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Social evolution and the individual-as-maximising-agent

analogy

Cédric Paternotte∗

Abstract. Does natural selection tend to maximise something? Does it produce
individuals that act as if they maximised something? These questions have long
occupied evolutionary theorists, and have proven especially tricky in the case of
social evolution, which is known for leading to apparently suboptimal states. This
paper investigates recent results about maximising analogies – especially regarding
whether individuals should be considered as if they maximised their inclusive fitness
– and compares the fruitfulness of global and local approaches. I assess Okasha
& Martens’s recent local approach to the individual-as-maximising-agent analogy
and its robustness with respect to interactive situations. I then defend the relative
merits of a comparable global approach, arguing that it is conceptually on a par and
heuristically advantageous.

1. Introduction

Does natural selection tend to maximise something? Does it produce in-
dividuals who act as if they maximised something? These two questions,
or maximisation analogies, have long occupied evolutionary theorists.
Early formal results suggested that natural selection acts so as to
maximise mean fitness (Fisher 1930). In contemporary evolutionary
theory, the success of kin selection has caused many to consider that
natural selection makes evolutionary individuals act as if they max-
imised their inclusive fitness. However widely – and perhaps falsely –
believed, such claims have been mitigated or not formally established.
According to their current interpretation, Fisher’s results do not show
that we should expect natural selection to cumulatively increase mean
fitness; kin selection has led to a number evolutionary analyses but not
to a justification of inclusive fitness maximisation. General criticisms
about adaptationism, whether due to genetic constraints or to social
contexts, have also fueled doubts as to whether natural selection should
really be expected to maximise something at all.

Such frustrating results have led to a renewed exploration of the
maximisation claims, through a number of frameworks. First, there
are two distinct claims or analogies to explore, depending on whether
nature or evolutionary individuals may be seen as maximisers. Second,
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there are two broad ways in which to explore them. Some start from
general evolutionary results, which they hope to apply to concrete sit-
uations. Others aim to work their way up from maximisation results in
specific contexts to more encompassing ones. Is one method preferable?
How could we hope to generally determine the domain of validity of
maximisation analogies - what maximises what under which conditions
and in which evolutionary contexts?

This paper has two related aims. First, it intends to describe some
recent works on maximisation analogies and assess their limitations.
Second, it focuses on a recently developed approach in order to critically
discuss its fruitfulness when compared to a rival approach, derived from
Hamilton’s rule, which has recently undergone criticism. Most of the
paper focuses on the specific case of social evolution and on the question
about whether evolutionary individuals maximise their inclusive fitness
– which is probably the most widely believed maximisation claim in evo-
lutionary theory. More precisely, I assess Okasha & Martens recent local
approach to the individual-as-maximising-agent analogy, its robustness
with respect to interactive situations. I then defend the relative merits
of a comparable global approach, arguing that it is conceptually on a
par and heuristically advantageous.

The paper unfolds as follow. Section 2 discusses two possible under-
standings of maximisation and two possible approaches – global or local
– for exploring maximisation analogies. Section 3 surveys various global
approaches used to investigate the maximising analogies in the context
of social evolution and underlines their current limitations. Section
4 then tackles local approaches – so-called individual-as-maximising-
agent analogies – focusing in particular on recent work by Okasha and
Martens, and uses their very method to suggest that the existence of
a general function that individuals would maximise is unlikely. Section
5 discusses the issue of individual control, which leads to one way of
re-establishing the relevance and heuristic advantage of the global max-
imisation approach. Section 6 concludes on the fruitfulness of global and
local approaches for the maximisation research program in evolutionary
biology and mentions one avenue for future work.

2. Kinds of maximisation

2.1. Nature and individuals as maximising agents

Natural selection may be said to lead to maximisation in different
senses, which allow one to map existing approaches. A first useful dis-
tinction concerns the level at which the maximising analogy is located.
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Nature itself may be seen as a maximiser; alternatively, evolutionary
individuals (members of Darwinian populations) may be seen as max-
imisers. These two options constitute two possible analogies through
which evolution may be understood.

The nature-as-maximising-agent (NMA) analogy is typically explored
in the following way. From the analysis of the dynamics of an evolution-
ary system, one strives to find a variable that will always or typically
increase when natural selection is the only or main evolutionary force.
The idea is that natural selection would tend to bring a variable towards
its optimum and that this tendency would be most manifest when other
evolutionary forces are weak or idealised away. Formally, one looks for
a variable based on characteristics of the population, which typically
depends on the population members’ phenotype, such that it would
tend to increase under the action of natural selection.

By contrast, the individual-as-maximising-agent (IMA) analogy is
explored by investigating whether biological agents or evolutionary in-
dividuals typically behave as if they were maximising a variable – as
if they were somehow akin to the rational choice-makers who populate
classical economics (and who are supposed to maximise their expected
utility). This does not presuppose that evolutionary individual (are
likely to) possess elaborate cognitive abilities, but only that natural
selection may have shaped them so as to act as if they were striving to
maximise something.

The distinction between seeing nature or individuals as maximisers
is easily confused with that between the maximand – what is being
maximised – being a population-level variable or an individual-level
one. Although similar in spirit, these distinctions do not perfectly over-
lap. Individuals may behave as if they maximised a complex function,
which may depend on population-level variables. In other words, that
individuals maximise something does not entail that this has to be
defined exclusively in terms of individual characteristics 1

Conversely, natural selection may in principle seem to act so as to
maximise a function of individual-level variables. For instance, for a
population of altruistic agents in which altruistic acts always bear the
same cost and provide the same benefit to others, natural selection may
act so as to maximise a function of these cost and benefit, which are
ultimately properties of individual traits. Still, it is difficult to imagine
that such cases do not involve population-level variables as well – which
would happen to be maximised just when all agents maximise some
individual-level ones.

1 One may object that individual may not be analogous to rational choice makers
if they maximise variables that are not under or defined at the population-level –
more on this in section 5.
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This leads to an intuitive link between population and individual-
level maximisation. The two analogies would be equivalent when population-
level maximisation is equivalent to universal individual-level maximisa-
tion – when natural selection acts as a maximiser just if all members of
a Darwinian population act as maximisers as well (of some related but
possibly distinct variable). However, appearances are deceptive. For it
is well-known in both the rational choice and evolutionary literatures
that a group of rational or optimal agents may be collectively irrational
or suboptimal. The Prisoner’s Dilemma, in both its rational and evo-
lutionary versions, teaches us that much. Evolutionarily speaking, that
all agents maximise something may put a population in a collectively
suboptimal state.

Similarly, nature may act as a maximiser even if most evolutionary
agents appear not to maximise anything. Suppose that nature acts so
as to maximise the mean fitness, or the fitness variance in a population.
Then, it may be possible or necessary (respectively) that the agents’
fitnesses are widely different, and that some of them appear to maximise
their fitness while others significantly less so. If variation is the fuel of
natural selection, nature may even act all the more optimally when
individual phenotypes enjoy multiple degrees of adaptation.

Of course, the gap between the nature and individual-as-maximising-
agent analogies depends on conceptual and empirical conditions. The
aforementioned possible cases of incompatibility may be empirically
rare, or conceptually impossible (for instance if all results in which
nature maximises something happen to be cases in which individual
are also maximisers). Still, as long as we are ignorant of the extension
of the set and of the prevalence or rarity of such cases, the nature and
individual-as-maximising agent analogies are best kept separate.

2.2. Global and local approaches

A second useful distinction concerns conceptual approaches to maximi-
sation, which can be global or local. First, maximising results may be
investigated formally in fully general conditions, for instance by using
general equations for evolutionary dynamics from and investigating
what maximand they allow, if any. A global approach starts from the
most general perspective and then operates by adding idealisations or
constraints in order to identify a maximand. For instance, one may
start with the Price equation (Price 1972) and then investigate whether
any variable may be maximised in the absence of drift, with perfect
heritability of traits, in the absence of migration, etc.2 This process of

2 In its simplified version, the Price equation is this: w∆p = Cov(wi, pi), where
wi and pi are respectively the fitness and the value of a measurable trait for an
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gradual restriction of scope is not necessary in principle; it is, however,
often motivated by the hope for fully general maximising results.

A second, local approach consists in starting from specific evolution-
ary contexts in which a maximand can be identified, and to explore
whether it can be generalised to other contexts or to a wider class of
situations – in a word, whether it is robust with respect to changes
of the evolutionary context. For instance, one may start with a ba-
sic evolutionary situation represented by a game-theoretic model in
which evolutionary agents do behave as maximisers and then investi-
gate whether they still do in games with different payoffs, more or less
available actions and/or players.

The global and local approaches thus operate in opposite directions
and could also be labelled top-down and bottom-up approaches. That
they operate in opposite directions does not entail that they are ex-
clusive; on the contrary, they are often complementary. As long as
maximising results are not established, it makes as much sense to start
from general negative results and go local in order to see positive ones
appear, or to start from local positive results and go global in order to
see when they disappear.

To summarise so far: nature or individuals can be seen as maximis-
ers; one may search for a maximised variable by choosing global or
local approaches. This leads to at least three different kinds of projects
(rather than four). Using a global approach, one may wonder whether
(and if yes what) nature maximises (global NMA), as well as whether
individuals do (global IMA). In particular, the global approach can be
used to find both population-level and individual-level maximands. By
contrast, the local approach is typically not used to investigate whether
nature acts as a maximiser. This is because local approaches start from
specific evolutionary contexts in which the set of available phenotypes is
severely constrained (individuals can typically be of two or three types,
with straightforward genotype-phenotype links). But what nature may
maximise is probably a function of all possible phenotypes – here the
aim remains to understand why the members of Darwinian popula-
tions often seem so well adapted. In principle, we should expect any
exploration of the nature-as-maximising-agent analogy to be based on
a global approach. As a result, in practice the local approach is used
only to investigate the individual-as-maximising-agent analogy (local
IMA).

In the next section, I turn to the assessment of these three options.
Before this, one last clarification is in order. The discussion of the links

individual i; w is the average fitness of the population. This version is obtained from
the general one by assuming that there is no overall transmission bias of the trait
in the population. See Okasha 2006: 18 ff.
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between natural selection and maximisation may be perceived as a mere
corollary of the classic debate about adaptationism. However, this per-
ception would be mistaken. In its methodological guise (Godfrey-Smith
2001), adaptationism strives to explain biological traits by supposing
that they once were evolutionarily beneficial for their bearers. A usual
adaptationist strategy thus consists in elucidating the possible effects
of a target trait on its bearer’s fitness and in determining what value of
the trait would maximise it. In social contexts, one may rather explore
the benefits of a trait in terms of inclusive fitness. The point is that
in an adaptationist strategy, the nature of the maximand is typically
presupposed rather than justified. It is because evolutionary individ-
uals are thought to be brought by natural selection to act as if they
maximised their personal or inclusive fitness that such strategies can
be employed. By contrast, the maximising approaches introduced so
far aim to justify the appeal to a given maximand. Indeed, defenders of
such approaches often claim that they want to provide a steady basis
for assumptions that are routinely made in scientific practice. Note that
this conceptual difference does not mean that the adaptationism and
maximisation debates do not share common points – for instance, both
have gradually shifted their emphasis from global to local approaches.

3. Global approaches

Over the history of evolutionary theory, the nature-as maximising-
agent (NMA) analogy has been developed almost as soon as formal
approaches emerged, starting with Fisher’s (1930) ‘fundamental theo-
rem of natural selection’. According to a naive interpretation of this
theorem, the mean fitness of a population always increases under the
action of natural selection – that is, it is as if natural selection strived
to maximise the average fitness of a population. This diagnosis proved
puzzling because of the numerous cases in which average fitness appears
to remain constant or even to decrease. One famous example of the for-
mer is the so-called ‘heterozygote dominance’, in which a population’s
fitness remains constant due to genetic constraints that prevent the
fitter types from reaching fixation; one equally famous example of the
latter is the evolution of altruism, in which natural selection favours
‘selfish’ behaviours over altruistic ones, which leads to a decrease of
average fitness.

The split between this apparently undisputable formal result (Ewens
1989, Lessard 1997) and biological good sense was fixed by later inter-
pretations. For according to the fundamental theorem, mean population
fitness would increase from one generation to the next if the agents’
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environment was fixed. However, the environment, which comprises
the population’s genetic composition, also changes under the action
of natural selection. As a consequence, in real situations, mean fitness
may increase, decrease or stay constant. In other words, nature acts as
if it maximised a precisely defined variable only in ideal circumstances.
Although encouraging, this result does not support the general use of
a NMA analogy, which we would like to illuminate the actual effect of
natural selection.

There exist other attempts to find a level maximand for natural
selection. Still, in the remainder of the paper, I focus on the individual-
as-maximising-agent (IMA) analogy, for several reasons. First, it has
been explored by global as well as local approaches, and so provides
a useful contrast between their fruitfulness. Second, it has long been
claimed that evolutionary agents behave as if they were maximising
their inclusive fitness.3 This claim, which has enjoyed a renewed interest
in recent years, can also be assessed by contrasting global and local
approaches. Third, contrary to the NMA, the IMA is compatible with
global as well as local approaches, which allows one to compare them.

Grafen’s (2002, 2007, 2008, 2014a) ‘Formal Darwinism’ project pro-
vides a recent example of a global approach for the IMA analogy. Grafen
intends to provide formal links between population genetics (changes in
gene frequencies) and what he calls ‘optimisation programs’ – the ex-
istence of a variable that may maximise a certain function under given
constraints. More precisely, Grafen establishes necessary and sufficient
links between evolutionary agents solving optimisation programs (that
is, having a phenotype that maximises a function) and the population
being at equilibrium. Such links can be established without an explicit
formulation of the function that is maximised; they can be seen as
axioms that any maximand should fulfill (Okasha & Paternotte 2014).
This clearly constitutes a global approach: it formulates fully general
conditions for the IMA analogy to hold, which are susceptible to lead
to the identification of actual maximands in specific contexts.

Applying this framework to the case of social evolution, Grafen
(2006) is able to show that inclusive fitness approximates the indi-
vidual’s maximand, under the constraint of additivity (e.g. that “the
effects of others on one individuals fitness combine by adding up”
(Grafen 2008: 543)). While maintaining the spirit of Grafen’s approach,
Lehmann and Rousset (2014) counter his result by showing that many

3 To recall, the inclusive fitness of an agent is the sum of its own fitness and of
the fitnesses of its partners in interaction, weighted by their genetic relatedness. For
instance, if an altruist agent provides a b benefit to one partner at a personal cost of
c, the agent’s personal fitness is b + r.c, where r is the relatedness coefficient. More
on this below.
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maximands are possible in a social context (even Hamilton’s inclusive
effect4 always provides the direction of selection); again, this only holds
under restrictive conditions (Grafen 2014b: 288). Those who do not
want to take sides on the respective import of different results ob-
tained in different models and under different constraints are left with
a pessimistic diagnosis. Either inclusive fitness is but an approximation
of what individuals appear to maximise, or the inclusive fitness effect
indicates nothing more than the direction of natural selection. In both
cases, nothing guarantees that the IMA analogy holds generally.

There is, however, another defense for the claim that individuals act
as if they maximised their inclusive fitness, that is based on the famous
Hamilton’s rule. Supposing that an altruistic trait that provides a b
fitness benefit to its bearer’s partner in interaction, at a personal fitness
cost of c, the rule states that the trait will spread in the population
(that is, that the proportion of the trait’s bearers in the population will
strictly increase as generations succeed) if and only if rb > c,5 where r is
the relatedness coefficient.6 This may appear to lead to a justification of
the IMA, namely the claim that individuals maximise their inclusive fit-
ness. For if an individual maximised its personal fitness, altruism could
never evolve: regardless of the benefits one receives from its partners,
behaving altruistically is always more costly than not. But if altruism
evolves when rb − c > 0, individuals can be seen as maximising their
inclusive fitness: altruism spreads precisely when an actor’s inclusive
fitness (rb− c) is strictly positive, and as fast as this value is high.

Unfortunately, Hamilton’s rule only holds under the assumption that
fitness benefits and costs are additive, which has led to criticisms re-
garding its scope (as well as to that of kin selection in general; see
Allen et al. 2013). However, the rule can be generalised so that it
holds without any restrictive assumption. That is, one can show that
altruistic traits will evolve if and only if a condition of the form rB > C
holds.7 In this version, −C expresses the regression of an agent’s fitness

4 Which in simple cases would be proportional to rb − c, with the b, c and r
coefficients defined as in fn. 2.

5 For this result as well as for all evolutionary analyses of sections 4 onwards, we
suppose infinite populations of haploid individuals that meet in pairwise interactions.
See the Appendix for examples of such analyses.

6 The relatedness coefficient is defined as the regression of the partner trait
(altruistic or not) on the actor’s trait, which can be understood as the extent to
which an actor’s trait allows one to predict that its partner will have the same trait.

7 Gardner et al. 2011 derive this general version by starting from the expression
of the action of natural selection given by the Price equation, and ’partitioning [it]
into its direct and indirect components’ (1024). See also Birch & Okasha 2015 for
an appraisal of Hamilton’s rule in general, and Birch 2014 for the consequences on
the controversy about kin selection.
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on its gene frequency (holding its partner’s gene frequency fixed), that
is, the extent to which an agent’s gene predicts its own fitness; and
B expresses the regression of an agent’s fitness on the gene frequency
of its partner (holding its own fixed), that is, the extent to which an
agent’s partner gene frequency predicts the agent’s fitness. It is thus
clear that B and C are purely statistical values that do not necessarily
coincide with b and c (although they do in the additive case).

Now, does the generalised Hamilton’s rule provide any support for
the IMA analogy? Apparently not. As Okasha (2016) rightfully notes,
the question of the conditions for the evolution of altruism and that of
the apparent goal of individual behaviour are distinct. More precisely,
the validity of the rB > C does not entail that individuals maximise
their inclusive fitness. Moreover, although the C and B components
have been claimed to correspond to “the direct and indirect compo-
nents of inclusive fitness; the quantity that organisms are designed
to maximize” (Gardner et al. 2011), this correspondence is dubious
because B and C are not under the individual’s control: “the value of
that quantity that an individual receives does not solely depend on its
own behaviour.” (Okasha 2016). B and C are regression coefficients
between fitness and gene frequencies, which can be calculated even if
the link is non-linear and even if other variables affect an agent fitness.
By contrast, b and c express a fitness benefit and cost that directly
depend on an individual’s altruistic behaviour.

Overall, the global approach to the IMA analogy identifies maxi-
mands given certain restrictions; its fully general results do not seem
to provide support for the claim that individual act as if they maximised
something – in particular not inclusive fitness. In the face of such re-
sults, local approaches may seem worth exploring. I now turn to one
such approach that relies on game theory – an explicit characterisation
of individual rationality in interactive contexts – in order to determine
when the IMA analogy holds.

4. Local approaches

4.1. Utility transformations

Following Martens (2016), Okasha & Martens (2016) put forward a new
local approach to make the individual-as-maximising-agent analogy
precise and to determine when it holds. Their method is as follows.
When faced with a given context of interaction, we should follow three
steps. First, we should work out its evolutionary characteristics (de-
termine which traits will evolve under which conditions). Second, we
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should represent it in a game-theoretic matrix and determine its set
of rational strategies (its Nash equilibria). Third, we should compare
the conditions for which a trait/strategy spreads by natural selection
and for which it rational. If the conditions are identical, then the IMA
analogy is justified: a trait will spread exactly in the conditions under
which it is rational for an agent to choose it.

Interestingly, this method allows us to explore the form of what
rational agents may maximise, if anything. This is because given fitness
benefits and costs, we may decide that a rational agent’s utility is any
function of those, and then test whether this utility function makes it
rational to choose the options that would spread in the evolutionary
case. In short, one can easily test when an evolutionary situation makes
things as if traits were chosen by rational agents that maximise this or
that utility function. We become able to precisely identify for what
maximand evolution makes agents appear to aim.

A S
A b− c −c
S b 0

Figure 1. Additive Prisoner’s Dilemma. The represented payoffs are that of the row
player (the game is symmetric).

One example helps illustrate this point. Consider again the situation
in which agents may be selfish (type S) or altruistic (type A), in which
case they provide a fitness benefit b to their partner at a personal fitness
cost of c. Supposing pairwise interactions, the situation can be represent
by an additive Prisoner’s Dilemma, as in fig. 1.8 As seen before, the
evolutionary analysis shows that the proportion of the bearers of the
altruistic trait in the population will increase whenever Hamilton’s rule
holds (rb > c; see Hamilton 1964).

Consider the rational counterpart. If rational agents played the same
game, then strategy A could never be chosen. This is because S strictly
dominates A – an agent always obtains strictly more by doing S than
by doing A, regardless of what her partner does.

A S
A (b− c)(1 + r) −c + rb
S b− rc 0

Figure 2. Additive Prisoner’s Dilemma – inclusive fitness payoffs

Now imagine that rational agents have utility functions that differ
from their personal fitness. Suppose for instance that agents maximise

8 The game is additive because the benefit and cost depend only on the agent’s
trait or strategy, regardless of what her partner does.
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their inclusive fitness, that is, the sum of their personal fitness and of
their partner’s fitness weighted by the relatedness coefficient. Agents
would thus be playing the game shown in fig. 2. In this game, one can
show that (A,A) is a strict Nash equilibrium if and only if rb > c, that
is, precisely if and only if Hamilton’s rule holds.9 There is an equiva-
lence between the conditions for evolutionary success10 and for rational
choice under inclusive fitness maximisation: so we can say that natural
selection makes evolutionary agents behave as if they were maximising
their inclusive fitness. The IMA analogy is justified.

A S
A b− c + d −c
S b 0

Figure 3. Synergy game

However, different games may justify the IMA analogy but for a
different maximand – which is Okasha and Martens’s other interesting
result. Suppose the interactive situation is now represented by a synergy
game (in which agents receive an additional fitness benefit d when both
are altruistic – see fig. 3). Here again, there exists a utility function for
which rational choice and evolutionary success have similar conditions;
but this function is not the inclusive fitness one.

A S
A b− c + d −c + rb + rd
S (1− r)b 0

Figure 4. Synergy game – Grafen payoffs

The authors borrow from Grafen (1979) the following utility func-
tion: an agent’s utility is the weighted sum of her personal fitness
and of what her fitness would have been had her partner acted like
her (where the weight of the former is 1 − r, and of the latter r).
The game with Grafen payoffs is represented in fig. 4., and one can

9 A Nash equilibrium is a set of strategies such that no agent could obtain a
strictly higher payoff by playing a different strategy while all her partners keep
playing their part of the set. In the any game represented in this paper, in order to
check whether (A,A) is a strict Nash equilibrium, it suffices to compare the top row
and bottom row payoffs of the game’s first column. If the top row payoff is strictly
higher, then (A,A) is a strict Nash equilibrium – the row agent would gain strictly
less by switching from A to S, given that her partner plays A. In our example, (A,A)
is a strict Nash equilibrium iff the row player’s payoff when she and her partner both
play A is strictly higher than her payoff when she plays S and her partner plays A.
Formally, this is the case iff (b− c)(1 + r) > b− rc, that is, iff rb > c.

10 That is, for an increase of the proportion of the concerned trait’s bearers within
the population as generations succeed.

Darwinism&IMA_b.tex; 1/03/2019; 15:48; p.11



12

show general links between the existence of various Nash equilibria
and specific evolutionary outcomes; in particular, if (A,A) is the only
strict Nash equilibrium of this game, then A will spread until it reaches
fixation (Okasha & Martens 2016:478-9). Here again, the IMA analogy
is justified, although with respect to a different maximand. Finally,
Okasha & Martens further note that the Grafen utility function is also
a maximand in the additive case, just as inclusive fitness.

This is a promising approach. In the remaining sections, I use it
to explore the domain of validity of the IMA analogy, after which I
compare it to what a global approach could teach us.

4.2. Robustness issues

What do Okasha & Martens’s (2016) results entail for the individual
maximisation analogy? First, that it holds for two classes of games:
additive Prisoner’s Dilemmas as well as non-additive ones (synergy
games). Second, that there is a general maximand that is common
to all such situations, namely Grafen’s utility function. Evolutionary
agents only act as if they maximised their inclusive fitness payoffs in
the additive case, while Grafen’s utility function corresponds to both
additive and non-additive ones. Overall, the domain of validity of the
individual-as-maximising-agent analogy is extended.

However, the analogy remains bounded because Prisoner’s Dilem-
mas are but one kind of game. Cooperative interactions may be mod-
elled by a variety of games, all of which are possibly relevant to the
evolution of social behaviour. Should we expect individuals to act as
if they maximize Grafen’s utility function in all cooperative interac-
tions, or inclusive fitness payoffs in situations other than the additive
case? The following suggests that it depends on the type of games
we consider. Evolutionary populations turn out to behave as if agents
maximised their Grafen payoffs in any 2-action interaction. However,
when interactions involve 3 actions, the analogy does not necessary
hold anymore (at least not with respect to Grafen payoffs).

H L
H 2 0
L 0 1

Figure 5. Coordination game

As a simple example, let us first consider a pure coordination game
(Fig. 5), and apply Okasha & Martens (2016) analysis. The classical
evolutionary analysis of the game is well-known. There are two stable
evolutionary equilibria, in which the population is composed uniquely
of H-types or uniquely of L-types (both H and L are evolutionary stable
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strategies). There is an additional unstable polymorphic equilibrium in
which two-thirds of the population are Ls and one-third are Hs.11

However, we must consider related agents. I show in the Appendix
that the change in p (the proportion of H-types) over one generation is
positive if and only if p > 1−2r

3(1−r) (assuming only natural selection is at

work). This condition always holds when r > 1
2 . When not, the value

of p for which p will increase (and the size of the basin of attraction of
an all-H population state) depends on the degree of relatedness in the
population (the higher it is, the lower p needs to be to start increasing).
As a consequence, H always is an evolutionary stable strategy, but L
only when

r ≤ 1

2

H L
H 2(r + 1) 0
L 0 r + 1

Figure 6. Coordination game – inclusive fitness payoffs

Do agents act as if they maximised one of the previously discussed
utility functions? Consider the game’s inclusive payoffs, displayed in
fig. 6. Here the rational analysis is straightforward, as the game is
equivalent to the original one. Both (H,H) and (L,L) are pure, strict
Nash equilibria. This corresponds to the evolutionary results that both
pure H populations and pure L populations are stable. There is also
a mixed Nash equilibrium consisting in playing H with probability 1

3

and L with probability 2
3 . For the individual maximisation analogy

to hold, these probabilities should coincide with the proportions of H
and of L types for which an (evolutionary) polymorphic equilibrium
exists. In particular, the probabilities of playing H for which H is
the rationally preferable to L should correspond to the values of p
(the proportion of H types in the population) for which p increases.
However, the threshold value of p (for p to be increasing) only equals 1

3
when r = 0. As soon as r is strictly positive, then the frequency value
for which the (evolutionary) polymorphic equilibrium is evolutionarily
stable starts moving away from the probability value of the (rational)
mixed Nash equilibrium. In other words, for non-zero relatedness val-
ues, evolutionary agents do not act as if they maximise their inclusive
fitness payoffs.

With the Grafen utility function, the game becomes different (see
Fig. 7.). (H,H) is always a strict Nash equilibrium (as 2 > r), and

11 This entails that any departure from this one-third/two-thirds proportion will
ultimately lead to an all-H or to an all-L population.
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H L
H 2 2r
L r 1

Figure 7. Coordination game – Grafen payoffs

(L,L) is only a strict Nash equilibrium if r < 1
2 , that is, for low values

of r (which is also the condition under which L is evolutionarily stable).
The mixed equilibrium condition is that H is played with probability
1−2r
3(1−r) , which, this time, corresponds to the evolutionary analysis.

This should not come as a surprise, even if, surprisingly, Okasha &
Martens somewhat undersell the generality of their result. The individual-
as-maximising-agent analogy holds in all synergy games for the Grafen
utility. But synergy games, as shown in fig. 3, contain 4 possible out-
comes, the payoffs of which depend on the linear combination of 3
parameters (namely b, c and d). Once a payoff is arbitrarily fixed, the
parameters can be adjusted so as to fit any 2-player 2-action game–that
is, any 2x2 game can be seen as a 2x2 synergy game. As a consequence,
the IMA analogy holds in general for such games (see the Appendix
for a proof that makes this clear for a generic 2x2 game). In Okasha &
Martens’s words (then only about synergy games): ’This restores the
rational actor heuristic’ (478), although for all 2x2 games this time.

A B S
A 4 2 0
B 3 2 1
S 2 2 2

Figure 8. Public good game

Let us now consider a more complex situation: a 2-player 3-action
public good game (Fig. 8). On the evolutionary interpretation, suppose
there are 3 possible types in the population: As cooperate much, while
B slightly less. A mutually beneficial outcome may be obtained when
two As, or a A and a B, interact but not when two B do. Moreover,
suppose that the cooperative behaviour depends on the same specific
cooperative allele. Agents A are homozygous for this allele (they possess
two), while agents B are heterozygous (they possess only one). Agents
S are homozygous for the non-cooperative allele. The allele increases
the cooperative benefit as well as the loss from an interaction with a
non-cooperator, and its effect is cumulative.
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As we use this game as a counterexample, it is sufficient to find
one discrepancy between the evolutionary and the rational analyses.12

Let us check the conditions under which A is an evolutionary stable
strategy and under which (A,A) is a Nash equilibrium.

Although more tedious than in the previous examples, the calcula-
tions remain simple. One can show that the fitness of A agents will be
strictly higher than that of B agents when p > 1−3r

2(1−r) , and than that

of S agents when p > 1−2r
2(1−r) (see the Appendix). For instance, for a

relatedness coefficient of 1
4 , As are strictly fitter than Bs for p > 1

6 , and

than Ss for p > 1
3 .

What is the rational analysis with respect to Grafen payoffs? These
payoffs are more difficult to compute with 3 types, because the A and
B types are related.13 However, note that (A,A) is a Nash equilibrium
if its payoff (4) is greater than the (B,A) payoff. The latter will be a
weighted sum of the possible payoffs for a player who would choose B,
that is, a weighted sum of 3, 2 and 1 (the payoffs of the B row of the
game matrix). Such a sum cannot exceed 3, let alone reach 4. It follows
that (A,A) is always a Nash equilibrium of the modified game with
Grafen payoffs. As the evolutionary stability of A depends on r but
its rationality does not, there is a disanalogy between the evolution-
ary and rational analyses. The individual-as-maximising-agent analogy
with respect to the Grafen payoffs does not hold anymore.

Two possible options remain. Either there is a utility function of the
original payoffs for which the IMA analogy still holds, or there is not. In
the latter case, the domain of validity of the IMA analogy is bounded.
In the former, it can be extended, although further extensions may only
proceed from a case-by-case basis: because the utility functions being
maximised may vary depending on the context of interaction. The IMA
analogy may be robust even if its specifics are not; but robustness has
to be investigated stepwise.

5. Individual maximisation and acceptable preferences

What we have seen so far suggests a limitation for the local approaches
to the individual-as-maximising-agent analogy. As bottom-up approaches,

12 In particular, I do not need to follow the analysis provided in Okasha & Martens
(2016) for all possible cases concerning the nature and number of equilibria.

13 As before, the Grafen payoff of a consequence is equal to the sum of the agent’s
payoff if her partner had chosen the same action, weighted by r, and of the agent’s
payoff given her partner’s actual choice, weighted by 1 − r. However, r cannot be
simply expressed as P (A|A)−P (A|S) anymore, and in particular not in a way that
does not involve p ; see the last part of the Appendix.
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barring possible general results over a wide class of games, they need
to investigate interactive contexts separately. Even if positive results
are obtained for particular games, nothing guarantees that they will
extend to other ones. Moreover, the approach depends on basic intu-
itions regarding plausible utility functions. For instance, while Okasha
& Martens find that Grafen payoffs better preserve the IMA analogy
than inclusive fitness payoffs, the former are just one that the authors
happened to be curious about. No heuristics are offered that may
guide us towards relevant utility functions in a given class of games.
When previously identified utility functions fail to preserve the analogy,
no alternatives naturally present themselves and we should resort to
hunches.

This restores some of the appeal of the global approach for the IMA,
such as stemming from the generalised Hamilton’s rule. Why not favour
methods that identify generally maximised functions and work out how
they apply in particular cases? Because of the doubts, introduced in
section 3, that such functions help identify what individuals maximise
– namely because they involve parameters that are not under the in-
dividual’s control. I now return to this discussion in order to assuage
such worries.

To recall, in the additive Prisoner’s dilemma, Hamilton’s rule, which
states that altruism evolves if and only if rb > c, may appear to
warrant the conclusion that agents act as if they maximised their
inclusive fitness. This is because the inclusive fitness of an altruistic
agent is precisely the sum of −c, its personal fitness cost, and of rb, the
relatedness-weighted benefit to its partner. Altruism evolves just when
its bearer’s inclusive fitness is positive.

However, the generalised version of Hamilton’s rule, which states
that in any context altruism evolves if and only if rB > C, does not
allow one to identify a similar maximand. This is because whether B
and C accrue to agents does not depend solely on an agent’s actions,
but also on a host of additional parameters.

A S
A b− c + d −c + rb + rd
S (1− r)b 0

Figure 9. Synergy game – Grafen payoffs

Let us go back to Okasha & Martens’s framework and the case of the
synergy game (fig. 9). Here, they show that evolutionary populations
will behave as would agents trying to maximise their Grafen payoffs,
as shown again in fig. 9. Note that here, payoffs explicitly involve the

relatedness coefficient r, a statistical parameter defined as P (A|A)−p
P (A)−p
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(where p is the general proportion of the A type in the population), or
as P (A|A)− P (A|S).

A S
A (B − C)(r + 1) −C + rB
S B − rC 0

Figure 10. Additive Prisoner’s Dilemma game – generalised payoffs

A S
A (b− c)(r + 1) + 2dP (A|A) −c + rb + dP (A|A)
S b− rc + dP (A|A) 0

Figure 11. Additive Prisoner’s Dilemma game – explicit generalised payoffs. This
game is obtained when replacing B and C in the previous game by their ex-
pressions in function of b, c, d and P (A|A) – namely B = b + P (A|A) d

1+r
and

C = c− P (A|A) d
1+r

.

However, there is a second way to obtain a game that allows for
the IMA analogy. Recall that when the local version of Hamilton’s rule
(rb > c) holds, evolutionary populations behave as rational agents faced
with the additive Prisoner’s Dilemma with inclusive fitness payoffs (fig.
10). Similarly, when the generalized version of Hamilton’s rule (rB >
C) holds, populations will behave as rational agents facing the same
game, where b and c are replaced by their generalised versions B and C
respectively (fig. 11), where B = b+P (A|A) d

1+r and C = c−P (A|A) d
1+r

(Martens 2016).
So there are two ways by which one may try to recover the IMA

analogy–to understand evolutionary individuals as behaving as if they
were rational, maximising agents. One may consider that the individ-
uals act as if they maximised the Grafen payoffs in a synergy game;
we have seen that all 2x2 games can be considered as synergy games,
and that the Grafen payoffs warrant the IMA analogy in such cases.
Alternatively, one may use another fully general result, that is, that
altruism evolves to fixation only when the generalized Hamilton’s rule
holds (rB > C), which corresponds to agents maximising their inclusive
fitness payoffs in an additive Prisoner’s Dilemma (where b and c are
replaced by B and C in fig. 1 and 2).

To repeat there are two different games that allow one to obtain the
conditions for the evolution of altruism: either a synergy game with
Grafen payoffs (fig. 9 – let us call it the Grafen SG), or an additive
Prisoner’s Dilemma with generalised payoffs (fig. 10 or 11 – let us call it
the general PD). The question now is whether one, and if yes which one,
best supports the IMA analogy. We have seen that formally speaking,
both approaches can be used without any loss of generality. However,
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the IMA analogy is not purely formal–it relies on the notion of a rational
agent. Indeed, on this basis several arguments may be offered in favour
of the Grafen SG approach; but I think these can be resisted.

In what follows, the discussion turns on the nature of preferences
with which a rational agent may be endowed. One obvious difference
between the two games is that the general PD features one parameter
that does not appear in the Grafen SG, namely P (A|A) – the probabil-
ity that an altruist’s partner is an altruist as well. It is thus crucial to
determine whether the IMA analogy is compatible with utility functions
that involve parameters such as P (A|A); if we decide it is not, then the
Grafen payoff approach will emerge as the only acceptable one.

The rational counterpart of P (A|A) would be an agent’s belief that
her partner chooses action A given that she herself intends to choose
A. But rational choice theory usually maintains a strict demarcation
between agents’ preferences (or payoffs) and beliefs. Given an agent’s
preferences (the origin of which is not discussed) as well as her beliefs
(taken to be independent from the interactive situation), one is to com-
pute expected utility of all the agent’s options and straightforwardly
deduce her choice. Beliefs are not supposed to factor in the payoffs, so
by analogy parameters such as P (A|A) should not appear in the game
payoffs.

This invites at least two rejoinders. First, preferences may be al-
lowed to depend on beliefs in alternative models of rational choice,
for instance in those able to cover the sour grapes story, in which the
fox’s belief that it cannot reach the grapes weakens its desire to obtain
them. However, such behaviours may always be labelled as irrational, so
the corresponding models should not be deemed adequate counterparts
that may guide the IMA analogy. On this point, let me just stress that
the strength of this argument hinges on our definition of rationality,
which often happens to hinge in turn on the formal models at our
disposal.

The second rejoinder to the banishment of P (A|A) from game pay-
offs is more decisive. For note that both the Grafen SG and the general
PD involve payoffs in which features r, the relatedness coefficient. As
seen above, r is a statistical value, which to recall is formally defined

as follows: r = P (A|A)−p
P (A)−p (where p is the frequency of the A type in

the population). We see that P (A|A) already features r, and so in the
payoffs of all the transformed games considered so far – whether based
on inclusive fitness payoffs or the Grafen utility function. Any criticism
of P (A|A) would seem to equally affect r, and as a consequence, either
the IMA analogy never holds (not even for the additive Prisoner’s
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Dilemma, which goes against the consensus opinion in the literature),
or it holds for the general PD just as well as for the Grafen SG.

But maybe r can be treated differently from P (A|A). After all, r
clearly is of biological significance and so may be a relevant parameter
of choice for a rational agent. This is because r measures the average
relatedness to one’s partner, which relates to the increased odds that
altruists receive cooperative benefits (as compared to non altruists).
However, the significance of P (A|A) may appear doubtful. Considering
an agent of type S who would receive the b − rc + dP (A|A) utility in
the general PD (fig. 11 above), Martens expresses such a doubt:

“But why should the agent care about the value of a synergistic
benefit not received [d] (if we assume the agent is selfish), and
why should the agent care about a probability, P (A|A), that is
in no way relevant? (Indeed, if any conditional probability should
be relevant to the agent in this particular case, it would be of the
form P (A|S).)” (Martens 2016: 18)

Here, the analogy with rational choice theory is useful again. First,
even in a rational setting, that a parameter is involved in a utility
function does not entail that the agent should ‘care’ about this pa-
rameter. Suppose that my utility for a consequence is equal to the
weighted sum of my material payoff and of my partner’s. The adequacy
of this utility function in describing my behaviour does not require
that I care about the weight themselves. For instance, these weights
may represent the strength of my empathetic feelings. The things I
care about are the various agents’ payoffs. And such utility functions
are indeed common in rational choice theory. Whether it be Fehr &
Schmidt’s (1999) fairness utility function or Bicchieri’s (2006) utility
function triggered by social norms, various weights are involved, which
may express the strength of certain feelings, whether it be one’s aversion
for inequity or one’s tendency for conformism. Indeed, in our case,
P (A|A) (as well as r) are precisely weights of this form, that is, they
only appear as multipliers of payoffs of the base game (for instance
P (A|A) only appears as multiplying the synergistic payoff d).

One may still object that the meaning of P (A|A) is obscure. r can
receive a natural ‘rational’ interpretation, such as the strength with
which one cares about kin members. However, P (A|A) is no more
enigmatic: as seen above, it may straightforwardly be seen as equivalent
to a belief, and beliefs may influence preferences.

This is where the second part of Martens’s claim kicks in: even if a
probability may in principle influence a payoff, this probability should
not affect this payoff. The payoff of an agent doing S should depend
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neither on what may have happened had he chosen A instead nor on
the probability with which it may have happened.

Although intuitively appealing, this claim does not stem from char-
acteristics of rational choice theory. There are many instances of utility
transformations in which agents care about counterfactual propositions
involving different choices they might have made. Take regret theory
(Loomes & Sugden 1982), where an agent’s utility for a consequence
depends on what she may have obtained had she acted otherwise. Or
consider again Bicchieri’s (2006) social norm utility function, according
to which the utility of a consequence is affected by whether alternative
options are prescribed by a social norm or not. My point is not based
on the validity of such accounts, but merely on the fact that they
never triggered any objection from rational choice theorists due to the
fact that utilities linked to actions may depend on what may have
happened had other actions been chosen. Because this feature is not
conceptually necessary for rational choice theory, it should not be used
for adjudicating the adequacy of utility functions for the IMA analogy.

This argument also deals with one last possible objection to the
use of the general PD. Grafen’s utility has the following conceptual
advantage: the utility depends only on the payoffs of the agent for the
various possible consequences of her action. In particular, the utility
for a particular box of the game only depends on the various agent’s
payoffs that appear on the same line. This may be seen as an advantage
for the same reason as before, that is, because an agent should not have
to care about what she may obtain had she acted otherwise. (Note that
this stance would also exclude the inclusive fitness utility from the list
of acceptable utility transformations.) The claim can also be countered
just as before, by realising that rationality should be compatible with
the agent’s caring about counterfactual scenarios in which they may
have chosen different courses of action.

Overall, I see no decisive argument left in favour of the banishment
of the general PD in favour of the Grafen SG. It is not clear that
the former presupposes preferences that may be those of a rational
agent any less than the latter does. Here, both the local and the global
approaches lead to payoff transformations that equally preserve the
IMA analogy.

6. Conclusion

Does natural selection act as if it maximised something, or produces in-
dividuals that do? Such maximisation analogies can be explored through
global and local approaches, depending on whether we proceed from
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general results then applied to specific settings, or from local results
then gradually extended to bigger classes of situations. Because some
global results have only been obtained under restrictive conditions, or
under general conditions that do not square well with maximisation
analogies, local approaches have been on the rise. We have focused on
one such approach, due to Okasha & Martens, which offers what I think
is the conceptually clearest way to test the validity of maximisation
analogies in a variety of interactive contexts. However, the approach is
heuristically limited, and results obtained so far have not provided any
utility function that individuals would appear to maximise in general.
I have then argued that a global approach could be used in a similar
spirit, so as to help derive context-specific utility functions from a
general principle, namely the generalised form of Hamilton’s rule.

None of this is meant to lead to a definitive verdict regarding global
or local approaches to maximisation analogies. I have only tried to
mitigate arguments that would motivate a clear preference for local
approaches. I hope I have managed to show that adjudicating between
them is not a simple task and depends on subtle considerations. In any
case, just as adaptationist methods, all approaches to maximisation
analogies can be seen as being part of a research program. Ultimately,
identifying maximands or proving their non-existence in a variety of
situations is what will allow a definite approach to succeed.

One last word on the limits of the formal approaches considered in
this paper. All models involved the evolution of simple traits, depending
on a single allele. However, the intuition that evolutionary individuals
appear to maximise something often stems from their apparent design,
that is, either on the complex nature of some traits or on the intricate
layout of several traits. As noted by Birch (2014), a satisfying treatment
of maximising analogies should aim to tackle such cases. In short, future
models should be able to cover cases of epistatic or complex traits, in
the hope that such cases will make it easier to identify a value that
individuals appear to maximise.

Appendix

Coordination game

Here we provide the evolutionary analysis of the coordination game
with related agents, by following Okasha & Martens’s (2016) method.

Note P (X|Y ) the probability that an agent’s partner is of type X given

that the agent is of type Y . By definition, r = P (H|H)−p
P (H)−p , where p is the
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proportion of the type H in the population and P (H) the probability
that a given agent is of type H.

Considering an agent of type H (P (H) = 1), from the definition of
r we obtain :
P (H|H) = r + (1− r)p.
Considering an agent of type L (P (H) = 0), from the definition of r
we obtain :
P (H|L) = (1− r)p.

Applying this to the coordination game (fig. 5), we obtain:
The fitness of the H type: wH = 2.P (H|H) = 2(r + (1− r)p)
The fitness of the L type: wL = 1.P (L|L) = 1−P (H|L) = 1− (1− r)p

From the Price equation, the variation in p from one generation to

the next is: ∆p = p(1−p)
w .(wH −wL) ∆p is proportional to: wH −wL =

2(r + (1− r)p)− 1 + (1− r)p = 3(1− r)p + 2r − 1

The H will be favoured by natural selection in the sense that ∆p > 0
if and only if p > 1−2r

3(1−r) . QED

2x2 games

A S
A w x
S y z

Figure 12. 2x2 game. The A and S are mere labels and do not correspond to
altruistic or selfish types.

Let us consider a general 2x2 game (Fig. 12).

Evolutionary analysis.

The analysis is similar to that of the previous case. Here r = P (A|A)−p
P (A)−p .

From this definition we obtain:

The fitness of the A type:
wA = w.P (A|A) + x.P (S|A) = w(p + r(1− p)) + x(1− r)(1− p)
The fitness of the S type:
wS = y.P (S|S) + z.P (A|S) = y(1− r)p + z(1− (1− r)p)

As before the conditions for the evolution of the A type would be given
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by the value of wA − wS , which is given by c + rb in the case of the
Prisoners Dilemma, and c+ rb+d(r+ (1r)p) in the case of the synergy
game.

Rational analysis.

A S
A w wr + x(1− r)
S zr + y(1− r) z

Figure 13. 2x2 game – Grafen payoffs

We turn to the rational analysis of the general game for players with
Grafen utility functions (fig. 13). Note p the probability that a player
plays the strategy A.

The expected utility of a player choosing A is:
U(A) = w.p+(wr+x(1−r)).(1−p) = w(p+r(1−p))+x(1−r)(1−p)
The expected utility of a player choosing S is:
U(S) = (zr + y(1− r)).p + z.(1− p) = y(1− r)p + z(1− (1− r)p)

A is the player’s unique rational choice iff U(A) > U(S). But we see
that the expressions of U(A) and U(S) are identical to the expressions
of wA and wS (respectively). Their difference will thus be given by the
same expression as well. As a consequence, the conditions under which
A evolves under natural selection are the same as the conditions for
which A would be the rational choice for a player who maximises a
Grafen utility function. QED

3-player public good game

We now consider the public good game represented in fig. 8. Under
which conditions would the A type evolve? Individuals are now diploid:
A types are homozygous for the altruistic allele and B types heterozy-
gous. The formula for the relatedness coefficient thus becomes, in the
case of an agent of a A type:

r =
P (A|A)+ 1

2
P (B|A)−p

1−p
Which gives: P (A|A) + 1

2P (B|A) = (1− r)p + r

For a B type, we get:

r =
P (A|B)+ 1

2
P (B|B)−p

1
2
−p

Which gives: P (A|B) + 1
2P (B|B) = (1− r)p + r

2
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The fitnesses of the various types are as follows.
Type A: wA = 4.P (A|A) + 2.P (B|A) + 0.P (S|A) = 4(r + (1− r)p)
Type B: wB = 3.P (A|B) + 2.P (B|B) + P (S|B) = 2((1− r)p + r

2) + 1
Type S: wS = 2

As a result, we obtain:
wA > wB iff p > 1−3r

2(1−r)
wA > wS iff p > 1−2r

2(1−r)

QED
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