: Studies > 200 patients</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Fixed, 0.86 [0.67, 1.09] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.12 Pro-arrhythmia - main analysis</td>
<td>7</td>
<td>1676</td>
<td>Risk Ratio (M-H, Fixed, 2.05 [0.95, 4.41] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.13 Pro-arrhythmia - subgroup analysis: older and recent studies</td>
<td>7</td>
<td>1677</td>
<td>Risk Ratio (M-H, Fixed, 2.05 [0.96, 4.42] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.13.1 Older studies, higher dose</td>
<td>5</td>
<td>442</td>
<td>Risk Ratio (M-H, Fixed, 3.14 [0.87, 11.32] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.13.2 More recent studies, lower dose</td>
<td>2</td>
<td>1235</td>
<td>Risk Ratio (M-H, Fixed, 1.60 [0.61, 4.24] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.14 Pro-arrhythmia - sensitivity analysis: Persistent atrial fibrillation</td>
<td>5</td>
<td>877</td>
<td>Risk Ratio (M-H, Fixed, 2.64 [0.93, 7.53] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.15 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies</td>
<td>2</td>
<td>1235</td>
<td>Risk Ratio (M-H, Fixed, 1.60 [0.61, 4.24] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.16 Pro-arrhythmia - Sensitivity analysis: Studies > 200 patients</td>
<td>2</td>
<td>1235</td>
<td>Risk Ratio (M-H, Fixed, 1.60 [0.61, 4.24] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.17 Stroke - main analysis</td>
<td>4</td>
<td>1107</td>
<td>Risk Ratio (M-H, Fixed, 0.97 [0.25, 3.83] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.18 Stroke - sensitivity analysis: Persistent atrial fibrillation</td>
<td>3</td>
<td>338</td>
<td>Risk Ratio (M-H, Fixed, 0.88 [0.19, 4.01] 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.19 Stroke - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, Subtotals only 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.20 Stroke - Sensitivity analysis: Studies > 200 patients</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, Subtotals only 95% CI)</td>
<td></td>
</tr>
<tr>
<td>1.21 Atrial fibrillation</td>
<td>7</td>
<td>1624</td>
<td>Risk Ratio (M-H, Fixed, 0.83 [0.78, 0.88] 95% CI)</td>
<td></td>
</tr>
</tbody>
</table>
1.22 Atrial fibrillation recurrence - sensitivity analysis: Persistent atrial fibrillation

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis</td>
<td>5</td>
<td>825</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.77 [0.70, 0.85]</td>
</tr>
</tbody>
</table>

1.23 Atrial fibrillation recurrence - Sensitivity analysis: Low risk of bias studies

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.85 [0.80, 0.91]</td>
</tr>
</tbody>
</table>

1.24 Atrial fibrillation recurrence - Sensitivity analysis: Studies > 200 patients

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis</td>
<td>2</td>
<td>1234</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.86 [0.80, 0.92]</td>
</tr>
</tbody>
</table>

2 Disopyramide vs placebo/ no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality - main analysis</td>
<td>1</td>
<td>92</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>5.00 [0.25, 101.37]</td>
</tr>
<tr>
<td>All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>2</td>
<td>146</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>5.55 [0.68, 45.09]</td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - main analysis</td>
<td>2</td>
<td>146</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>3.68 [0.95, 14.24]</td>
</tr>
<tr>
<td>Withdrawals due to adverse effects - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>2</td>
<td>146</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>3.68 [0.95, 14.24]</td>
</tr>
<tr>
<td>Stroke - main analysis</td>
<td>2</td>
<td>146</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.31 [0.03, 2.91]</td>
</tr>
<tr>
<td>Stroke - Subgroup analysis: Persistent atrial fibrillation</td>
<td>2</td>
<td>146</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.31 [0.03, 2.91]</td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - main analysis</td>
<td>2</td>
<td>146</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.77 [0.59, 1.01]</td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - sensitivity analysis: Persistent atrial fibrillation</td>
<td>2</td>
<td>146</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.77 [0.59, 1.01]</td>
</tr>
</tbody>
</table>

3 Propafenone vs. placebo / no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome or Subgroup</td>
<td>Studies</td>
<td>Participants</td>
<td>Statistical Method</td>
<td>Effect Estimate</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>3.1 All-cause mortality - main analysis</td>
<td>2</td>
<td>212</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.19 [0.02, 1.68]</td>
</tr>
<tr>
<td>3.2 All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>3</td>
<td>406</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.28 [0.45, 3.62]</td>
</tr>
<tr>
<td>3.3 All-cause mortality - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td>102</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.11 [0.00, 2.64]</td>
</tr>
<tr>
<td>3.4 Withdrawals due to adverse effects - main analysis</td>
<td>5</td>
<td>1098</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.62 [1.07, 2.46]</td>
</tr>
<tr>
<td>3.5 Withdrawals due to adverse effects - Sensitivity analysis: Studies > 200 patients</td>
<td>1</td>
<td>523</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.29 [0.79, 2.11]</td>
</tr>
<tr>
<td>3.6 Pro-arrhythmia - main analysis</td>
<td>3</td>
<td>381</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.32 [0.39, 4.47]</td>
</tr>
<tr>
<td>3.7 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td>102</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.49 [0.09, 2.75]</td>
</tr>
<tr>
<td>3.8 Atrial fibrillation recurrence - main analysis</td>
<td>5</td>
<td>1098</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.67 [0.61, 0.74]</td>
</tr>
<tr>
<td>3.9 Atrial fibrillation recurrence - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td>102</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.71 [0.50, 1.01]</td>
</tr>
<tr>
<td>3.10 Atrial fibrillation recurrence - Sensitivity analysis: Studies > 200 patients</td>
<td>1</td>
<td>523</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.71 [0.63, 0.79]</td>
</tr>
</tbody>
</table>

4 Flecaïnide vs. placebo / no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 All-cause mortality - main analysis</td>
<td>0</td>
<td>0</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Not estimable</td>
</tr>
<tr>
<td>4.2 All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>1</td>
<td>362</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.30 [0.45, 3.72]</td>
</tr>
<tr>
<td>4.3 Withdrawals due to adverse effects - main analysis</td>
<td>1</td>
<td>73</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>15.41 [0.91, 260.19]</td>
</tr>
<tr>
<td>4.6 Pro-arrhythmia - main</td>
<td>4</td>
<td>511</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>4.80 [1.30, 17.77]</td>
</tr>
</tbody>
</table>
Analysis

4.7 Pro-arrhythmia - Sensitivity analysis: Persistent atrial fibrillation
- Studies: 2
- Participants: 435
- Risk Ratio (M-H, Fixed, 95% CI): 6.35 [0.91, 44.22]

4.8 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies
- Studies: 2
- Participants: 435
- Risk Ratio (M-H, Fixed, 95% CI): 6.35 [0.91, 44.22]

4.9 Pro-arrhythmia - Sensitivity analysis: Studies > 200 patients
- Studies: 1
- Risk Ratio (M-H, Fixed, 95% CI): Subtotals only

4.10 Stroke - main analysis
- Studies: 1
- Participants: 362
- Risk Ratio (M-H, Fixed, 95% CI): 2.04 [0.11, 39.00]

4.11 Stroke - Subgroup analysis: Persistent atrial fibrillation
- Studies: 1
- Risk Ratio (M-H, Fixed, 95% CI): Subtotals only

4.12 Stroke - Sensitivity analysis: Low risk of bias studies
- Studies: 1
- Risk Ratio (M-H, Fixed, 95% CI): Subtotals only

4.13 Stroke - Sensitivity analysis: Studies > 200 patients
- Studies: 1
- Risk Ratio (M-H, Fixed, 95% CI): Subtotals only

4.14 Atrial fibrillation recurrence - main analysis
- Studies: 4
- Participants: 511
- Risk Ratio (M-H, Fixed, 95% CI): 0.65 [0.55, 0.77]

4.15 Atrial fibrillation recurrence - Sensitivity analysis: Persistent atrial fibrillation
- Studies: 2
- Participants: 435
- Risk Ratio (M-H, Fixed, 95% CI): 0.71 [0.60, 0.85]

4.16 Atrial fibrillation recurrence - Sensitivity analysis: Low risk of bias studies
- Studies: 2
- Participants: 435
- Risk Ratio (M-H, Fixed, 95% CI): 0.71 [0.60, 0.85]

4.17 Atrial fibrillation recurrence - Sensitivity analysis: Studies > 200 patients
- Studies: 1
- Risk Ratio (M-H, Fixed, 95% CI): Subtotals only

5 Metoprolol vs. placebo / no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 All-cause mortality - main analysis</td>
<td>2</td>
<td>562</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.02 [0.37, 11.05]</td>
</tr>
<tr>
<td>5.2 All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>2</td>
<td>562</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.77 [0.41, 1.43]</td>
</tr>
</tbody>
</table>
5.3 All-cause mortality - Sensitivity analysis: Persistent atrial fibrillation

Risk Ratio (M-H, Fixed, 95% CI) 2.02 [0.37, 11.05]

5.4 All-cause mortality - Sensitivity analysis: Low risk of bias studies

Risk Ratio (M-H, Fixed, 95% CI) 2.02 [0.37, 11.05]

5.5 All-cause mortality - Sensitivity analysis: Studies > 200 patients

Risk Ratio (M-H, Fixed, 95% CI) 7.00 [0.36, 134.63]

5.6 Withdrawals due to adverse effects - main analysis

Risk Ratio (M-H, Fixed, 95% CI) 3.47 [1.48, 8.15]

5.7 Withdrawals due to adverse effects - Sensitivity analysis: Persistent atrial fibrillation

Risk Ratio (M-H, Fixed, 95% CI) 3.47 [1.48, 8.15]

5.8 Withdrawals due to adverse effects - Sensitivity analysis: Low risk of bias studies

Risk Ratio (M-H, Fixed, 95% CI) 3.47 [1.48, 8.15]

5.9 Withdrawals due to adverse effects - Sensitivity analysis: Studies > 200 patients

Risk Ratio (M-H, Fixed, 95% CI) 3.33 [1.37, 8.12]

5.10 Pro-arrrhythmia - main analysis

Risk Ratio (M-H, Fixed, 95% CI) 18.14 [2.42, 135.66]

5.11 Pro-arrrhythmia - Sensitivity analysis: Persistent atrial fibrillation

Risk Ratio (M-H, Fixed, 95% CI) 18.14 [2.42, 135.66]

5.12 Pro-arrrhythmia - Sensitivity analysis: Low risk of bias studies

Risk Ratio (M-H, Fixed, 95% CI) 18.14 [2.42, 135.66]

5.13 Pro-arrrhythmia - Sensitivity analysis: Studies > 200 patients

Risk Ratio (M-H, Fixed, 95% CI) Subtotals only

5.14 Atrial fibrillation recurrence - main analysis

Risk Ratio (M-H, Random, 95% CI) 0.83 [0.68, 1.02]

5.15 Atrial fibrillation recurrence - Sensitivity analysis: Persistent atrial fibrillation

Risk Ratio (M-H, Random, 95% CI) 0.83 [0.68, 1.02]

5.16 Atrial fibrillation recurrence - Sensitivity analysis: Low risk of bias studies

Risk Ratio (M-H, Random, 95% CI) Subtotals only

5.17 Atrial fibrillation

Risk Ratio (M-H, Fixed, Subtotals only)
6 Amiodarone vs. placebo / no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 All-cause mortality - Main analysis</td>
<td>2</td>
<td>444</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.66 [0.55, 4.99]</td>
</tr>
<tr>
<td>6.2 All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>2</td>
<td>444</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.35 [0.64, 2.82]</td>
</tr>
<tr>
<td>6.3 All-cause mortality - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>2</td>
<td>444</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.66 [0.55, 4.99]</td>
</tr>
<tr>
<td>6.4 Withdrawals due to adverse effects - Main analysis</td>
<td>4</td>
<td>319</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>6.70 [1.91, 23.45]</td>
</tr>
<tr>
<td>6.6 Withdrawals due to adverse effects - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td>99</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>4.98 [0.65, 38.29]</td>
</tr>
<tr>
<td>6.7 Pro-arrhythmia - Main analysis</td>
<td>4</td>
<td>673</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.22 [0.71, 6.96]</td>
</tr>
<tr>
<td>6.8 Pro-arrhythmia - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>2</td>
<td>498</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.03 [0.52, 7.96]</td>
</tr>
<tr>
<td>6.9 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>6.10 Pro-arrhythmia - Sensitivity analysis: Studies > 200 patients</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>6.11 Stroke - Main analysis</td>
<td>1</td>
<td>399</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.15 [0.30, 4.39]</td>
</tr>
<tr>
<td>6.12 Stroke - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>6.13 Stroke - Sensitivity analysis: Studies > 200 patients</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>6.14 Atrial fibrillation recurrence - Main analysis</td>
<td>6</td>
<td>812</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.52 [0.46, 0.58]</td>
</tr>
<tr>
<td>6.15 Atrial fibrillation</td>
<td>5</td>
<td>687</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.52 [0.46, 0.58]</td>
</tr>
</tbody>
</table>
recurrence - Sensitivity analysis: Persistent atrial fibrillation

6.16 Atrial fibrillation recurrence - Sensitivity analysis: Low risk of bias studies

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 All-cause mortality - Main analysis</td>
<td>3</td>
<td>1183</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.98 [0.76, 1.27]</td>
</tr>
<tr>
<td>7.2 All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>3</td>
<td>1183</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.02 [0.79, 1.31]</td>
</tr>
<tr>
<td>7.3 All-cause mortality - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>3</td>
<td>1183</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.98 [0.76, 1.27]</td>
</tr>
<tr>
<td>7.4 All-cause mortality - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td>506</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.77, 1.29]</td>
</tr>
<tr>
<td>7.5 All-cause mortality - Sensitivity analysis: Studies > 200 patients</td>
<td>3</td>
<td>1183</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.98 [0.76, 1.27]</td>
</tr>
<tr>
<td>7.6 Withdrawals due to adverse effects - Main analysis</td>
<td>2</td>
<td>677</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.77 [0.75, 4.18]</td>
</tr>
<tr>
<td>7.7 Withdrawals due to adverse effects - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>2</td>
<td>677</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.77 [0.75, 4.18]</td>
</tr>
<tr>
<td>7.8 Withdrawals due to adverse effects - Sensitivity analysis: Studies > 200 patients</td>
<td>2</td>
<td>677</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.77 [0.75, 4.18]</td>
</tr>
<tr>
<td>7.9 Pro-arrhythmia - Main analysis</td>
<td>3</td>
<td>1183</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>5.50 [1.33, 22.76]</td>
</tr>
<tr>
<td>7.10 Pro-arrhythmia - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>3</td>
<td>1183</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>5.50 [1.33, 22.76]</td>
</tr>
</tbody>
</table>

7 Dofetilide vs. placebo / no treatment
7.11 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies 1 506 Risk Ratio (M-H, Fixed, 95% CI) 9.29 [0.50, 171.62]
7.12 Pro-arrhythmia - Studies > 200 patients 3 1183 Risk Ratio (M-H, Fixed, 95% CI) 5.50 [1.33, 22.76]
7.13 Atrial fibrillation recurrence - Main analysis 3 1183 Risk Ratio (M-H, Random, 95% CI) 0.72 [0.61, 0.85]
7.14 Atrial fibrillation recurrence - sensitivity analysis: Persistent atrial fibrillation 3 1183 Risk Ratio (M-H, Random, 95% CI) 0.72 [0.61, 0.85]
7.15 Atrial fibrillation recurrence - Sensitivity analysis: Low risk of bias studies 1 506 Risk Ratio (M-H, Fixed, 95% CI) 0.62 [0.54, 0.70]
7.16 Atrial fibrillation recurrence - Sensitivity analysis: Studies > 200 patients 3 1183 Risk Ratio (M-H, Random, 95% CI) 0.72 [0.61, 0.85]

8 Dronedarone vs. placebo / no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 All-cause mortality - Main analysis</td>
<td>3</td>
<td>6071</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.86 [0.68, 1.09]</td>
</tr>
<tr>
<td>8.2 All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>3</td>
<td>6071</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.85 [0.67, 1.07]</td>
</tr>
<tr>
<td>8.3 All-cause mortality - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>1</td>
<td>199</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.04, 23.36]</td>
</tr>
<tr>
<td>8.4 All-cause mortality - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td>4628</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.84 [0.66, 1.07]</td>
</tr>
<tr>
<td>8.5 All-cause mortality - Sensitivity analysis: Studies > 200 patients</td>
<td>2</td>
<td>5872</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.86 [0.68, 1.09]</td>
</tr>
<tr>
<td>8.6 Withdrawals due to adverse effects - Main analysis</td>
<td>3</td>
<td>6071</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.58 [1.34, 1.85]</td>
</tr>
<tr>
<td>8.7 Withdrawals due to adverse effects - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>1</td>
<td>199</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>14.51 [0.90, 234.74]</td>
</tr>
</tbody>
</table>
8.8 Withdrawals due to adverse effects - Sensitivity analysis: Low risk of bias studies

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8 Withdrawals due to adverse effects - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td>4628</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.57 [1.32, 1.87]</td>
</tr>
</tbody>
</table>

8.9 Withdrawals due to adverse effects - Sensitivity analysis: Studies > 200 patients

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9 Withdrawals due to adverse effects - Sensitivity analysis: Studies > 200 patients</td>
<td>2</td>
<td>5872</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.53 [1.31, 1.80]</td>
</tr>
</tbody>
</table>

8.10 Pro-arrhythmia - main analysis

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.10 Pro-arrhythmia - main analysis</td>
<td>2</td>
<td>5872</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>1.95 [0.77, 4.98]</td>
</tr>
</tbody>
</table>

8.11 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.11 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
</tbody>
</table>

8.12 Pro-arrhythmia - Sensitivity analysis: Studies > 200 patients

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12 Pro-arrhythmia - Sensitivity analysis: Studies > 200 patients</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
</tbody>
</table>

8.13 Stroke - Main analysis

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.13 Stroke - Main analysis</td>
<td>2</td>
<td>5872</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.66 [0.47, 0.95]</td>
</tr>
</tbody>
</table>

8.14 Stroke - Sensitivity analysis: Studies > 200 patients

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.14 Stroke - Sensitivity analysis: Studies > 200 patients</td>
<td>2</td>
<td>5872</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.66 [0.47, 0.95]</td>
</tr>
</tbody>
</table>

8.15 Atrial fibrillation recurrence - Main analysis

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.15 Atrial fibrillation recurrence - Main analysis</td>
<td>2</td>
<td>1443</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.85 [0.80, 0.91]</td>
</tr>
</tbody>
</table>

8.16 Atrial fibrillation recurrence - Sensitivity analysis: Persistent atrial fibrillation

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.16 Atrial fibrillation recurrence - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
</tbody>
</table>

8.17 Atrial fibrillation recurrence - Sensitivity analysis: Studies > 200 patients

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.17 Atrial fibrillation recurrence - Sensitivity analysis: Studies > 200 patients</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
</tbody>
</table>

9 Sotalol vs. placebo / no treatment

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 All-cause mortality - Main analysis</td>
<td>5</td>
<td>1882</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.23 [1.03, 4.81]</td>
</tr>
<tr>
<td>9.2 All-cause mortality - ITT Worst case: missing patients counted as events</td>
<td>10</td>
<td>2757</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.02 [1.28, 3.20]</td>
</tr>
<tr>
<td>9.3 All-cause mortality - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>3</td>
<td>1311</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.51 [1.06, 5.98]</td>
</tr>
<tr>
<td>9.4 All-cause mortality -</td>
<td>3</td>
<td>1311</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.51 [1.06, 5.98]</td>
</tr>
<tr>
<td>Section</td>
<td>Studies</td>
<td>Participants</td>
<td>Risk Ratio (M-H, Method, 95% CI)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Sensitivity analysis: Low risk of bias studies</td>
<td>4</td>
<td>1826</td>
<td>2.65 [1.16, 6.09]</td>
<td></td>
</tr>
<tr>
<td>9.5 All-cause mortality - Sensitivity analysis: Studies > 200 patients</td>
<td>12</td>
<td>2688</td>
<td>1.95 [1.23, 3.11]</td>
<td></td>
</tr>
<tr>
<td>9.6 Withdrawals due to adverse effects - Main analysis</td>
<td>12</td>
<td>2688</td>
<td>1.95 [1.23, 3.11]</td>
<td></td>
</tr>
<tr>
<td>9.7 Withdrawals due to adverse effects - Sotalol: heterogeneity study</td>
<td>2</td>
<td>987</td>
<td>0.96 [0.74, 1.25]</td>
<td></td>
</tr>
<tr>
<td>9.7.1 PAFAC and SOPAT trials</td>
<td>10</td>
<td>1701</td>
<td>2.77 [1.81, 4.22]</td>
<td></td>
</tr>
<tr>
<td>9.7.2 Rest of studies</td>
<td>6</td>
<td>1350</td>
<td>1.75 [1.28, 2.41]</td>
<td></td>
</tr>
<tr>
<td>9.8 Withdrawals due to adverse effects - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>4</td>
<td>1686</td>
<td>1.52 [0.82, 2.81]</td>
<td></td>
</tr>
<tr>
<td>9.9 Withdrawals due to adverse effects - Sensitivity analysis: Low risk of bias studies</td>
<td>5</td>
<td>1900</td>
<td>1.81 [0.97, 3.35]</td>
<td></td>
</tr>
<tr>
<td>9.10 Withdrawals due to adverse effects - Sensitivity analysis: Studies > 200 patients</td>
<td>12</td>
<td>2989</td>
<td>3.55 [2.16, 5.83]</td>
<td></td>
</tr>
<tr>
<td>9.11 Pro-arrhythmia - Main analysis</td>
<td>11</td>
<td>2826</td>
<td>3.43 [2.07, 5.67]</td>
<td></td>
</tr>
<tr>
<td>9.12 Pro-arrhythmia - Sotalol: heterogeneity study</td>
<td>2</td>
<td>986</td>
<td>1.49 [0.51, 4.37]</td>
<td></td>
</tr>
<tr>
<td>9.12.1 PAFAC and SOPAT trials</td>
<td>9</td>
<td>1840</td>
<td>4.32 [2.40, 7.76]</td>
<td></td>
</tr>
<tr>
<td>9.12.2 Rest of studies</td>
<td>6</td>
<td>1687</td>
<td>4.37 [2.25, 8.52]</td>
<td></td>
</tr>
<tr>
<td>9.13 Pro-arrhythmia - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>4</td>
<td>1686</td>
<td>3.05 [1.73, 5.40]</td>
<td></td>
</tr>
<tr>
<td>9.14 Pro-arrhythmia - Sensitivity analysis: Low risk of bias studies</td>
<td>6</td>
<td>2293</td>
<td>3.00 [1.77, 5.06]</td>
<td></td>
</tr>
<tr>
<td>9.15 Pro-arrhythmia - Sensitivity analysis: Studies > 200 patients</td>
<td>3</td>
<td>1161</td>
<td>1.47 [0.48, 4.51]</td>
<td></td>
</tr>
<tr>
<td>9.16 Stroke - Main analysis</td>
<td>3</td>
<td>1161</td>
<td>1.47 [0.48, 4.51]</td>
<td></td>
</tr>
<tr>
<td>Research Question</td>
<td>N</td>
<td>Risk Ratio</td>
<td>Risk Ratio Format</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Stroke - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>393</td>
<td>1.35</td>
<td>[0.36, 5.00]</td>
<td></td>
</tr>
<tr>
<td>Stroke - Sensitivity analysis: Low risk of bias studies</td>
<td>768</td>
<td>1.85</td>
<td>[0.20, 16.71]</td>
<td></td>
</tr>
<tr>
<td>Stroke - Sensitivity analysis: Studies > 200 patients</td>
<td>1161</td>
<td>1.47</td>
<td>[0.48, 4.51]</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - Main analysis</td>
<td>3179</td>
<td>0.83</td>
<td>[0.80, 0.87]</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - Sensitivity analysis: Persistent atrial fibrillation</td>
<td>1743</td>
<td>0.81</td>
<td>[0.77, 0.86]</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - Sensitivity analysis: Low risk of bias studies</td>
<td>1686</td>
<td>0.86</td>
<td>[0.82, 0.91]</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation recurrence - Sensitivity analysis: Studies > 200 patients</td>
<td>2293</td>
<td>0.85</td>
<td>[0.81, 0.89]</td>
<td></td>
</tr>
</tbody>
</table>

Figures

Figure 1
Selection of studies for inclusion.
Figure 2 (Analysis 9.6)

Funnel plot of comparison: 9 Sotalol vs. placebo / no treatment, outcome: 9.6 Withdrawals due to adverse effects - Main analysis.

Figure 3

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Figure 4
<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation (selection bias)</th>
<th>Allocation concealment (selection bias)</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (detection bias)</th>
<th>Other (e.g., funding)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-COMET-I 2006</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>A-COMET-II 2006</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AFFIRM Substudy 2003</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AFID 1997</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Allot 1996</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>ASAP 2003</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>A-STAR 2006</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>ATHENA 2009</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Bellandi 2001</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Benedikt 1999</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Byrne-Quinn 1970</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Carunchio 1985</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Chan 2004</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Chan 2014</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DAFNE 2003</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DAPHNE 2008</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DIAMOND 2001</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Dogan 2004</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DYONISOS 2010</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>EMERALD 2000</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>EURIDIS ADONIS 2007</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>FAFIS 1996</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Flex-SL 2012</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>GEFACA 2001</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Hillestad 1971</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Henribos 1985</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Juul-Moller 1980</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Kaluza 1994</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Karlson 1998</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Figure 5 (Analysis 9.11)

Funnel plot of comparison: 9 Sotalol vs. placebo / no treatment, outcome: 9.11 Pro-arrhythmia - Main analysis.

Figure 6 (Analysis 9.20)
Funnel plot of comparison: 9 Sotalol vs. placebo / no treatment, outcome: 9.20 Atrial fibrillation recurrence - Main analysis.

Figure 7 (Analysis 9.1)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>sotalol</th>
<th>placebo / no treatment</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>A-COMET-1 2006</td>
<td>4</td>
<td>223</td>
<td>0</td>
<td>224</td>
</tr>
<tr>
<td>PAFAC 2004</td>
<td>13</td>
<td>393</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>SAFE-T 2005</td>
<td>15</td>
<td>251</td>
<td>3</td>
<td>132</td>
</tr>
<tr>
<td>SOPAT 2004</td>
<td>2</td>
<td>284</td>
<td>0</td>
<td>261</td>
</tr>
<tr>
<td>Vijayakrishni 2006</td>
<td>0</td>
<td>33</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1164</td>
<td>618</td>
<td>100.0%</td>
<td>2.23 [1.03, 4.81]</td>
</tr>
<tr>
<td>Total events</td>
<td>34</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 3.46, df = 4 (P = 0.49); P = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.04 (P = 0.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias legend:
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding (performance bias and detection bias)
(D) Incomplete outcome data (attrition bias)
(E) Selective reporting (reporting bias)
(F) Other bias

All-cause mortality with Sotalol compared with placebo / no treatment: Main analysis.
Sources of support

Internal sources

- Unité de Recherches Thérapeutiques, Hôpital Lariboisière, Paris, France
- Assistance Publique - Hôpitaux de Paris, France
- Sorbonne Université, Paris, France

External sources

- No sources of support provided

Appendices

1 Search strategies 2005

CENTRAL

1 ATRIAL FIBRILLATION
2 (atrial near fibrillat*)
3 (auricular* near fibrillat*)
4 (atrium near fibrillat*)
5 (atrial next arrhythmi*)
6 (#1 or #2 or #3 or #4 or #5)
7 ANTI-ARRHYTHMIA AGENTS
8 antiarrhythmii*
9 anti-arrhythmii*
10 (anti next arrhythmi*)
11 procainamide
12 disopyramide
13 quinidine
14 mexiletine
15 flecaainide
16 propafenone
17 bisoprolol
18 esmolol
19 amiodarone
20 dofetilide
21 sotalol
22 azimilide
23 ibutilide
24 cibenzolone
25 moricizine
26 (#7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17)
Search strategy for MEDLINE in PubMed

("Atrial Fibrillation" (mh) OR ((atrial OR atrium OR auricular) AND fibrillat*)) AND
("Anti-Arrhythmia Agents" (mh) OR antiarrhythmi* (tw) OR anti-arrhythm* (tw) OR procaainamide (tw) OR disopyramide (tw) OR quinidine (tw) OR mexiletine (tw) OR flecaainide (tw) propafenone (tw) OR bisoprolol (tw) OR esmolol (tw) OR amiodarone (tw) OR dofetilide (tw) OR sotalol (tw) OR ibutilide (tw) OR azimilide (tw) OR moricizine (tw) OR cibenzoline (tw)) AND
("randomized controlled trial" (pt) OR "controlled clinical trial" (pt) OR "randomized controlled trials" (mh) OR "random allocation" (mh) OR "double-blind method" (mh) OR "single-blind method" (mh) OR "clinical trial" (pt) OR "clinical trials" (mh) OR "clinical trial" (tw)) OR (singl* (tw) OR doubl* (tw) OR trebl* (tw) OR tripl* (tw)) AND (mask* (tw) OR blind* (tw))) OR (placebos (mh) OR placebo* (tw) OR random* (tw) OR "research design" (mh:noexp) OR "comparative study" (mh) OR "evaluation studies" (mh) OR "follow-up studies" (mh) OR "prospective studies" (mh) OR control* (tw) OR prospectiv* (tw) OR volunteer* (tw)) NOT (animal (mh) NOT human (mh)))

Notes: The strategy to locate randomized controlled trials is the Cochrane highly sensitive search strategy (all phases), as contained in the Cochrane Reviewer's Handbook (ref: CR Handbook 2003).

The "related articles" feature of PubMed MEDLINE was also used.

Search strategy for EMBASE.com

1 (atrial OR 'atrium'/exp OR auricular) AND fibrillat*

2 'anti-arrhythmic' OR antiarrhythmi* OR 'procainamide'/exp OR 'disopyramide'/exp OR 'quinidine'/exp OR 'mexiletine'/exp OR 'flecainide'/exp OR 'propafenone'/exp OR 'bisoprolol'/exp OR 'esmolol'/exp OR 'amiodarone'/exp OR 'dofetilide'/exp OR 'sotalol'/exp OR 'ibutilide'/exp OR 'azimilide'/exp OR 'dronedarone'/exp OR 'moricizine'/exp OR 'cibenzoline'/exp

3 'randomized controlled trial'/exp OR 'controlled clinical trial'/exp OR 'randomized controlled trials'/exp OR 'random allocation'/exp OR 'double-blind method'/exp OR 'single-blind method'/exp OR 'clinical trial'/exp OR 'clinical trials'/exp OR ((singl* OR doubl* OR trebl* OR tripl* AND (mask* OR blind*))) OR (placebos'/exp OR placebo* OR random* OR 'comparative study'/exp OR 'evaluation studies'/exp OR 'follow-up studies'/exp OR 'prospective studies'/exp OR control* OR prospectiv* OR volunteer*)

4 #1 AND #2 AND #3

Note: The "related articles" feature was also used.
2 Search strategies 2010

CENTRAL in The Cochrane Library

#1 MeSH descriptor Atrial Fibrillation this term only
#2 (atrial in All Text near/3 fibrillat* in All Text)
#3 (auricular* in All Text near/3 fibrillat* in All Text)
#4 (atrium in All Text near/3 fibrillat* in All Text)
#5 atrial next arrhythmi* in All Text
#6 (#1 or #2 or #3 or #4 or #5)
#7 MeSH descriptor Anti-Arrhythmia Agents explode all trees
#8 antiarrhythm* in All Text
#9 anti-arrhythmi* in All Text
#10 dronedarone in All Text
#11 amiodarone in All Text
#12 bisoprolol in All Text
#13 disopyramide in All Text
#14 dofetilide in All Text
#15 azimilide in All Text
#16 ibutilide in All Text
#17 flecainide in All Text
#18 propafenone in All Text
#19 quinidine in All Text
#20 cibenzoline in All Text
#21 moricizine in All Text
#22 mexiletine in All Text
#23 procainamide in All Text
#24 sotalol in All Text
#25 esmolol in All Text
#26 (#7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16)
#27 (#17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25)
#28 (#26 or #27)
#29 (#6 and #28)

MEDLINE on Ovid

1 Atrial Fibrillation/
2 atrial fibrillation.tw.
3 atrium fibrillation.tw.
4 auricular fibrillation.tw.
5 or/1-4
6 exp Anti-Arrhythmia Agents/
7 antiarrhythm*i$.tw.
8 anti-arrhythm*i$.tw.
9 dronedarone.tw.
10 amiodarone.tw.
11 bisoprolol.tw.
12 disopyramide.tw.
13 dofetilide.tw.
14 azimilide.tw.
15 ibutilide.tw.
16 flecainide.tw.
17 propafenone.tw.
18 quinidine.tw.
19 cibenzoline.tw.
20 moricizine.tw.
21 mexiletine.tw.
22 procainamide.tw.
23 sotalol.tw.
24 esmolol.tw.
25 or/6-24
26 5 and 25
27 randomized controlled trial.pt.
28 controlled clinical trial.pt.
29 Randomized controlled trials/
30 random allocation/
31 double blind method/
32 single-blind method/
33 or/27-32
34 exp animal/ not humans/
35 33 not 34
36 clinical trial.pt.
37 exp Clinical Trials as Topic/
38 (clin$ adj25 trial$).ti,ab.
39 ((singl$ or doubl$ or trebl$ or tripl$) adj (blind$ or mask$)).ti,ab.
40 placebos/
41 placebo$.ti,ab.
42 random$.ti,ab.
43 research design/
44 or/36-43
45 44 not 34
46 35 or 45
47 26 and 46
48 limit 47 to yr="2005 - 2010"

EMBASE on Ovid to 2010 Week 06

1 heart atrium fibrillation/
2 atrial fibrillation.tw.
3 atrium fibrillation.tw.
4 auricular fibrillation.tw.
5 or/1-4
6 exp antiarrhythmic agent/
7 antiarrhythmi.tw.
8 anti-arrhythmi.tw.
9 dronedarone.tw.
10 amiodarone.tw.
11 bisoprolol.tw.
12 disopyramide.tw.
13 dofetilide.tw.
14 azimilide.tw.
15 ibutilide.tw.
16 flecaïnide.tw.
17 propafenone.tw.
18 quinidine.tw.
19 cibenzoline.tw.
20 moricizine.tw.
21 mexiletine.tw.
22 procainamidé.tw.
23 sotalol.tw.
24 esmolol.tw.
25 or/6-24
26 5 and 25
27 random$.tw.
28 factorial$.tw.
29 (crossover$ or cross-over$).tw.
30 placebo$.tw.
31 (doubl$ adj blind$).tw.
32 (singl$ adj blind$).tw.
33 assign$.tw.
34 allocat$.tw.
35 volunteer$.tw.
36 Crossover Procedure/
37 Double-blind Procedure/
38 Randomized Controlled Trial/
39 Single-blind Procedure/
40 or/27-39
41 (animal/ or nonhuman/) not human/
42 40 not 41
43 26 and 42
44 limit 43 to yr="2005 - 2010"

3 Search strategies 2014

CENTRAL

#1 MeSH descriptor Atrial Fibrillation this term only
#2 (atrial in All Text near/3 fibrillat* in All Text)
#3 (auricular* in All Text near/3 fibrillat* in All Text)
#4 (atrium in All Text near/3 fibrillat* in All Text)
#5 atrial next arrhythmii* in All Text
#6 (#1 or #2 or #3 or #4 or #5)
#7 MeSH descriptor Antii-Arrhythmia Agents explode all trees
#8 antiarrhythmi* in All Text
#9 anti-arrhythmi* in All Text
#10 dronedarone in All Text
#11 amiodarone in All Text
#12 bisoprolol in All; Text
#13 disopyramide in All Text
#14 dofetilide in All Text
#15 azimilide in All Text
#16 ibutilide in All Text
#17 flecaainide in All Text
#18 propafenone in All Text
#19 quinidine in All Text
#20 cibenzoline in All Text
#21 moricizine in All Text
#22 mexiletine in All Text
#23 procainamide in All Text
#24 sotalol in All Text
#25 esmolol in All Text
#26 (#7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16)
#27 (#17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25)
#28 (#26 or #27)
#29 (#6 and #28)

MEDLINE Ovid (up to October 2013)

1 Atrial Fibrillation/
2 atrial fibrillation.tw.
3 atrium fibrillation.tw.
4 auricular fibrillation.tw.
5 or/1-4
6 exp Anti-Arrhythmia Agents/
7 antiarrhythmi$.tw.
8 anti-arrhythmi$.tw.
9 dronedarone.tw.
10 amiodarone.tw.
11 bisoprolol.tw.
12 disopyramide.tw.
13 dofetilide.tw.
14 azimilide.tw.
15 ibutilide.tw.
16 flecaainide.tw.
17 propafenone.tw.
18 quinidine.tw.
19 cibenzoline.tw.
20 moricizine.tw.
21 mexiletine.tw.
22 procainamide.tw.
23 sotalol.tw.
24 esmolol.tw.
25 or/6-24
26 5 and 25
27 randomized controlled trial.pt.
28 controlled clinical trial.pt.
29 randomized.ab.
30 placebo.ab.
31 drug therapy.fs.
32 randomly.ab.
33 trial.ab.
34 groups.ab.
35 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34
36 exp animals/ not humans.sh.
37 35 not 36
38 26 and 37(6063)
39 (201002* or 201003* or 201004* or 201005* or 201006* or 201007* or 201008* or 201009* or 201010* or 201011* or 201012* or 2011* or 2012* or 2013*).ed.
40 38 and 39

MEDLINE PubMed (October 2013 to January 2014)

("Atrial Fibrillation" (mh) OR ((atrial OR atrium OR auricular) AND fibrillat*))
AND
("Anti-Arrhythmia Agents" (mh) OR antiarrhythm* (tw) OR anti-arrhythm* (tw) OR procainamide (tw) OR disopyramide (tw) OR quinidine (tw) OR mexiletine (tw) OR flecainide (tw) propafenone (tw) OR bisoprolol (tw) OR esmolol (tw) OR amiodarone (tw) OR dofetilide (tw) OR sotalol (tw) OR ibutilide (tw) OR azimilide (tw) OR moricizine (tw) OR cibenzoline (tw))
AND
("randomized controlled trial" (pt) OR "controlled clinical trial" (pt) OR randomized (tiab) OR placebo (tiab) OR "drug therapy" (sh) OR randomly (tiab) OR trial (tiab) OR groups (tiab)) NOT (animal (mh) NOT human (mh)))

EMBASE Ovid (up to October 2013)

1 exp heart atrium fibrillation/
2 atrial fibrillation.tw.
3 atrium fibrillation.tw.
4 auricular fibrillation.tw.
5 or/1-4
6 exp antiarrhythmic agent/
7 antiarrhythm* $tw.
8 anti-arrhythm* $tw.
9 dronedarone.tw.
10 amiodarone.tw.
11 bisoprolol.tw.
12 disopyramide.tw.
13 dofetilide.tw.
14 azimilide.tw.
15 ibutilide.tw.
16 flecainide.tw.
17 propafenone.tw.
18 quinidine.tw.
19 cibenzoline.tw.
20 moricizine.tw.
21 mexiletine.tw.
22 procainamide.tw.
23 sotalol.tw.
24 esmolol.tw.
25 or/6-24
26 5 and 25
27 random$.tw.
28 factorial$.tw.
29 crossover$.tw.
30 cross over$.tw.
31 cross-over$.tw.
32 placebo$.tw.
33 (doubl$ adj blind$).tw.
34 (singl$ adj blind$).tw.
35 assign$.tw.
36 allocat$.tw.
37 volunteer$.tw.
38 crossover procedure/
39 double blind procedure/
40 randomized controlled trial/
41 single blind procedure/
42 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41
43 (animal/ or nonhuman/) not human/
44 42 not 43
45 26 and 44
46 (2010* or 2011* or 2012* or 2013*).em.
47 (2010* or 2011* or 2012* or 2013*).dd.
48 46 or 47
49 45 and 48

EMBASE.com (October 2013 to January 2014)

("Atrial Fibrillation" (mh) OR ((atrial OR atrium OR auricular) AND fibrillat*))
1 (atrial OR 'atrium'/exp OR auricular) AND fibrillat*
2 'anti-arrhythmic' OR antiarrhythm* OR 'procainamide'/exp OR 'disopyramide'/exp OR
'quinidine'/exp OR 'mexiletine'/exp OR 'flecainide'/exp OR 'propafenone'/exp OR
'bisoprolol'/exp OR 'esmolol'/exp OR 'amiodarone'/exp OR 'dofetilide'/exp OR 'sotalol'/exp
OR 'ibutilide'/exp OR 'azimilide'/exp OR 'dronedarone'/exp OR 'moricizine'/exp OR
'cibenzoline'/exp
3 'randomized controlled trial'/exp OR 'randomized controlled trial' OR 'controlled clinical
trial'/exp OR 'controlled clinical trial' OR randomized OR 'placebo'/exp OR placebo OR 'drug
therapy'/exp OR 'drug therapy' OR randomly OR trial OR groups NOT ('animal'/exp OR
animal NOT (human/exp OR human))
4 #1 AND #2 AND #3
4 Search strategies 2019

CENTRAL

#1 MeSH descriptor: [Atrial Fibrillation] this term only

#2 atrial near/3 fibrillat*

#3 auricular* near/3 fibrillat*

#4 atrium near/3 fibrillat*

#5 atrial next arrhythmi*

#6 #1 or #2 or #3 or #4 or #5

#7 MeSH descriptor: [Anti-Arrhythmia Agents] explode all trees

#8 antiarrhythmii*

#9 anti-arrhythmi*

#10 dronedarone

#11 amiodarone

#12 bisoprolol

#13 disopyramide

#14 dofetilide

#15 azimilide

#16 ibutilide

#17 flecainide

#18 propafenone

#19 quinidine

#20 cibenzoline

#21 moricizine

#22 mexiletine

#23 procainamide
#24 sotalol

#25 esmolol

#26 #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16

#27 #17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25

#28 #26 or #27

#29 #6 and #28 Publication Year from 2014 to 2019

MEDLINE Ovid

1 Atrial Fibrillation/

2 atrial fibrillat*.tw.

3 atrium fibrillat*.tw.

4 auricular fibrillat*.tw.

5 or/1-4

6 exp Anti-Arrhythmia Agents/

7 antiarrhythmi.tw.

8 anti-arrhythmi.tw.

9 dronedarone.tw.

10 amiodarone.tw.

11 bisoprolol.tw.

12 disopyramide.tw.

13 dofetilide.tw.

14 azimilide.tw.

15 ibutilide.tw.

16 flecainide.tw.

17 propafenone.tw.

18 quinidine.tw.
19 cibenzoline.tw.
20 moricizine.tw.
21 mexiletine.tw.
22 procainamide.tw.
23 sotalol.tw.
24 esmolol.tw.
25 or/6-24
26 5 and 25
27 randomized controlled trial.pt.
28 controlled clinical trial.pt.
29 randomized.ab.
30 placebo.ab.
31 drug therapy.fs.
32 randomly.ab.
33 trial.ab.
34 groups.ab.
35 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34
36 exp animals/ not humans.sh.
37 35 not 36
38 26 and 37
39 (2014* or 2015* or 2016* or 2017* or 2018* or 2019*).ed.
40 38 and 39
41 38 not (1* or 2*).ed.
42 40 or 41

Embase Ovid
1 exp heart atrium fibrillation/
2 atrial fibrillation.tw.
3 atrium fibrillation.tw.
4 auricular fibrillation.tw.
5 or/1-4
6 exp antiarrhythmic agent/
7 antiarrhythm$.tw.
8 anti-arrhythmi$.tw.
9 dronedarone.tw.
10 amiodarone.tw.
11 bisoprolol.tw.
12 disopyramide.tw.
13 dofetilide.tw.
14 azimilide.tw.
15 ibutilide.tw.
16 flecainide.tw.
17 propafenone.tw.
18 quinidine.tw.
19 cibenzoline.tw.
20 moricizine.tw.
21 mexiletine.tw.
22 procainamide.tw.
23 sotalol.tw.
24 esmolol.tw.
25 or/6-24
ClinicalTrials.gov
Condition or disease:
Atrial Fibrillation OR atrial fibrillat* OR atrium fibrillat* OR auricular fibrillat*
Other terms:
antiarrhythm* OR anti-arrhythm* OR dronedarone OR amiodarone OR bisoprolol OR disopyramide OR dofetilide OR azimilide OR ibutilide OR flecainide OR propafenone OR quinidine OR cibenzoline OR moricizine OR mexiletine OR procainamide OR sotalol
Filters: Recruiting: All ; Country: All

WHO ICTRP
Advanced Search:

title: atrial fibrillation
Condition:
Atrial Fibrillation OR atrial fibrillat* OR atrium fibrillat* OR auricular fibrillat*
Intervention:
antiarrhythm* OR anti-arrhythm* OR dronedarone OR amiodarone OR bisoprolol OR disopyramide OR dofetilide OR azimilide OR ibutilide OR flecainide OR propafenone OR quinidine OR cibenzoline OR moricizine OR mexiletine OR procainamide OR sotalol
Filters: Recruiting: All ; Country: All ; Phases: All