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Large deviations for the KPZ equation from the KP equation

Pierre Le Doussal
Laboratoire de Physique de l’École Normale Supérieure, PSL University,

CNRS, Sorbonne Universités, 24 rue Lhomond, 75231 Paris, France.

Recently, Quastel and Remenik1 [arXiv:1908.10353] found a remarkable relation between some
solutions of the finite time Kardar-Parisi-Zhang (KPZ) equation and the Kadomtsev-Petviashvili
(KP) equation. Using this relation we obtain the large deviations at large time and at short time
for the KPZ equation with droplet initial conditions, and at short time with half-Brownian initial
conditions. It is consistent with previous results and allows to obtain sub-leading corrections, as
well as results at intermediate time. In addition, we find that the appropriate generating function
associated to the full Brownian initial condition also satisfies the KP equation. Finally, generating
functions for some linear statistics of the Airy point process are also found to satisfy the KP property,
and consequences are discussed.
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I. INTRODUCTION

The Kardar-Parisi-Zhang equation2 in one dimension is a continuum model for the stochastic growth of the height
field h(x, t), x ∈ R, as a function of time t, of an interface between two phases in a two dimensional geometry. It reads

∂th = ∂2
xh+ (∂xh)2 +

√
2 ξ(x, t) (1)
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in the units chosen here, where ξ(x, t) is a unit Gaussian space-time white noise. It maps to the equilibrium statistical
mechanics problem of a directed polymer in a d = 1 + 1 random potential3, of partition function Z(x, t) = eh(x,t),
which satisfies the stochastic heat equation (SHE)

∂tZ = ∂2
xZ +

√
2 ξ(x, t)Z (2)

defined here with the Ito prescription. Three initial conditions (IC) have been much studied (i) the flat IC Z(x, t = 0) =
1, (ii) the droplet IC, Z(x, t = 0) = δ(x), and (iii) the Brownian IC, Z(x, t = 0) = eBL(x)+wLxθ(−x)+eBR(x)−wRxθ(x)
where BL,R(x) are two unit half-sided Brownian motions with BL,R(0) = 0. The case wL,R → 0 is of special interest
as it corresponds to the stationary IC.

The KPZ equation is at the center of a vast universality class, the KPZ class, which, in one dimension (to
which we restrict here), contains a number of solvable discrete models for e.g. growth4–6, particle transport7,8, or
polymers9. Exact solutions have also been obtained for the one-point cumulative distribution function (CDF) of the
height at arbitrary time for the KPZ equation, for the three aforementioned special initial conditions10–22. These
results exhibit universal convergence at large time, upon scaling h with t1/3 and space x with t2/3, to Tracy-Widom
(TW) type distributions23, the precise type depending on the class of initial conditions, specifically the GOE-TW
distribution for flat IC, the GUE-TW distribution for droplet IC and the Baik-Rains distribution4 for stationary KPZ.

Recently, a very detailed characterization of the universal KPZ fixed point, which governs the infinite time limit of
all models in the KPZ class, has been obtained from the large time asymptotics of the TASEP model, for essentially
arbitrary deterministic initial condition24,25. The single-time, multi-point CDF of the (properly scaled) height field
h(x, t) was expressed as a Fredholm determinant (FD) with a Airy type kernel, quite complicated and non explicit
for general IC (formally constructed from a Brownian scattering operator) but which simplifies into explicit forms for
a number of cases. In parallel, asymptotic results were also obtained for the TASEP and the KPZ class on a finite
size periodic ring26–29.

More recently, from the general FD form, Quastel and Remenik showed1 that the CDF of the (properly scaled)
height field can be related to solutions of a well known equation in the theory of integrable systems, the Kadomtsev-
Petviashvili (KP) equation (for the one-point CDF) and the KP matrix equation for the multi-point CDF. This
remarkable result, which holds for the KPZ fixed point, i.e. for the infinite time limit of the typical fluctuations of
the height field, was termed ”completely unexpected”. The appearance of KP-like solitons in the description of the
KPZ fixed point was also pointed out in26.

Even more surprising, it was noted that the finite-time solution of the KPZ equation itself can be related (for
arbitrary time) to the KP equation. This was obtained in Ref.1 for the droplet and half-Brownian initial conditions.
More precisely, let us define the following generating function for the KPZ height at one point x and time t, equivalently
the Laplace transform of the probability distribution function (PDF) of Z(x, t),

G(x, t, r) =
〈

exp(−eh(x,t)+ t
12−r)

〉
=
〈

exp(−Z(x, t)e
t
12−r)

〉
(3)

where 〈· · · 〉 denotes the average w.r.t. the KPZ noise ξ(x, t). It was shown a while back, using e.g. the replica Bethe
ansatz, that this generating function can be calculated exactly for all t, as a Fredholm determinant (FD), for the
droplet IC10–14 and for the half-Brownian IC17,18 , that is (on x > 0) Z(x, t = 0) = eB(x)−wxθ(x). It was obtained in
Ref.1, using the FD expressions, that the following function φ(r, x, t) of three variables

φ(x, t, r) = ∂2
r logG(x, t, r) (4)

obeys the KP equation

∂tφ+ φ∂rφ+
1

12
∂3
rφ+ ∂−1

r ∂2
xφ = 0 (5)

The question of the initial condition is somewhat subtle and is discussed below. Note that for any fixed x, t, G(x, t, r)
increases from 0 (for r = −∞) to 1 (for r = +∞), hence logG(x, t, r) ≤ 0 is increasing, i.e. ∂r logG(x, t, r) is positive
and G(x, t, r) and its derivatives w.r.t. r vanish at r = +∞.

The unexpected result (4)-(5) opens many questions, and we wish to address some of them here. We also wish
to open the new toolbox that it provides. We first show that one can easily recover recent results about the large
deviations for the KPZ equation, directly from the KP equation, and obtain a bit more. Large deviations mean
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rare fluctuations, away from the well-studied typical fluctuations H ∼ t1/3. There are two limits of interest, large
time t � 1 and short time t � 1. It was shown that for droplet IC, the PDF of the (shifted) one point height
H = h(x, 0) + t

12 , takes at large time, and in the scaling region H ∼ t, the large deviation form30

P (H, t) ∼ exp(−t2Φ−(
H

t
)) (6)

This holds for the left large deviation tail H/t < 0 (similar results hold for the right tail, with a different rate, not
addressed here). The exact rate function Φ−(z) was obtained by four different, and non-trivial methods involving:
(i) the WKB limit of a non-local Painleve equation31 (ii) the free energy of a Coulomb gas perturbed at the edge32

(iii) a variational formula using the stochastic Airy operator33, (iv) a summation of the short time expansion using
cumulants34 (see related rigorous results for the tails in35). In Ref.36 it was found how the four methods can be
related and extended to treat a broader class of problems, involving linear statistics of the eigenvalues at the edge of
the β-random matrix ensembles (described by the Airy2 point process). Here we show that (6), together with the
exact expression for Φ−(z), arise quite naturally from the analysis of the KP equation, henceforth providing a fifth
method. In addition, we extract the subleading corrections at large time.

At short time t � 1, it was shown that the large deviations occur in the regime H ∼ O(1) (while the typical
fluctuations are H ∼ t1/4) and take, quite generically, the form

P (H, t) ∼ exp(−Φ(H)√
t

) (7)

The rate function Φ(H) was (i) calculated from exact solutions for droplet IC, Brownian IC and for some half-space
cases37–41, (ii) related to solutions of (saddle point) differential equations using the weak noise theory, allowing to
extract the exact asymptotics of Φ(H) at large |H| for a variety of IC42–52. Both methods were found to be consistent,
and the results were also tested in very high precision numerical simulations53–55. The first method proceeds by first
showing that at small time, for e.g. the droplet IC one has, for any z > 0〈

exp(−ze
H

√
t

)
〉
∼ exp(−Ψ(z)√

t
) , Ψ(z) =

−1√
4π

Li5/2(−z) (8)

with H = h(0, t) + 1
2 log t. The rate function Φ(H) is then obtained via a (quite subtle) Legendre transform. In

Ref.34, we further calculated, for droplet IC, the subleading terms in the exponential in the r.h.s. of (8), which takes

the form of the series 1√
t
Ψ(z) +

∑
p≥1 t

p−1
2 Ψp(z), up to a very high order, O(t3).

To address the small time large deviations, we first write the property (4)-(5) in terms of equations satisfied
by the cumulants of Z(x, t). Using the known expressions for the first lowest cumulants, we check that these
equations are indeed satisfied for the droplet and the half-Brownian initial conditions (but not for the flat IC,
which thus does not seem to be simply related to KP). One finds that, at short time, the non-linear term in the
KP equation enters only perturbatively. This allows to determine iteratively the subleading terms in the r.h.s.
of (8) in terms of only the leading one, Ψ(z). This procedure very efficiently recovers the systematic expansion
obtained in Ref.34, and allows to go beyond. This in itself, provides a strong test of the KP property. However, we
find that for the droplet IC the initial data problem is subtle, i.e the leading term, Ψ(z), remains undetermined.
Specifying this large deviation rate function is equivalent to specifying the amplitudes of the ∼ 1/

√
t leading

short time behavior for each cumulant of Z(0, t). This thus appears as the initial data one must input in the KP
equation. This subtlety is not so surprising, since the droplet IC, Z(x, 0) = δ(x), needs some regularization, see below.

In Section II E, we provide a bridge between the short time and the large time large deviations. This is achieved
through a summation of cumulants, initiated in Ref.34, and that we push here, thanks to the KP equation, to the next
subdominant order. We show that it is equivalent to a semi-classical expansion, which takes the form of a perturbative
expansion in the third derivative in the KP equation, whose leading order amounts to solve the Burgers equation.

The generating function (129) of the KPZ equation with droplet initial condition can be put in the form G(x, t, r) =

Ĝ(t, r + x2

4t ), where Ĝ(t, r) satisfies a reduced version of the KP equation (known as cylindrical KdV equation). We
show that the KPZ equation with droplet IC is only one particular solution of a more general class of solutions, which
encode for some linear statistics of the Airy2 point process (denoted aj)

Ĝ(t, r) = logEAi[exp
( ∞∑
j=1

f(t1/3aj − r)
)
] (9)
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This generating function was studied in Refs.34,36 (see definitions in Eqs (30-32) there), and f(x) is a fairly general
function, the special choice f(x) = − log(1 + ex) corresponds to the KPZ equation. We show here that for any g(x)

(where it exists), ∂2
r log Ĝ(t, r) satisfies the reduced KP equation, see Remark 2. below, and the Appendix E for the

general analysis of a family of FD which satisfy the KP equation. This allows for a semi-classical expansion of the
linear statistics of the Airy2 point process using the KP equation, discussed in Appendix C.

Next, we consider the half-Brownian initial condition. There, using the KP equation, we obtain in the short time
limit t� 1, with x̃ = x/

√
t and w̃ = w

√
t being kept fixed

G(x, t, r) '
〈

exp(−ze
H

√
t

)
〉
∼ exp(−

Ψw̃(x̃ = x√
t
,
√
tz))

√
t

(10)

with H = h(x, t) + 1
2 log t, together with an explicit expression for Ψw̃(z, x̃), see (158) and (160). Further taking

the limit w̃ → +∞ we finally obtain the result (8) for the droplet IC. Hence the half-Brownian solution to the KP
equation, which is well defined at t = 0, can be used to regularize the droplet solution at small time.

Finally, comparing the equations that the cumulants of Z(x, t) must obey so that KP holds, and the known
expressions for these cumulants, e.g. from the replica Bethe ansatz, we identify the mechanism of solvability, see
Section III and Appendix B . It then implies that any IC which has a ”decoupled” overlap with the Bethe eigenstates
will similarly obey the KP equation. This is the case for the droplet and the half-Brownian IC, but since this is also
the case for the full Brownian initial condition, we conclude that the full Brownian IC does also satisfy KP. More
precisely, using an appropriately modified generating function G̃, φ = ∂2

r log G̃ must satisfy KP. We check explicitly
this conjecture by comparing with the known small time large deviation rate function for the Brownian IC obtained
in Ref.38.

Note that the original theorem for the CDF of the KPZ fixed point obeying KP was shown a priori only for
deterministic initial conditions. The fact that the KPZ equation with random IC (Brownian and half-Brownian) also
obeys KP is thus a quite interesting development56.

Note added. In a recent preprint57, simultaneous with the first version of this work, Cafasso and Claeys obtain yet
another derivation of the KPZ large deviation left tail using Riemann-Hilbert (RH) methods. These methods allow
for a rigorous proof of the asymptotics. In Remark 4 below we compare with our results. Their formula also applies
to intermediate times. We show in Section II F that intermediate time results can also be obtained from the KP
equation59.

II. DROPLET INITIAL CONDITION

A. Space-independent, reduced KP equation

We start with the droplet initial condition Z(x, t = 0) = δ(x). We first use the statistical tilt symmetry to eliminate

the spatial variable x. For the droplet IC it is well known that h(x, t) ≡ h(0, t) − x2

4t where ≡ means identity in law
of the one point distributions. Hence one can write

G(x, t, r) =
〈

exp(−eh(0,t)− x24t + t
12−r)

〉
= Ĝ(t, r +

x2

4t
) , φ(x, t, r) = ∂2

rG(x, t, r) = ψ(t, r +
x2

4t
) (11)

where we now denote

Ĝ(t, r) = 〈exp(−eh(0,t)+ t
12−r)〉 , ψ(t, r) = ∂2

r log Ĝ(t, r) (12)

Here Ĝ is the standard generating function for the height at x = 0. Injecting the form (11) into (5) one obtains, after
some cancellations, a reduced KP equation

∂tψ + ψ∂rψ +
1

12
∂3
rψ +

1

2t
ψ = 0 (13)

Note that this equation can be integrated once, with ψ(t, r) = ∂rψ̂(t, r), i.e. it can also be written for the function

ψ̂(t, r) = ∂r log Ĝ(t, r), as

∂tψ̂ +
1

2
(∂rψ̂)2 +

1

12
∂3
r ψ̂ +

1

2t
ψ̂ = 0 (14)
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where the integration constant must vanish since ψ̂ = ∂r log Ĝ vanishes at r → +∞.

Remark 1. Eq. (13) is also called the cylindrical Korteweg-de Vries (KdV) equation (up to a rescaling of
coefficients). Upon the change of variable (with b > 0)

ψ(t, r) =
r

2t
+
B

2t
u(y, τ) , r = −y

τ
, t =

b

τ2
(15)

it is transformed into the standard KdV equation60

∂τu+
b

6
∂3
yu+Bu∂yu = 0 (16)

The canonical form is obtained for b = 6 and B = −6, and the form b = 1
2 , B = 1 arises in the description of the

KPZ fixed point for flat IC1. Note that in the forthcoming paper58, the KdV equation (16) is derived for the general

case of Ĝ(t, r) defined as in (9) using the Riemann-Hilbert setting proposed in57.

B. Checks and moment expansion

We can now perform a few checks. The function ψ(t, r), from its definition (12), admits an expansion in powers of
e−r (e.g. for large positive r) whose coefficients are related to the cumulants Zn(t) = 〈Z(0, t)n〉c of the solution to
the SHE, as

ψ(t, r) =
∑
n≥1

(−1)nn2

n!
Zn(t)e

nt
12−nr (17)

using that Z(x, t) = eh(x,t). Inserting into (13), we find that the reduced KP equation implies that the cumulants
Zn(t), n ≥ 1, must satisfy the following recursion relation

−∂tZn(t) +
n3 − n

12
Zn(t)− 1

2t
Zn(t) = − (n− 1)!

2

∑
n1+n2=n,n1,n2≥1

n2
1n

2
2

n1!n2!
Zn1

(t)Zn2
(t) (18)

Before performing some simple checks that the known expressions for the Zn(t) do indeed satisfy this equation, we first
ask whether this recursion determines the Zn(t). The answer is that this recursion determines iteratively the Zn(t),
except that at each level n ≥ 1 there is an unknown integration constant cn, since the solution to the homogeneous

part of (18) is Zhom
n (t) = cn√

t
e

1
12 (n3−n)t. Let us examine the two lowest orders from (18)

−∂tZ1(t)− 1

2t
Z1(t) = 0 (19)

−∂tZ2(t) +
1

2
Z2(t)− 1

2t
Z2(t) = −1

2
Z1(t)2 (20)

The first equation gives Z1(t) = c1/
√
t. We known that, upon averaging the SHE (with the Ito convention), the first

moment 〈Z(x, t)〉 satisfies the standard heat equation. Hence, for droplet IC one has 〈Z(x, t)〉 = 1√
4πt

e−
x2

4t , i.e. the

free diffusion kernel, and one must have Z1(t) = 〈Z(0, t)〉 = 1√
4πt

, which determines c1 = 1/
√

4π. The general solution

to the second equation is then

Z2(t) = et/2(
c2√
t

+
1

4
√

2πt
Erf(

√
t

2
)) (21)

On the other hand, the result of the Bethe ansatz calculation, i.e. Eq. (11) in Ref.10, is

Z2(t) =
1

4

1√
2πt

et/2(1 + Erf(

√
t

2
)) (22)

The two formula (21) and (22) are indeed consistent, provided we choose the integration constant c2 = 1
4
√

2π
. It is easy,

but tedious, to check from the Bethe ansatz results, that a similar pattern holds for higher cumulants (see Appendix
B for related checks). Hence we conclude that the coefficients cn play the role of the initial data. Equivalently, one

can characterize the initial data by specifying the small time t limit as Zn(t) ' c′n√
t

(with, as we checked here c′n = cn
for n = 1, 2).
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C. Short time large deviation expansion

It turns out that the coefficients c′n are known, they were obtained in the large deviation analysis of the KPZ
equation at short time in Ref.37. It was shown there that as t→ 0

log Ĝ(t, r) ' − 1√
t
Ψ(z = e−r) , Ψ(z) =

−1√
4π

Li5/2(−z) (23)

Hence the short time behavior of ψ(t, r) in (17) must be as ∼ 1√
t
, uniformly in r, with

ψ(t, r) ' − 1√
t
∂2
rΨ(z = e−r) =

1√
4πt

Li1/2(−e−r) = − e−r√
4πt

+
e−2r

2
√

2πt
+O(e−3r) (24)

This is consistent with the terms n = 1, 2 in (17) and the values c′1 = c1 = 1/
√

4π, c′2 = c2 = 1
4
√

2π
obtained above

(since at small t one can set the factor e
nt
12 to unity to the leading order). The equation (24) determines all the c′n,

hence the initial data.

Let us backtrack one step and ask whether one can obtain the full small time expansion from the KP equation ? In
Ref.34 it was shown that (23) was just the leading order of a systematic short-time expansion in powers of

√
t. Hence

we will look for the form

ψ(t, r) =
1√
t
∂r

(
p0(r) +

∑
m≥1

pm(r)t
m
2

)
(25)

and insert it in the reduced KP equation (13). It gives a recursion (see Appendix A) which can be solved in a
hierarchical way

p1(r) = −p′0(r)2 (26)

p2(r) = −p′0(r)p′1(r)− 1

12
p′′′0 (r) = ∂r(

2

3
p′0(r)3 − 1

12
p′′0(r)) (27)

and so on (here and below we use indifferently the notations ∂rp(r) ≡ p′(r)). We note that p0(r) is left undetermined,
but all the pi(r) with i ≥ 1 are obtained from p0(r). We will thus consider p0(r) as an ”initial condition” and set it
equal to the known result

p′0(r) =
1√
4π

Li1/2(−e−r) (28)

We can now compare with the result from Ref.34, obtained through a quite complicated calculation directly ex-
panding the FD. The relevant formula there are (5), (30), (58), (61), (62). We check that

ψ(t, r) = ∂2
rqt,β=1(σ) , σ = −e−r , σ∂σ = −∂r (29)

with qt,β=1 there equals log Ĝ here, and the following functions were introduced there

Li(σ) =
1√
4π

Li 3
2−i

(σ) , σ∂σLi = Li+1 (30)

Let us check here the first two terms. One has p′0(r) = L1(−e−r) hence (25) and (26) lead to

ψ(t, r) =
1√
t

(
L1 −

√
t∂rL2

1 + t∂2
r (

2

3
L3

1 −
1

12
∂rL1) +O(t3/2)

)
(31)

where Li ≡ Li(−e−r). Using that −∂rLi = Li+1 and comparing with (58) and (62) in Ref.34 we see that it agrees.
In the Appendix A we have checked terms to a much higher order, we recover all terms displayed in Ref.34 and show
one order more, i.e. the term O(t7/2). The present method is clearly much faster.

The conclusion of this subsection is that the KP equation allows to recover easily the full systematic short time
expansion for the KPZ generating function with droplet IC, obtained in Ref.34 from the FD, provided it is given as
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an input, i.e. initial data, the leading term (28) for the large deviations which encodes the limits c′n = limt→0 t
1/2Zn(t).

Remark 2. It is interesting to note that in Ref.34 we have considered a more general problem, the evaluation of
the following linear statistics over the Airy2 point process ai (see definitions and Eq. (30) and (32) there)

qt,β(σ) = logEAi

[
exp

β ∞∑
j=1

g(σet
1/3aj )

] = log Det[I − (1− eβĝt,σ )KAi] (32)

ĝt,σ(a) = g(σet
1/3a) (with g(−ex) = f(x) as defined in the introduction). It leads to exactly the same expansion of

qt,β(σ) in terms of the Li, i.e. all coefficients being independent of the choice of the function g(x), where now

Li ≡ Li(σ) =
β

π
(σ∂σ)i+1

∫ +∞

0

dx
√
xg(σe−x) = β(σ∂σ)i

∫ +∞

−∞

dp

2π
g(σe−p

2

) (33)

and the case of the KPZ equation is recovered for the choice g(x) = gKPZ(x) = − log(1− x). The important remark
is thus that once the ”initial condition”

p′0(r) = L1(−e−r) (34)

is specified, then the hierarchy of equations for the pm(r) that we derived from the simplified KP equation, yields
exactly the same result for the pm(r) as a function of the Li(σ = −e−r) as for the KPZ case. Hence it appears that
for this more general problem φ(t, r) = ∂2

rqt,β(σ = −e−r) does satisfy also the KP equation, although with a different
initial condition. This is shown here in Appendix E using properties of FD. Note that, strictly, this holds only if the
chosen function g(x) is itself time-independent (hence, it does not apply a priori to the developments in Section V B
in Ref.34, although we do find an application below, see also Appendix C).

Of course, considering (32) is a natural extension, once the conditions for a FD to lead to KP have been identified,
i.e. some conditions were given in Ref.1 (see also Appendix E here). However the question of the initial condition was
not discussed there, and it is enlightening to see how it works out on the small time expansion.

D. Large time large deviations

1. Leading order

We now study the large time limit, and search for a left tail large deviation form of the type (6), in the limit where
both −r, t→ +∞ with z = r/t < 0 fixed, that is

log Ĝ(t, r) = log〈exp(−eh(0,t)+ t
12−r)〉 = −t2Φ−(z) + o(t2) , r = zt (35)

where one must have Φ−(z) ≥ 0 and Φ′−(z) ≤ 0 since log Ĝ is a negative increasing function of r. Also one must

have Φ−(0) = 0 since the regime of typical fluctuations, r ∼ t1/3, correspond to z = 0. It is useful to note that the
generating function can also be written as

log〈exp(−eH−r)〉 = Prob(H + γ < r) (36)

where γ is a unit Gumbel variable, i.e. of CDF Prob(γ < a) = e−e
−a

, independent of H (here H = h(0, t) + t
12 ).

Hence in the limit t→ +∞ one has log〈exp(−eH−zt)〉 ' log Prob(Ht < z) and (35) is equivalent to (6).

Eq. (35) implies that we must search for the following scaling form for ψ(t, r) in that limit

ψ(t, r) = ∂2
r log Ĝ(t, r) = H0(

r

t
) , H0(z) = −Φ′′−(z) (37)

Substituting this form into the reduced equation (13), we find that H0(z) must satisfy

1

2
H0(z)− zH ′0(z) +H0(z)H ′0(z) = 0 (38)

where we can neglect the third derivative term
H′′′0 (z)

12t2 in the large time limit. One can also write the integrated

version inserting ψ̂(r, t) = −tψ̂0(H/t) + o(t) into (14), with ψ̂0(z) = −Φ′−(z) and H0(z) = ψ̂′0(z). The resulting
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equation is 3
2 ψ̂0 − zψ̂′0 + 1

2 (ψ̂′0)2 = 0, i.e the integrated version of (38), with the integration constant automatically

fixed from (14), a constraint which can be written −3Φ′−(0) + Φ′′−(0)2 = 0. Given that Φ′−(z) must be negative it
implies that Φ′−(0) = Φ′′−(0) = 0.

The general solution of this equation with H0(0) = 0 and which is real for any z < 0 reads

H0(z) =
1

Aπ2
(1−

√
1−Aπ2z) =

z

2
+
Aπ2

8
z2 +O

(
z3
)

(39)

where A > 0 is a constant, as yet undetermined. The factor π2 has been introduced for convenience. The + branch
is also solution but leads to H(0) = 2/(Aπ2) and can be discarded. Note that H0(z) = z/2 is also a solution,
corresponding to A = 0. Let us now integrate twice to obtain Φ−(z), using that Φ−(0) = Φ′−(0) = 0, leading to

Φ−(z) =
4

15π6A3

(
(1−Aπ2z)5/2 − 1

)
− z2

2π2A
+

2z

3π4A2
= − 1

12
z3 +O(z4) (40)

This is precisely the known result from the four methods31–34, if we choose A = 1. Note that the result at small
z < 0, Φ−(z) 'z→0 − 1

12z
3, is obtained independently of the choice for A. This result can also be obtained30 by

matching with the cubic tail of the Tracy Widom GUE distribution, from the regime of typical fluctuations r ∼ t1/3,
assuming no intermediate regime (which seems to be indeed excluded by the present analysis).

Hence the KP equation provides a fifth and easy method to determine the large deviation function for the left
tail. The only remaining question is thus how to determine the constant A. It can be set by the outer tail Φ−(z) '

4
15π (−z)5/2 at large z < 0 which can be obtained from the simplest and first term in the cumulant expansion32,34,36,39,
which, by Jensen’s inequality, is also an exact upper bound for Φ−(z). Equivalently, the constant A can be determined
from the structure of the short time expansion (which is a cumulant expansion). This was used in34 to obtain the
full function Φ−(z). We will implement that program below within the KP equation approach (in Section II E), and
show that indeed the constant A = 1 by relating the short time and large time behaviors.

2. Subleading orders

We can now search for a systematic large time expansion in the large deviation regime, of the form

log Ĝ(t, r) = log〈exp(−eh(0,t)+ t
12−r)〉 = −t2Φ−(

r

t
)− tΦ1(

r

t
)− Φ2(

r

t
) + . . . (41)

We thus insert in (13) the expansion

ψ(t, r) = ∂2
r log Ĝ(t, r) =

∑
m≥0

t−mHm(r/t) , ψ̂(t, r) = ∂r log Ĝ(t, r) =
∑
m≥0

t1−mψ̂m(r/t) (42)

We find the following equation for H1(z)

(H0(z)− z)H ′1(z) +H1(z)(H ′0(z)− 1

2
) = 0 (43)

and the integrated version 2ψ̂′1(z − ψ̂0) = ψ̂1 (which fixes ψ̂1(0) = −Φ′1(0) = 0). This leads to

H1(z) =
a1√

1−Aπ2z
, ψ̂1(z) =

2a1

Aπ2
(1−

√
1−Aπ2z2) (44)

where a1 is undetermined and A was discussed in the previous Section. It leads to

Φ1(z) =
4a1

3π4A2
(1−

(
1− π2Az

)3/2
)− 2a1z

π2A
= −a1

2
z2 +O(z2) = −4a1(−z)3/2

3π
√
A

+O(z) (45)

where we have used that Φ1(0) = 0. Indeed by matching to the typical regime we want tΦ1(st−2/3) to be at most of
order unity at large t, hence Φ1(z) is at most |z|3/2 which implies Φ1(0) = Φ′1(0) = 0.
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However it turns out, as we see below from the examination of the cumulants in the short time expansion, that in
fact a1 = 0 for the KPZ equation. It can already be guessed from considering the subleading term in the small time
expansion

log Ĝ(t, r) ' 1√
4πt

Li5/2(−e−r) = − 1√
t
(

4

15π
(−r)5/2 +

π

6

√
−r + . . . ) (46)

substituting r = zt, the first term is O(t2) and the second is O(1), the O(1/t) term proportional to (−z)3/2 is missing.
We have used for x→ +∞ and ν > 3/2, see Ref.73

Liν(−x) = − (log x)ν

Γ(ν + 1)
− π2

6

(log x)ν−2

Γ(ν − 1)
+ . . . (47)

The complete argument for a1 = 0 is made below. Note however that for the more general problem defined in
Remark 2 above, this constant is not necessarily zero.

Let us consider the next correction. Setting a1 = 0, i.e. H1(z) = 0, the equation for H2(z) is

H2(z)(H ′0(z)− 3

2
)− zH ′2(z) +H0(z)H ′2(z) +

1

12
H ′′′0 (z) = 0 (48)

and its integrated version − 1
2 ψ̂2 + (ψ̂′0 − z)ψ̂′2 + 1

12 ψ̂
′′′
0 = 0. We obtain the solution (from now on we set A = 1, its

value for the KPZ equation, see above Sections)

H2(z) =
96a2

(
1− π2z

)3/2
+ π4

(
2− 3

√
1− π2z

)
96 (π2z − 1)

2 (√
1− π2z − 1

)2 , ψ̂2(z) =
96a2

(
π2z − 1

)
+ π4

48π2 (π2z − 1)
(√

1− π2z − 1
) =

1
24 −

4a2
π4

z
+O

(
z0
)

(49)

where a2 is undetermined and we note that for general a2 the function ψ̂2(z) = −Φ′2(z) diverges at z = 0. This leads
to

Φ2(z) =
192a2

√
1− π2z − 2

(
π4 − 96a2

)
log
(√

1− π2z − 1
)

+ π4 log
(
1− π2z

)
48π4

+ b (50)

where b is an (undetermined) integration constant. The constant a2 is determined below from the cumulant expansion

and is found to be a2 = π4

24 . With this value of a2 we find that at small z → 0− one has

Φ2(z) ' 1

8
log(−z) +

4 + log π6

8

24
+ b− 7π2z

96
+O

(
z2
)

(51)

One could try to match this result to the left tail asymptotics of the Tracy Widom GUE distribution, recalled in

(114) below, which gives, naively, logF2(s = zt2/3) ' − t2

12 |z|
3 − 1

8 log(|z|t2/3) + C. The first term is the correct

leading small |z| behavior of Φ−(z), as discussed above, and the second term, i.e. the − 1
8 log |z| does agree indeed

with (51) and (41). Furthermore, it is clear that b could also be time dependent, and contain a log t term (which

disappears in taking the derivative ψ̂(t, r)). This makes the matching of the remaining O(1) term delicate, i.e. the
constant part of Φ2(z) at small z, especially in view of the following remark.

Remark 3. Having determined the subdominant rate functions for the generating function in (41), we would like
to translate it into large deviation rate functions for the probability for H. Tentatively, one would search for a formula
of the type, at large t,

log Prob(H ≤ zt) ' −t2Φ−(z)− t Φ̂1(z)− Φ̂2(z) + . . . (52)

While it is clear that the leading order involves the same function Φ−(z) as in (41), determining the
subleading orders is more delicate. First, there is a useful upper bound from the Markov inequality

log Prob(H ≤ zt) = log Prob(e−e
H−zt ≥ 1

e ) ≤ log〈exp(−eH−zt)〉 + 1. If the form (52) holds, it would imply

Φ̂1(z) ≥ Φ1(z) = 0, and Φ̂2(z) > Φ2(z) + 1. Second, if one follows Ref.61 (Section 3.1) one has the lower bound

Prob(H ≤ zt) ≥ 〈exp(−eH−z̃t)〉 − e−e
t(z−z̃)

, for any z̃. The best one can do is choose z̃ ' z − 1
t log(Ct2)

and obtain a bound of the type log Prob(H ≤ zt) ≥ −t2Φ−(z̃) − Φ̂2(z̃) − a where a > 0. Inserting
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−t2Φ−(z̃) ' −t2Φ−(z) + tΦ′−(z) log(Ct2). Hence it does not produce any useful lower bound on Φ̂1(z) (and
even suggests a possible O(t log t) term).

Remark 4. In the very recent preprint57 the following asymptotics is obtained by completely different methods

log Ĝ(t, r) = −t2Φ−(
r

t
)− 1

6

√
1− π2r

t
+O(log2(|r|/t1/3)) +O(t1/3) (53)

holds uniformly in M−1 < t < M2/3r as s = −r/t1/3 → +∞. In the region studied here, both −r, t → +∞ with
r/t = z < 0 fixed, this agrees with our leading order O(t2) result (the function Φ−(z) is the same). It also agrees with
our conclusion that our O(t) result, i.e. the function Φ1(z), vanishes. However it does not allow for a comparison of
our O(1) result, since corrections terms in (53) are larger. However formula (53) also holds for t fixed (e.g. of order
O(1)) with r → −∞, which goes beyond the results of this Section, but is discussed again in Section II F.

E. Matching small time and large time: the cumulants

As we discovered above, inserting the expected scaling forms for the large time large deviation rate functions into the
reduced KP equation, allows to determine their form up to a few unknown constants (A, c1, c2 above). To determine
those, we return to the small time expansion, and pursue the program started in Ref.34. There the following expansion
in cumulants was considered62 (see Eqs. (129) to (132) there)

log Ĝ(t, r) =
∑
n≥1

1

n!
κn(t, r) (54)

where log Ĝ(t, r) = qtβ(σ = −e−r) there, for the choice g(x) = gKPZ(x), β = 1, but it holds more generally, see Remark
2. The cumulant κn(t, r) re-groups all terms of degree n in the expansion studied above, i.e. it is by definition a
homogeneous polynomial of total degree n in p′0(r) = L1 and its derivatives −∂rLi = Li+1. Each cumulant has the
following short time series expansion in t

κn(t, r) = t
n
2−1κ0

n(r) +
∑
p≥1

t
n
2−1+pκpn(r) (55)

The form of the leading term was found exactly in Ref.34 (see below) and shown to sum up to produce the large time
large deviation function Φ−(z) studied above. Here we recover the result for κ0

n(r) from the KP equation, and obtain
the next subleading term κ1

n(r).

Let us recall the iterative solution for the functions p′m(r) defined in (25) corresponding to the term of order t
m−1

2

in the small time expansion of ψ(t, r) = ∂2
r log Ĝ(t, r). We see from e.g. (26) (see also Appendix A) that the structure

of the result for the pm is a polynomial in p′0 and derivatives of the form (schematically, we only indicate the degree
in p′0 and the total number of derivatives)

p′m = (∂r)
m(p′0)m+1 + (∂r)

m+1(p′0)m−1 + . . . (56)

The leading term corresponds to κ0
m+1, the second one to κ1

m−1, and so on. Below we will denote p′m = p0′
m+p1′

m+ . . .
the above decomposition.

We will thus introduce the following expansion for ψ(t, r)

ψ(t, r) = ψ0(t, r) + ψ1(t, r) + . . . , ψp(t, r) = ∂2
r

∑
n≥1

κpn(t, r)

n!
(57)

where ψ0(t, r) corresponds to κ0
n, ψ1(t, r) corresponds to κ1

n, and so on. This expansion corresponds to treating
perturbatively the third derivative term in the reduced KP equation (13) and can be called semi-classical expansion.
The leading term is thus obtained by neglecting the third derivative term in (13), i.e. solving

∂tψ0 + ψ0∂rψ0 +
1

2t
ψ0 = 0 (58)

This is precisely the equation which was solved in Section II D 1, but only in the large t, large r < 0 limit, using the
large deviation ansatz ψ(t, r) ' H0(r/t) with H0(z) = −Φ′′−(z) leading to Eq. (38). Here we provide a more complete
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solution, valid at all time t and r. We will do it by two methods (i) a series expansion, allowing to recover the result
of34 (ii) a mapping to Burgers equation, which is reminiscent of what was found in36 and allows to calculate easily
the next subleading term. Our result leads to a better understanding of how the small time and large time large
deviations are related.

The first method is to search for a solution of (58) as a series expansion at small time of the form ψ0(r, t) =∑
m≥0 p

0′
m(r)t

m−1
2 . This leads to the simplified recursion for m ≥ 0

m+ 1

2
p0
m+1 +

1

2

∑
m1+m2=m,m1≥0,m2≥0

p0′
m1
p0′
m2

= 0 (59)

and one obtains exactly the p0′
m, m ≥ 0 as a function of p′0 as

p0′
m(r) =

2m

(m+ 1)!
(−1)m(∂r)

m(p′0(r))m+1 (60)

using the identity for m ≥ 0 for any function f(r)

∂mr f
m+2 =

1

2(m+ 1)

∑
m1+m2=m,m1≥0,m2≥0

(m+ 2)!

(m1 + 1)!(m2 + 1)!
∂m1
r fm1+1∂m2

r fm2+1 (61)

which is easily checked with Mathematica. The result (60) is exactly equivalent to the formula (132) in Ref.34, more

precisely p0′
m(r) equals ∂2

r
κ0
n(r)
n! with n = m+ 1, using σ = −e−r, σ∂σ = −∂r and L1 = p′0. Obtaining the subleading

term with that method is a bit tedious, so we now consider an equivalent, but more convenient method.

Let us first note that if we perform the following change of variable

ψ(t, r) =
1√
t
ψ̃(
√
t, r) (62)

then the reduced KP equation (13) becomes, for the function ψ̃(u, r)

∂uψ̃(u, r) + ∂r(ψ̃(u, r)2) +
1

6
u∂3

r ψ̃(u, r) = 0 , u =
√
t (63)

We can now again perform the perturbative expansion in the cubic derivative term and write, for p = 0, 1, ..

ψ(t, r) =
∑
p≥0

ψp(t, r) , ψp(t, r) =
1√
t
ψ̃p(
√
t, r) (64)

The leading term then obeys the Burgers equation

∂uψ̃0(u, r) + ∂r(ψ̃0(u, r)2) = 0 (65)

The general solution can be expressed as F (ψ̃0(u, r), r − 2uψ̃0(u, r)) = 0 for some function F (x, y). The solution of

interest here has ”initial condition” ψ̃0(u = 0, r) = p′0(r). It is thus given by

ψ̃0(u, r) = p′0(r − 2uψ̃0(u, r))⇒ ψ0(t, r) =
1√
t
p′0(r − 2tψ0(t, r)) (66)

By expanding at small t one can check that it produces the leading order of the cumulants as given above in (60).

The result (66) is quite general, see Remark 2. In the present case of the KPZ equation, using (28), ψ0(t, r) is
solution of

ψ0(t, r) =
1√
4πt

Li1/2(−e−r+2tψ0(t,r)) (67)

where we recall ψ0(t, r) = ∂2
r

∑
n t

n
2−1 κ

0
n(r)
n! is the summation of the leading term in the small time expansion of each

cumulant.



12

As was noticed in34 for large negative r ∼ zt, z < 0, the leading term in each cumulant κ0
n(r) allows to obtain the

large deviation function Φ−(z). From the large negative r asymptotics of the polylogarithm73 one has

p′0(r) =
1√
4π

Li1/2(−e−r) = − 1

π
(−r)1/2 +

π

24
(−r)−3/2 + . . . (68)

Inserting into (67) we obtain that the following limit exists, for z < 0

H0(z) = lim
t→+∞

ψ0(t, zt) (69)

and H0(z) obeys the self-consistent equation

H0(z) = − 1

π

√
−z + 2H0(z) ⇒ H0(z) =

1

π2
(1±

√
1− π2z) (70)

The correct branch (actually reached in the large time limit) is − and one recovers the result of the previous Section
for the large deviation function H0(z), with A = 1. This method thus relates the small and large time and allows to
determine the missing constant A = 1 for the large time large deviation rate function.

Let us now briefly consider the general case of the linear statistics discussed in Remark 2. For a general function
g(x) the leading term in the semi-classical expansion is given by (66), where the function p′0(r) is given by (34) and
(33). This case is studied in detail in Appendix C, where a connection with the Section V B in Ref.34 and with
the self-consistent equation in Ref.36 is obtained. It shows that there are other large time large deviation solutions
of the KP equation, of the form ψ(t, r) ' tα−1H0(r/tα), with continuously varying exponent α and function H0,
which corresponds to other functions g(x) in Remark 2 (and the ”monomial walls” in the Coulomb gas terminology
of Ref.36). The case of the KPZ equation is recovered for α = 1.

Let us now go back to the KPZ equation and study the subleading term. Inserting (64) into (63) we obtain the

following equation for ψ̃1(u, r)

∂uψ̃1(u, r) + 2∂r[ψ̃1(u, r)ψ̃0(u, r)] +
1

6
u∂3

r ψ̃0(u, r) = 0 (71)

It is more convenient to write ψ̃1(u, r) = ∂rφ(u, r), integrate once w.r.t. r and obtain the equation for φ

∂uφ(u, r) + 2ψ̃0(u, r)∂rφ(u, r) = −1

6
u∂2

r ψ̃0(u, r) (72)

which can be seen as a convection equation for a passive scalar φ(u, r) in the Burgers velocity field 2ψ̃0(u, r). It is
easy, and useful for later checks, to first extract the small u expansion of φ(u, r) from (72) and (66). One finds

φ(u, r) = − 1

12
u2∂2

rp
′
0(r) + u3∂r[

1

6
p0

(3)(r)p′0(r) +
1

12
p′′0(r)2] (73)

+u4∂r[−
2

3
p0

(3)(r)p′0(r)p′′0(r)− 1

6
p0

(4)(r)p′0(r)2 − 1

9
p′′0(r)3] +O(u5) (74)

To solve the equation (72) it is then natural to work in the variable u, ψ̃0 instead of u, r. Indeed one has, from the
solution (66) to Burgers equation

r = r(u, ψ̃0) = 2uψ̃0 + g(ψ̃0) , p′0(g(a)) = a (75)

where g is the inverse function of p′0. Let us define

φ̃(u, ψ0) = φ(u, r(u, ψ̃0) = φ(u, 2uψ̃0 + g(ψ̃0)) (76)

We now obtain an equation for this function. Taking a derivative w.r.t. u, one obtains, using the equation (72) for φ

∂uφ̃(u, ψ̃0) = ∂uφ(u, 2uψ̃0 + g(ψ̃0)) + 2ψ̃0 ∂rφ(u, 2uψ̃0 + g(ψ̃0)) = −1

6
u∂2

r ψ̃0(u, r) (77)

Let us evaluate the r.h.s. One has from (75), by variation

∂rψ̃0 =
1

∂ψ̃0
r

=
1

2u+ g′(ψ̃0)
(78)



13

Taking a derivative ∂r and using again (78), one finally obtains from (77)

∂uφ̃(u, ψ̃0) =
1

6
u
g′′(ψ̃0)∂rψ̃0

(2u+ g′(ψ̃0))2
=

1

6

ug′′(ψ̃0)

(2u+ g′(ψ̃0))3
(79)

One can then easily integrate this equation w.r.t. u, with the constraint that φ must vanish at u = 0 from (73). One
obtains

φ̃(u, ψ̃0) =
g′′(ψ̃0)u2

12g′(ψ̃0)(2u+ g′(ψ̃0))2
(80)

From the definition of the inverse function g(a) one can now use the relations

g′(a) =
1

p′′0(g(a))
, g′′(a) = −g′(a)2 p

′′′
0 (g(a))

p′′0(g(a))
(81)

and we obtain our final result for the two first orders, summarized as follows

ψ(t, r) =
1√
t
[ψ̃0(u, r) + ∂rφ(u, r) + . . . ] , u =

√
t , ψ̃0(u, r) = p′0(r − 2uψ̃0(u, r)) (82)

φ(u, r) = −u
2

12

p′′′0 (r − 2uψ̃0(u, r))

(1 + 2up′′0(r − 2uψ̃0(u, r)))2
, ψ̃0(u, r) =

∑
m≥0

um
2m

(m+ 1)!
(−1)m(∂r)

m(p′0(r))m+1 (83)

It is easy to expand this result in powers of u =
√
t and recover the result (73), which provides a check on our exact

solution.

We now consider again the limit of large t, large negative r, with z = r/t < 0 fixed. Up to higher or-
der terms, O(1/t3), we only need the (semi-classical) expansion in the cubic derivative of the KP equation as

ψ(t, r) ' ψ0(t, r) + ψ1(t, r). We will now find that ψ0(t, r) ' H0(z) + 1
t2H

(2)
2 (z) and ψ1(t, r) ' 1

t2H
(1)
2 (z). Hence (i)

there are no correction of order O(1/t), i.e. the function H1(z) is zero, as claimed in the previous Section (ii) two

pieces add up to give the total subleading rate function H2(z) = H
(1)
2 (z) +H

(2)
2 (z).

To evaluate ψ1 we use the large negative r asymptotics.

p′0(r) = − 1

π
(−r)1/2 , p′′0(r) =

1

2π
(−r)−1/2 , p′′′0 (r) =

1

4π
(−r)−3/2 (84)

Inserting in the solution (82) we obtain

ψ1(u, r) = −
√
t

12

1

4π
∂r

[
(−r + 2tH0)−3/2 1

(1 + 1
π

√
t(−r − 2tH0)−1/2)2

]
(85)

=
1

t2
H

(1)
2 (z) , H

(1)
2 (z) =

1

48
∂z

[
1

H0(z)

1

(π2H0(z)− 1)2

]
(86)

where we have used that −πH0(z) =
√
−z + 2H0(z) and we recall that H0(z) = 1

π2 (1−
√

1− π2z).

Inserting now the large r expansion (68), and keeping the subdominant term in the equation for ψ0, i.e. ψ0 =
1√
t
p′0(r − 2tψ0), we obtain ψ0 = H0 + 1

t2H
(2)
2 with

H
(2)
2 (z) =

1

24H0(z)2(1− π2H0(z))
(87)

Adding the two contributions we find

H2(z) =
1

24H0(z)2(1− π2H0(z))
+

1

48
∂z

[
1

H0(z)

1

(π2H0(z)− 1)2

]
, H0(z) =

1

π2
(1−

√
1− π2z) (88)

One can now check that this result is identical to the one obtained in (49) from the large time large deviation ansatz,

provided one sets a2 = π4

24 . In fact the second term in (88) corresponds to setting a2 = 0, while the first is the one
proportional to a2 (i.e. the solution of the homogeneous part of the equation for H2). Once again, the calculation of
the cumulants from the short-time expansion allows to fix the unknown constant a2 in the large time large deviation
subleading rate function.
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F. A related expansion: intermediate times

One can consider a related expansion which allows a systematic study of the tail of log Ĝ(t, r) and of its derivative

ψ̂(t, r) = ∂r log Ĝ(t, r) (which is solution of the integrated version (14) of the reduced KP equation) at large r < 0 for
any time t.

Consider again the small time series expansion (25). We now assume that the functions pm(r) have the following

expansion pm(r) =
∑
n≥0 pm,n(−r) 3−n

2 for r → −∞. This is certainly the case for the KPZ equation, and for some

class of FD as in Remark 2 (the more general class studied in Appendix C can be studied by similar series expansions
involving different exponents). Hence we look for a solution as a double series

ψ̂(t, r) =
∑

0≤m≤n

pm,nt
m−1

2 (−r)
3−n
2 =

∑
m≥0

pm(r)t
m−1

2 =
∑
n≥0

qn(t)(−r)
3−n
2 (89)

since, as we find below, pm,n = 0 for m > n. The coefficients pm,n encode information for several limits. (i) First, the
leading small time behavior for t→ 0 at fixed r < 0 (for m = 0) is given by

ψ̂(t, r) ' p0(r) =
1√
t

∑
n≥0

p0,n(−r)
3−n
2 = − 1√

4π
Li3/2(−e−r) (90)

where the last equality is valid only for the particular case of the KPZ equation, see (28). (ii) Second, the leading
large time large deviations (35) for r = zt < 0 and t→ +∞ (for m = n) is given by

ψ̂(t, r) ' t
∑
n≥0

pn,n(−r
t
)

3−n
2 = −tΦ′−(z =

r

t
) (91)

(iii) Finally, the series (89) contain the information about the large r < 0 expansion at fixed time t, encoded in the
functions qn(t), i.e.

ψ̂(t, r) =
∑
n≥0

qn(t)(−r)
3−n
2 , qn(t) =

n∑
m=0

pm,nt
m−1

2 (92)

We will determine below some of these functions qn(t). To this aim one can note that they satisfy differential equations
which can be solved recursively. We find it easier however to study instead the recursion for the pm,n. Inserting in
(14) we obtain recursion relations which show that all pm>n,n = 0. The coefficients p0,n for n ≥ 0 are arbitrary (i.e.
determined as in the previous Sections by the function p0(r)). All pm,n with m ≥ 1 and general n ≥ 1 can be obtained
from the set of p0,n as follows

pm,n =
−2

m

( (n− 9)(n− 7)(n− 5)

96
pm−2,n−6 +

n−1∑
n1=0

(3− n1)(4 + n1 − n)

8

min(n1,m−1)∑
m1=max(0,m−n+n1)

pm1,n1
pm−1−m1,n−1−n1

)
(93)

where all pm,n = 0 for either m < 0 or n < 0. This recursion is easily generated using Mathematica. One finds that
p1,1 = − 9

4p
2
0,0 and so on. If we suppress the first term on the r.h.s, which arises from the cubic derivative in the KP

equation, one can check that one reproduces the expansion given in (60).

We now specialize to the KPZ equation, for which the p0,n are determined from (90). Let us recall the expansion,
for r → −∞ (here we need only the formula for s a positive half-integer)

Lis(−e−r) = −2

+∞∑
k=0

(1− 21−2k)ζ(2k)
(−r)s−2k

Γ(s+ 1− 2k)
(94)

Hence p0,n = 0 unless n is a multiple of 4 and

pn=4k =
1√
π

(1− 21−n2 )ζ(n2 )

Γ( 5−n
2 )

(95)
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The above recursion then leads to the following solutions for the lowest qn(t) up to n = 12

q0(t) =
2

3π
√
t

, q1(t) = − 1

π2
, q2(t) =

√
t

π3
, q3(t) = − 2t

3π4
, q4(t) =

t3/2

4π5
+

π

12
√
t

(96)

q5(t) =
1

12
, q6(t) =

√
t

48π
− t5/2

24π7
, q7(t) = − t

48π2
, q8(t) =

t7/2

64π9
+

7π3

960
√
t

(97)

q9(t) =
t2

48π4
+

5π2

144
, q10(t) = − t9/2

128π11
− t5/2

384π5
+

5π
√
t

72
, q11(t) =

13t

192
− t3

48π6
(98)

q12(t) =
7t11/2

1536π13
+

5t7/2

1536π7
+

259t3/2

9216π
+

31π5

4608
√
t

(99)

One can verify that, keeping only the leading term at large t for each qn(t), i.e. pn,nt
n−1
2 , agrees, as it should according

to (91), with the expansion of −tΦ′−(z) in z = r/t at large z < 0, from the solution (40) (with the correct value
A = 1), a rather non-trivial check

tψ̂0(r/t) = −tΦ′−(
r

t
) =

2(−r)3/2

3π
√
t
− −r
π2

+

√
−r
√
t

π3
− 2t

3π4
+

√
− 1
r t

3/2

4π5
−
(
− 1
r

)3/2
t5/2

24π7
(100)

+

(
− 1
r

)5/2
t7/2

64π9
−
(
− 1
r

)7/2
t9/2

128π11
+

7
(
− 1
r

)9/2
t11/2

1536π13
+O((−1

r
)11/2) (101)

Furthermore, since pn−2,n = 0 for all n ≥ 2, we immediately see that the subleading function H1(z) = ψ̂′1(z) studied in
Section II D 2 is indeed zero, and that the above results are consistent with the series expansion of the next subleading

function H2(z) = ψ̂′2(z) obtained in that Section, i.e. one can check that

ψ̂2(z) =
∑
n≥4

pn−4,n(−z)
3−n
2 (102)

is indeed the function for z < 0 found in (49) with the correct value a2 = π4

24 .

We can now integrate (92) over r to obtain the series expansion for large r < 0

log Ĝ(t, r) = −
∑

n≥0,n6=5

qn(t)
2

5− n
(−r)

5−n
2 − 1

12
log(−r) +Q(t) (103)

= − 4(−r)5/2

15
(
π
√
t
) +

r2

2π2
− 2(−r)3/2

√
t

3π3
− 2rt

3π4
−
√
−r
(
3t2 + π6

)
6
(
π5
√
t
) − 1

12
log(−r) +Q(t)−

∑
n≥6

qn(t)
2

5− n
(−r)

5−n
2

Here Q(t) is an undetermined integration constant of O(1) in the large r < 0 expansion. Note that all terms with
a positive power of r appearing in (103) are already contained in the function −t2Φ−(r/t), apart from the term

−π6
√
−r/t. This additional term is consistent with the one discussed in Remark 4.

Remark 5. For the KPZ equation many of the pm,n vanish. Indeed they vanish if m − n is not a multiple of 4.
The series has the following structure

ψ̂(t, r) =
∑

0≤q≤k

[p4q,4kt
− 1

2 +2q(−r) 3
2−2k + p4q+1,4k+1t

2q(−r)1−2k + p4q+2,4k+2t
1
2 +2q(−r) 1

2−2k + p4q+3,4k+3t
1+2q(−r)−2k]

(104)
Hence it naturally splits in the sum of four functions, for which one can also obtain coupled series recursion relations.

G. Large time expansion, typical fluctuations

For completeness we now address briefly the regime of typical fluctuations in the large time limit. Not surprisingly,
once the scaling form is introduced, it reproduces the KPZ fixed point result of Ref.1. However it allows in principle
to study the finite time corrections.
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In the large time and typical fluctations regime, we expect that the generating function (12) takes the form

Ĝ(t, r) = P0(r/t1/3) + t−aP1(r/t1/3) + · · · , P0(s) = lim
t→+∞

Prob(
h(0, t) + t

12

t1/3
< s) (105)

where the last equality follows by construction of the generating function. At this stage we allow some freedom for the
decay exponent a of the subleading corrections (see below). We thus look for a solution to the reduced KP equation
(13) of the form

ψ(t, r) = ∂2
r log Ĝ(t, r) = t−2/3(ψ0(r/t1/3) + t−aψ1(r/t1/3) + · · · ) (106)

The function ψ0(s) must satisfy

12ψ0ψ
′
0 − 4sψ′0 − 2ψ0 + ψ′′′0 = 0 (107)

Note that one can also consider the integrated version which, from (14) leads to

ψ(t, r) = ∂r log Ĝ(t, r) = t−1/3(ψ̂0(r/t1/3) + t−aψ̂1(r/t1/3) + · · · ) (108)

6(ψ̂′0)2 − 4sψ̂′0 + 2ψ̂0 + ψ̂′′′0 = 0 (109)

with ψ0 = ψ̂′0.

A solution to the equation (107) is obtained from a solution q(s) to the Painleve II equation as

ψ0(s) = −q(s)2 , q′′ = sq + 2q3 (110)

This is verified by inserting into (107) leading to

12ψ0ψ
′
0 − 4sψ′0 − 2ψ0 + ψ′′′0 |ψ0=−q2 = −(2q

d

ds
+ 6q′)(q′′ − sq − 2q3) = 0 (111)

This solution, together with q(s) ∼ −Ai(s) for s→ +∞, corresponds to the TW-GUE distribution F2(s)

∂2
s logP0(s) = −q(s)2 , P0(s) = e−

∫ +∞
s

du(u−s)q(u)2 = F2(s) (112)

This is the standard analysis, also obtained from the KP equation satisfied by the KPZ fixed point in Ref.1.

Let us recall the large negative s asymptotics for q(s) and F2(s). From (110) one easily obtains (correcting a
misprint in the last term in Ref.63)

q(s) =

√
−s
2

(1 +
1

8s3
− 73

128s6
+

10657

1024s9
+O(|s|−12)) , ψ0(s) =

s

2
+

1

8s2
− 9

16s5
+O(

1

|s|8
) . . . (113)

and, integrating twice,

logF2(s) = − 1

12
|s|3 − 1

8
log(|s|) + C +

3

26|s|3
+O(

1

|s|3
) (114)

where obtaining the constant C = 1
24 log 2 + ζ ′(−1) requires more sophisticated methods63.

Let us note that the right tail approximation of F2(s), i.e. the first order in the expansion of the FD in powers of
the Airy kernel at large positive s, reads

F2(s) = Det[I − PsKAiPs] ' 1− TrPsKAi +O(e−
8
3 s

3/2

) = 1−
∫ +∞

s

du

∫ +∞

0

dvAi(u+ v)2 +O(e−
8
3 s

3/2

) (115)

There is a corresponding approximation ψ0(s) = ψ00(s) + . . . where one neglects the non-linear term in the KP
equation, i.e. also in (107), leading to

−4sψ′00 − 2ψ00 + ψ′′′00 = 0 (116)
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which is solved as ψ0(s) = −q0(s)2 with q′′0 = sq0, solved as q0(s) = −Ai(s), leading to (115). The approximation
(115) corresponds to the large time limit of the contribution of the single string states in the Bethe ansatz. Hence
the latter obeys the linear part of the KP equation, as discussed below (see also Appendix B).

We write now the equation satisfied by the subleading term in (105). It is more convenient to give the result for

the function ψ̂1 defined in (108) (with ψ1(s) = ψ̂′1(s)). One finds that it must satisfy the following linear equation

2(1− 6a)ψ̂1(s)− 4(s+ 3q(s)2)ψ̂′1(s) + ψ̂′′′1 (s) = 0 (117)

At large s it implies that ψ̂1(s) ∼ (−s)6a−1. It is not so easy to solve this equation. However, the analysis of the
Fredholm determinant was carried in Ref.64 and it was found that (see Appendix B there)

Ĝ(t, r = st1/3) ' F2(s) + t−2/3π
2

6
F ′′2 (s) +O(t−4/3) (118)

This predicts that the exponent a = 2/3 and that a solution of (117) should be

ψ̂1(s) =
π2

6
∂s
F ′′2 (s)

F2(s)
=
π2

6
∂s(ψ0(s) + ψ̂0(s)2) =

π2

6
(
|s|3

4
− 7

16
− 27

64|s|3
− 855

128|s|6
+O(|s|−9)) (119)

Although we have not been able to show it directly, we carried a series expansion at large negative s, using (113) to
a much higher order, which indeed indicates that this is the case.

Remark 6. We know from Refs.10–13 that the finite time analog to (115) is (keeping only the first order in the
expansion of the FD in traces of the finite time kernel)

log Ĝ(t, r) = log Det[I − σt,rKAi] = −Tr[σt,rKAi] + · · · = −
∫ +∞

r/t1/3
dv

∫ +∞

−∞
du

Ai(u+ v)2

1 + e−t1/3u
+ . . . (120)

σt,r(u, u
′) =

1

1 + er−t1/3u
δ(u− u′) (121)

It is easy to check that the (single trace) leading term

ψ̂1(t, r) = ∂r log(Ĝ(t, r))|1trace = t−1/3

∫ +∞

−∞
du

Ai(u+ r
t1/3

)2

1 + e−t1/3u
(122)

is solution of the linear part of the integrated reduced KP equation (14)

∂tψ̂1 +
1

12
∂3
r ψ̂1 +

1

2t
ψ̂1 = 0 (123)

Indeed one can write formally (upon expansion of the ”Fermi factor” in (122) and using the Airy propagator identity)

ψ̂1(t, r) =
∑
n≥1

an
1√
t
e−nr+

n3t
12 , an =

(−1)n√
4πn

(124)

It can also be written as

ψ̂1(t, r) =
1√
4πt

e−t∂
3
rLi1/2(−e−r) (125)

It is reminiscent but different from the exact expression of the first cumulant, see formula (111) in34 (which is the

same formula with Li3/2 instead of Li1/2). The first cumulant for log Ĝ has the expression Tr[log(1−σt,r)KAi] different

indeed from −Tr[σt,rKAi] above. It provides the correct small time limit ψ̂(r, t) ' p0(r)/
√
t (see (25) and (28)) and

does also satisfy the linearised version of KP (which can be checked by direct expansion as above, or see Section

III A). Hence, although ψ̂1 satisfies linear KP, it does not have the correct initial condition.



18

III. OTHER INITIAL CONDITIONS: HALF-BROWNIAN AND BROWNIAN

We now turn to the half-Brownian and Brownian initial conditions. We perform some checks from the known
expressions for the cumulants of Z(x, t), which hint at a general mechanism for the KP equation to hold. It agrees
with the statement of Ref.1 for the half-Brownian, and leads us to conjecture that the KP equation is also obeyed for
the full Brownian. In the second part, we briefly study the small time large deviations for both cases, which confirms
the conjecture.

It was stated in Ref.1 that for the half-Brownian initial condition (B(x) is a one-sided Brownian with B(0) = 0)

Z(x, 0) = eh(x,0) = eB(x)−wxθ(x) (126)

the function φ(x, t, r) = ∂2
r logG(x, t, r) associated to the same generating function G defined in (129), satisfies the

KP equation, which we recall here

∂tφ+ φ∂rφ+
1

12
∂3
rφ+ ∂−1

r ∂2
xφ = 0 (127)

In addition we conjecture here that a similar property holds for the Brownian initial condition

Z(x, 0) = eh(x,0) = eBR(x)−wRxθ(x) + eBL(x)+wLxθ(−x) (128)

for the modified generating function

G(x, t, r) =
〈

exp(−eh(x,t)+χ+ t
12−r)

〉
=
〈

exp(−Z̃(x, t)e
t
12−r)

〉
(129)

where χ is a log-gamma random variable independent from h(x, t), of PDF P (χ)dχ = e−2wχ−e−χdχ/Γ(2w) and of

exponential moments enχ = Γ(w−n)
Γ(w) , with 2w = wR + wL. We claim that G also satisfies the KP equation (127).

We can again expand G in (129) in cumulants, now in presence of space dependence. This leads to the series in e−r

φ(x, t, r) =
∑
n≥1

(−1)nn2

n!
Zn(x, t)e

nt
12−nr , Zn(x, t) = 〈Z(x, t)n〉c (130)

In the case of the full Brownian, Z(x, t) must be replaced by Z̃(x, t) = eh(x,t)+χ and the cumulants are averages over
both h and χ. Inserting in the equation and identifying the terms e−nr we obtain the recursion, for n ≥ 1

−∂tZn(x, t) +
n3 − n

12
Zn(x, t) +

1

n
∂2
xZn(x, t) = −1

2
(n− 1)!

∑
n1+n2=n,n1,n2≥1

n2
1n

2
2

n1!n2!
Zn1

(x, t)Zn2
(x, t) (131)

which, as in the previous Section, allows to determine the moments recursively from the first one, up to some
undetermined solution of the homogeneous equation which enters at each level n. The latter reads

zn(x, t) = e
n3−n

12 t

∫
dk

2π
ẑn(k)e−ntk

2+inkx (132)

where ẑ1(k) is the Fourier transform of Z1(x, 0) (which is usually specified by the initial data) and the ẑn(k) are (up
to a rescaling) the Fourier transforms of the zn(x, 0) are a priori arbitrary (if we consider the general solution of KP).
As a side remark, see Appendix B for details and definitions, Eq. (132) corresponds to the evolution of the moments
〈Z(x, t)n〉1string retaining only the contribution of the eigenstates of the delta bose-gas Hamiltonian corresponding to
a single string ns = 1 with arbitrary momentum (which contains the ground state). The general solution of the KP
equation is thus a functional of the set of functions ẑj(k)

Zn(x, t) = Fn(x, t; {ẑj(k)}j=1,...,n) (133)

and it is a priori far from obvious in general that this corresponds to the exact cumulants of the KPZ/SHE equation
for some initial condition. Let us now make some more detailed analysis.

Let us start with n = 1, which reads

−∂tZ1(x, t) + ∂2
xZ1(x, t) = 0 (134)
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Hence Z1(x, t) = z1(x, t) must satisfy the heat equation, which as we discussed above is a consequence of the Ito
convention. Hence at this stage any initial condition of the SHE would work. Indeed we see that for the half-Brownian
Z1(x, t) = 〈Z(x, t)〉 given in (B9) does satisfy (134). Although it does involve some additional averaging over the
Brownian IC, the linearity of (134) guarantees that it works.

Let us write now the equation for the second cumulant Z2(x, t)

∂tZ2(x, t)− 1

2
Z2(x, t)− 1

2
∂2
xZ2(x, t) =

1

2
Z1(x, t)2 (135)

The general solution is

Z2(x, t) = z2(x, t) +
1

2

∫
dx′
∫ t

0

dt′
1√

2π(t− t′)
e
− (x−x′)2

2(t−t′) Z1(x′, t′)2e
1
2 (t−t′) (136)

which is not illuminating. In the Appendix B the following form, suggested by the Bethe ansatz, is studied. Suppose
that the generic integer moment can be written as

〈Z(x, t)n〉 = n!

n∑
ns=1

1

ns!

∑
(m1,...,mns )n

ns∏
j=1

∫
dkj

2πmj
eix

∑ns
j=1mjkjet

∑ns
j=1[ 1

12 (m3
j−mj)−mjk

2
j ] (137)

×
ns∏
j=1

Skj ,mj
∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)
2

4(ki − kj)2 + (mi +mj)2

which is the case for the half-Brownian with Sk,m =
Γ(w+ik−m2 )
Γ(w+ik+m

2 )
, and for the Brownian (for the modified partition

sum Z̃(x, t)) with Sk,m =
Γ(wR+ik−m2 )
Γ(wR+ik+m

2 )
Γ(wL+ik−m2 )
Γ(wL+ik+m

2 )
, an information obtained from the replica Bethe ansatz solutions

of Ref.17,20,21. Then, irrespective of the precise form of Sk,m the equations (131) will be obeyed. This conjecture is
verified in the Appendix B for n = 2, 3. A similar mechanism holds for the nested contour integral form (see Appendix).

Hence we expect that the KP equation will be obeyed for any IC such that the overlap factorizes. Let us now
examine the question of the initial condition, and the short time large deviations.

A. Half-Brownian

For the half-Brownian IC, the initial data for the moments read

〈Z(x, 0)n〉 = 〈enB(x)〉Be−nwxθ(x) = en(n2−w)xθ(x) (138)

and one can also write explicitly the initial condition for G (which is discontinuous at x = 0)

G(x, 0, r) = 〈e−θ(x)eB(x)e−wx−r 〉 =

∫ +∞

−∞

db√
2πx

e−
b2

2x−e
b−wx−r

θ(x) + θ(−x) (139)

We now study the time evolution at short time t � 1. The regime of interest will correspond to small x, large w
and xw fixed, so we will need the initial condition in that region. Let us write explicitly the initial condition for the
first three cumulants and their expansion at small x, large w and xw fixed

Z1(x, t = 0) = e( 1
2−w)xθ(x) ' e−wxθ(x) (140)

Z2(x, t = 0) = (e2(1−w)x − e2( 1
2−w)x)θ(x) ' xe−2wxθ(x) (141)

Z3(x, t = 0) = (ex − 1)
2

(ex + 2) e(
3
2−3w)xθ(x) ' 3x2e−3wxθ(x) (142)

It is easy to guess that the general formula is

Zn(x, t = 0) ' nn−2xn−1e−nwxθ(x) (143)
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We will need the definition and series expansion of the standard branch W0(z) of the Lambert function65, W (z)

W (z)eW (z) = z , W (z) = W0(z) = −
∑
n≥1

(−1)n

n!
nn−1zn (144)

From the moments we can thus write the initial condition for G, in that regime (for small x, large w, with wx fixed)
as

logG(x, t = 0, r) =
∑
n≥1

(−1)n

n!
Zn(x, t = 0)e−nr ' 1

x

∑
n≥1

(−1)n

n!
nn−2e−n(r−log(x)+wx)θ(x) (145)

and its derivative,

φ̂(x, t = 0, r) = ∂r logG(x, t = 0, r) =
1

x
W0(e−(r−log x+wx))θ(x) (146)

For fixed r and small x with wx fixed one has ∂r logG(x, t = 0, r) ' e−r−wxθ(x) as for a half-wedge, however there
is a fluctuation region, with fixed r − log x+ wx where ∂r logG(x, t = 0, r) ∼ 1/x is large.

To study the small time large deviations of small t, small x and large w with wx fixed we define

x̃ =
x√
t

, w̃ = w
√
t (147)

By analogy with the study of the Brownian IC in Ref.38, we expect in the case of the half-Brownian, the large deviation
form at x̃ = 0

logG(0, t, r) ' − 1√
t
Ψ(t1/2e−r) (148)

At finite x̃ we thus expect the following form (which we obtain explicitly below)

logG(x, t, r) ' − 1√
t
Ψ̂(x̃, r − 1

2
log t) , φ(x, t, r) = ∂2

r logG(x, t, r) ' − 1√
t
ψ(x̃, r − 1

2
log t) (149)

with ψ = ∂2
r Ψ̂. Inserting into the KP equation (5) gives to leading order O(t−3/2)

∂rψ + ∂2
rψ + x∂r∂xψ − 2∂2

xψ = 0 (150)

Note that for the droplet IC the same equation degenerates and does not allow to determine the function. Since (150)
is a linear equation, an alternate method, which we now use, is to study the linear part of the recursion (131) for the
cumulants

[∂t −
n3 − n

12
− 1

n
∂2
x]Zn(x, t) = 0 (151)

At short time one can neglect the term (n3 − n)/12, and the solution can be written explicitly from the knowledge of
the initial condition (143), as

Zn(x, t) ' nn−2

∫ +∞

0

dy√
4πt/n

e−
n(x−y)2

4t yn−1e−nwy (152)

Other, more explicit, expressions for these cumulants are given in Appendix D.

Before evaluating this expression, let us first show that at large w one recovers exactly the droplet result. The large
w limit is obtained setting y → y/w which leads to

Zn(x, t) ' 1√
4πt

nn−
3
2w−ne−

nx2

4t

∫ +∞

0

dyyn−1e−ny =
1√
4πt

n−
3
2 Γ(n)w−ne−

nx2

4t (153)

and to

logG(x, t, r) ' 1√
4πt

∑
n≥1

(−1)nn−5/2(
1

w
e−r−

x2

4t )n =
1√
4πt

Li 5
2
(− 1

w
e−r−logw− x24t ) (154)
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Apart from a shift, this is exactly the result obtained in Ref.37. The shift is easy to understand. Indeed, since at large
w, e−wx+B(x)θ(x)→ 1

w δ(x), we expect Zhb(x, t)→ 1
wZd(x, t) (the index hb refers to half-Brownian and d to droplet),

that is 〈exp(−ehhb(x,t)−r)〉 → 〈exp(−ehd(0,t)−r−logw− x24t )〉 = 〈exp(−ehd(x,t)−r−logw)〉. Hence using the half-Brownian
IC as a regularisation to run the KP equation, one can indeed calculate the leading term p′0(r) = L1 in the short
time expansion for the droplet IC (which was missing from a direct approach).

Let us return to the solution (152) for the cumulants and perform the summation (one can neglect the term t/12
in the exponential at small time)

logG(x, t, r) '
∑
n≥1

(−1)n

n!
Zn(x, t)e−nr ' 1√

4πt

∫ +∞

0

dy

y

∑
n≥1

(−1)n

n!
nn−

3
2 [ye−r−

(x−y)2
4t −wy]n (155)

=
1√
4πt

∫ +∞

0

dy

y

∑
n≥1

(−1)n

n!
nn−

3
2 [ye−r+

1
2 log t− (x̃−y)2

4 −w̃y]n (156)

where in the second expression we have rescaled y →
√
ty. We use now the following integral representation for the

series ∑
n≥1

(−1)n

n!
nn−

3
2 zn = −

∫ +∞

0

du√
πu

∑
n≥1

(−1)n−1

n!
nn−1(ze−u)n = −

∫ +∞

0

du√
πu
W0(ze−u) (157)

using the formula (144) for the Lambert function W0. Hence we find our final result for the small time large deviation
function from the Brownian IC

logG(x, t, r) ' − 1√
t
Ψ̂w̃(x̃, r − 1

2
log t) , x̃ = x/

√
t , w̃ = w

√
t (158)

Ψ̂w̃(x̃, r) =
1√
4π

∫ +∞

0

dy

y

∫ +∞

0

du√
πu
W0(ye−r−u−

(x̃−y)2
4 −w̃y)

which gives Eq. (10) in the introduction, with Ψ(x̃, z = e−r) = Ψ̂(x̃, r).

This result can be put in an equivalent form66. Going back to the series (156) we can rescale y → y/n, expand the

square in the exponential, and use the representation e−
y2

4n =
√

n
π

∫ +∞
−∞ dkeiky−nk

2

to put it in the form

logG(x, t, r) ' 1√
t

∫ +∞

−∞

dk

2π

∑
n≥1

(−1)n

nn!
(e−r−

x̃2

4 + 1
2 log t−k2)n

∫ +∞

0

dy

y
yne−y(w̃− x̃2−ik) (159)

When w̃ − x̃
2 > 0 one can perform the integral over y, and one recognizes the series expansion of the function

Li2(s) =
∑
n≥1

sn

n2 , leading to

logG(x, t, r) ' 1√
t

∫ +∞

−∞

dk

2π
Li2(−e

−r− x̃24 + 1
2 log te−k

2

w̃ − x̃
2 − ik

) (160)

This form of the large deviation function is similar to the generic form which is obtained for other solvable cases67.

B. Brownian

We now consider briefly the full Brownian IC. The initial condition is

Z̃(x, 0) = eχ(eBR(x)e−wRxθ(x) + eBL(x)ewLxθ(−x)) (161)

and its moments are given by (we denote 2w = wL + wR)

〈Z̃(x, 0)n〉 =
Γ(2w − n)

Γ(2w)

(
en(n2−wR)xθ(x) + en(n2 +wL)xθ(−x)

)
(162)
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The corresponding initial condition for G can be written as

G(x, 0, r) = 〈e−Z̃(x,0)e−r 〉 =

∫ +∞

−∞
dχP (χ)

∫ +∞

−∞

db√
2π|x|

e−
b2

2|x| (e−e
b−wRx+χ−r

θ(x) + e−e
b+wLx+χ−r

θ(−x)) (163)

Let us specify to the case wL = wR = w. As for the half-Brownian, we want to study the limit of small x, w large
with wx fixed. We would like to apply the same method as for the half-Brownian, i.e. evolve the cumulants with the
linear part of the KP equation as

Z̃n(x, t) '
∫ +∞

−∞

dy√
4πt/n

e−
n(x−y)2

4t Z̃n(y, t = 0) (164)

However the initial condition for Z̃n(x, t = 0) in the regime of interest is now more complicated, e.g.

Z̃1(x, t = 0) ' 1

2w
e−w|x| , Z̃2(x, t = 0) ' 1

8w3
(1 + 2w|x|)e−2w|x| (165)

Z̃3(x, t = 0) ' 1

8w5
(1 + 3w|x|(1 + w|x|))e−3w|x| , Z̃4(0, t = 0) ' 15

64w5
(166)

and so on, with more and more complicated polynomials. Hence we have performed only a few checks on the following
conjectured formula

logG(x, t) =
∑
n≥1

(−1)n

n!
Z̃n(x, t)e−nr|x=

√
tx̃,w=w̃/

√
t|x̃=0 ' −

1√
t
Ψ(te−r) (167)

Ψ(z) =
1

π

∫ +∞

0

dy(1 +
1

y + w̃2
)
√
y log(1 +

ze−y

y + w̃2
) = −

∫ +∞

−∞

dk

2π
Li2(−z e−k

2

k2 + w̃2
) (168)

where the second line is the exact result for the Brownian IC obtained from the FD in Ref.38 (the equivalent last
expression was obtained in34 and note that all known solvable IC for KPZ in full space and half-space can be put in
similar forms41). Inserting the Z̃n(x, t) obtained from (164) and the initial condition (165) we have verified by series
expansion in e−r that it holds for n = 1, 2, 3. Although much remains to be done, this provides a nice check that the
full Brownian IC indeed satisfies the KP equation, as claimed here.

IV. CONCLUSION

In conclusion we have studied some of the consequences of the property recently discovered in Ref.1, that the
generating function of the droplet and half-Brownian IC solutions of the KPZ equation satisfy the KP equation. We
have also studied the mechanism for this property to hold on the cumulants Zn(x, t), which led to the conclusion
that the modified generating function for the full Brownian IC (or any IC with a ”decoupled” overlap) should also
satisfy this property.

The main consequences of the KP property studied here concerns the large deviations, both at short time and
at large time. For the droplet IC we have found that the question of which initial condition should be used for the
KP equation is intimately related to the small time large deviations. In the case of the droplet IC, the KP equation
simplifies into a reduced KP equation. We have shown how to recover, from this reduced KP equation, and in a
rather effortless way, the full systematic short time expansion obtained previously in Ref.34. On the other hand
substituting the large time large deviation form in the reduced KP equation provides a (rather simple) fifth method
to obtain the rate function Φ−(z), up to a single undetermined parameter. We showed how this parameter can be
determined using the so-called cumulant summation of the short time expansion. This method, which allows to
relate the short time and the large time large deviation regimes, was studied within the KP setting. It takes the
form of a semi-classical expansion where one treats the third derivative term in the KP equation as a perturbation.
It can nicely be solved in terms of Burgers equation. This allowed us also to obtain in addition the first subdominant
corrections, not obtained in Ref.34. We have shown that not only the KPZ problem, but a variant of a more
general problem of linear statistics of the Airy point process, defined and studied in Ref.34 and36, do obey the KP
property. We have re-obtained some results for these linear statistics, by a completely different method. The ensuing
connections between the KP equation, the Coulomb gas, the non-local Painleve equation, and the stochastic Airy
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operator (the connections between the latter three were unveiled in Ref.36) remain to be investigated deeper.

Note two interesting consequences. The first arises from the connection64,68 of the droplet solution of the
KPZ equation to N non interacting fermions in a 1D harmonic trap at finite temperature T , with Hamiltonian

H = p2

2 + x2

2 , in the limit N,T → +∞ at fixed b = N1/3/T . Denoting xmax(T ) the position of the rightmost fermion,

and ξ =
√

2N1/6(xmax(T ) −
√

2N) the centered and scaled position, then ∂2
r log Prob(bξ < r) satisfies the reduced

KP equation (13) with t = b3. A second consequence arises from the connection between the KPZ equation and the
non-relativistic limit of the D=1+1 sine Gordon field theory69. It implies that, in that limit, the two time correlation
function of the field eaϕ(0,t) (at time zero and t, ϕ being the sine Gordon field) identifies with the generating function

Ĝ(t, r) studied in the present work, with the correspondence e
t
12−r = (2 sinh a

2 )2e−Mc2` t. Hence, in that limit the two
time correlation function obeys a differential equation related to KP via this change of variable.

For the half-Brownian and Brownian IC the study is technically more involved since one should handle space and
time, and many questions remain. However, we have obtained the small time large deviation space-time rate function
for the half-Brownian IC. We have also checked that the formal solution at short time in the case of the Brownian
IC does agree with known results for the large deviation rate function at the origin, from Ref.38.

Although the present study does not explain the deep reason of why the KP equation appears in some finite
time solutions to the KPZ equation (which is related to why they can be expressed as a specific form of Fredholm
determinants) it does show that this property provides a new interesting angle to study properties of these solutions.
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Appendix A: Short time expansion

We give here more details on the short time expansion for droplet IC. It is also valid for more general linear
statistics problems see Remark 2.

Inserting the series (25) into (13) and integrating once over r (as in (14)) we obtain the recursion, for m ≥ 0

m+ 1

2
pm+1 +

1

12
θm≥1p

′′′
m−1 +

1

2

∑
m1+m2=m,m1≥0,m2≥0

p′m1
p′m2

= 0 (A1)

Performing the recursion with Mathematica we find that all pm are total derivatives of the form pm = ∂rPm(p′0, p
′′
0 , ..)

where Pm are polynomials. Using −∂rLi = Li+1 and p′0(r) = L1, we find exactly all seven terms (up to O(t3)) given
in the lengthy equation (61) in Ref.34. It is easy to obtain quickly the next terms, and we will show here only the
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next one O(t7/2)

p8(r) = ∂r

[
2

315
L7L8

1 +
32

63
L2

4L7
1 +

16

21
L3L5L7

1 +
32

105
L2L6L7

1 +
16

3
L3

3L6
1 +

64

3
L2L3L4L6

1 +
16

3
L2

2L5L6
1 +

1

135
L8L6

1

+96L2
2L2

3L5
1 +

128

3
L3

2L4L5
1 +

10

9
L4L5L5

1 +
32

45
L3L6L5

1 +
4

15
L2L7L5

1 +
28

3
L2L2

4L4
1 + 160L4

2L3L4
1 +

118

9
L2

3L4L4
1

+
44

3
L2L3L5L4

1 +
10

3
L2

2L6L4
1 +

1

432
L9L4

1 +
128

3
L6

2L3
1 +

128

3
L2L3

3L3
1 +

17

90
L2

5L3
1 +

280

3
L2

2L3L4L3
1 +

160

9
L3

2L5L3
1

+
83

270
L4L6L3

1 +
89

540
L3L7L3

1 +
1

18
L2L8L3

1 +
320

3
L3

2L2
3L2

1 +
109

36
L3L2

4L2
1 + 40L4

2L4L2
1 +

7

3
L2

3L5L2
1 +

17

5
L2L4L5L2

1

+
32

15
L2L3L6L2

1 +
5

12
L2

2L7L2
1 +
L10L2

1

5184
+

14

9
L4

3L1 +
29

6
L2

2L2
4L1 + 32L5

2L3L1 +
40

3
L2L2

3L4L1 +
22

3
L2

2L3L5L1

+
10

9
L3

2L6L1 +
37L5L6L1

1512
+

103L4L7L1

6048
+

17L3L8L1

2160
+

1

432
L2L9L1 +

16L7
2

21
+

14

3
L2

2L3
3 +

583L3
4

18144
+

607L2L2
5

15120

+
58

9
L3

2L3L4 +
5

6
L4

2L5 +
1121L3L4L5

7560
+

17

360
L2

3L6 +
503L2L4L6

7560
+

77L2L3L7

2160
+

5

864
L2

2L8 +
L11

497664

]
where we recall that p′m(r) is also the term of order t

m−1
2 in qt,β=1(σ) as defined in equation (61) in Ref.34.

Appendix B: Checks on cumulants from the Bethe ansatz for the droplet, half-Brownian and Brownian IC

Let us recall briefly that the moments of the solution of the SHE can be obtained as a sum over the eigenstates of
the delta Bose gas (Lieb Liniger) Hamiltonian70 Hn = −

∑n
α=1 ∂

2
xα − 2c̄

∑
1≤α<β≤n δ(xα − xβ), as follows

〈Z(x, t)n〉 =
∑
µ

Ψµ(x, . . . , x)
e−tEµ

||µ||2
〈Ψµ|Φ0〉 =

∑
µ

Ψ∗µ(x, . . . , x)
e−tEµ

||µ||2
〈Φ0|Ψµ〉 (B1)

in quantum mechanical notations, where Ψµ denote the eigenfunctions (and ||µ|| their norm) and Eµ the eigenvalues
of Hn. Note that c̄ = 1 in our units for the study of the SHE (corresponding to attractive interactions), but the
case c̄ = −c < 0 is also of interest in the context of repulsive bosons71. The eigenfunctions70 are parameterized by
a set of rapidities µ ≡ {λ1, ..λn}, are totally symmetric in the xα, and in the sector x1 ≤ x2 ≤ · · · ≤ xn, take the
(un-normalized) form of a sum over permutations P

Ψµ(x1, ..xn) =
∑
P∈Sn

AP

n∏
j=1

ei
∑n
α=1 λPαxα , AP =

∏
1≤α<β≤n

(
1 +

i

λPβ − λPα

)
. (B2)

with Eµ =
∑n
α=1 λ

2
α. To evaluate (B1) one needs Ψ∗µ(x, ..x) = n!e−ix

∑
α λα . For the Brownian IC the wavefunction

of the initial replica state is:

Φ0(Y ) = 〈y1, ..yn|Φ0〉 = 〈
n∏
α=1

(ewLyαeBL(−yα)θ(−yα) + e−wRyαeBR(yα)θ(yα))〉BL,BR (B3)

where Y ≡ y1, ..yn. The half-Brownian is obtained setting wL → +∞, and for the droplet IC, Φ0(Y ) =
∏n
α=1 δ(yα),

obtained e.g. by further multiplying by wnR and sending wR → +∞. One needs the overlap

〈Φ0|Ψµ〉 = n!

∫
y1<y2<..<yn

Ψµ(Y )Φ0(Y ) = n!
∑
P∈Sn

AP

∫
y1<y2<..<yn

ei
∑n
α=1 λPαyαΦ0(Y ) (B4)

A ”miracle” occurs in performing the sum over permutations, and one finds17,20,21 that the overlap takes the very
simple ”decoupled” form for the Brownian IC

〈Φ0|Ψµ〉 = n!

∏n
j=1(wR + wL − j)∏n

j=1(wR − 1
2 − iλj)

∏n
j=1(wL − 1

2 + iλj)
(B5)

which leads to 〈Φ0|Ψµ〉 = n! 1∏n
j=1(wR− 1

2−iλj)
for the half-Brownian, and simply 〈Φ0|Ψµ〉 = n! for the droplet IC. In

the infinite system size limit, each eigenstate is made of 1 ≤ ns ≤ n strings with rapidities λj,a = kj − i
2 (mj + 1− 2a),
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a = 1, . . . ,mj (here kj are real momenta and mj ≥ 1 integers with
∑ns
j=1mj = n). The overlap are thus, for

half-Brownian IC (hb) and Brownian IC (b)

〈Φ0|Ψµ〉hb = n!

ns∏
j=1

swR−kj ,mj , 〈Φ0|Ψµ〉b = n!
Γ(wL + wR)

Γ(wL + wR − n)

ns∏
j=1

swR−kj ,mjs
wL
kj ,mj

, swk,m =
Γ
(
w + ik − m

2

)
Γ
(
w + ik + m

2

) (B6)

with Swk,1 = 1
w+ik− 1

2

and so on. To remove the extra factor in the full Brownian case (and allow for a FD expression)

one defines (in that case only) the modified partition sum Z̃(x, t) as

〈Z̃n(x, t)〉 =
〈Zn(x, t)〉∏n

j=1(wR + wL − j)
, Z̃(x, t) = eh̃(x,t) = eh(x,t)+χ , 〈enχ〉 =

Γ(wL + wR − n)

Γ(wL + wR)
(B7)

i.e. one defines20,21 a randomly shifted height field h̃(x, t) = h(x, t) + χ (recalling that Z(x, t) = eh(x,t)), where χ a
log-gamma variable of parameter γ = wL+wR, independent of h. Finally after inserting the known expression for the
norms ||µ||2 of the eigenstates, and changing kj → −kj one obtains the formula (137) of the text, which we reproduce
here

〈Z(x, t)n〉 = n!

n∑
ns=1

1

ns!

∑
(m1,...,mns )

ns∏
j=1

∫
dkj

2πmj
eix

∑ns
j=1mjkjet

∑ns
j=1[ 1

12 (m3
j−mj)−mjk

2
j ] (B8)

×
ns∏
j=1

Skj ,mj
∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)
2

4(ki − kj)2 + (mi +mj)2

with Sk,m = 1 for the droplet IC, Sk,m = swk,m for the half-Brownian IC, and Sk,m = swRk,ms
wL
−k,m for the Brownian,

where it is implicit here and below that in that case the l.h.s. of (B8) must be replaced by 〈Z̃(x, t)n〉, the moments
of the modified partition sum.

If the KP equation property holds, the cumulants must satisfy the equations (131). We want to understand the
mechanism for this property on the form (B8). Let us start with the first two cumulants obtained from (B8). They
read

Z1(x, t) = 〈Z(x, t)〉 =

∫
dk

2π
e−ixke−tk

2

Sk,1 (B9)

Z2(x, t) = 〈Z(x, t)2〉 − 〈Z(x, t)〉2 = e
t
2

∫
dk

2π
e−2ixke−2tk2Sk,2 (B10)

+

∫
dk1

2π

∫
dk2

2π
e−ix(k1+k2)e−t(k

2
1+k22)[

(k1 − k2)2

(k1 − k2)2 + 1
− 1]Sk1,1Sk2,1

In the expression for Z2 the first integral is the contribution of the single string state which contains two bosons,
ns = 1, m1 = 2, and the second integral the contribution of the two string state, ns = 2, m1 = 1, m2 = 1 (these
strings are just ”particles” since their length is unity).

Let us now check that the first equation in (131) is obeyed

∂tZ2(x, t)− 1

2
Z2(x, t)− 1

2
∂2
xZ2(x, t) =

1

2
Z1(x, t)2 (B11)

We note that the differential operator D2 = ∂t − 1
2∂

2
x − 1

2 gives zero on the first term in (B10). It is the 1-string
contribution ns = 1 and, as mentioned in the text, it is a general property that this term obeys the linear part of the
equation (B11) (and more generally the linear part of (131)). Acting on the second term in (B10) the operator D2

multiplies the integrand by

D2(k1, k2) = −(k2
1 + k2

2) +
1

2
(k1 + k2)2 − 1

2
= −1

2
((k1 − k2)2 + 1) (B12)

Hence in the integrand we have the simplification

D(k1, k2)[
(k1 − k2)2

(k1 − k2)2 + 1
− 1] = D(k1, k2)

−1

(k1 − k2)2 + 1
=

1

2
(B13)
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which leads to factorization of the double integral in two factors Z1 given by (B9), which thus implies that (B11) holds.

Let us check whether this mechanism, which uses only properties of the factor arising from the norm, (k1−k2)2

(k1−k2)2 ,

and not of the factor Sk,m, holds to higher order. Let us write the third cumulant from (B8). We see that the
substractions, arising from the definition of a cumulant, result in ”counterterms” inside each contribution, which we
have written in a symmetric form

Z3(x, t) = 〈Z(x, t)3〉 − 3〈Z(x, t)2〉〈Z(x, t)〉+ 2〈Z(x, t)〉3 = 2e2t

∫
dk

2π
e−3ixke−3tk2Sk,3 (B14)

+3et/2
∫
dk1

2π

dk2

2π
e−ix(2k1+k2)−(2k21+k22)tSk1,2Sk2,1[

4(k1 − k2)2 + 1

4(k1 − k2)2 + 9
− 1]

+

∫
dk1

2π

dk2

2π

dk3

2π
e−ix(k1+k2+k3)−(k21+k22+k23)tSk1,1Sk2,1Sk3,1

×
[

(k1 − k2)2

(k1 − k2)2 + 1

(k1 − k3)2

(k1 − k3)2 + 1

(k3 − k3)2

(k2 − k3)2 + 1
− (k1 − k2)2

(k1 − k2)2 + 1
− (k1 − k3)2

(k1 − k3)2 + 1
− (k2 − k3)2

(k2 − k3)2 + 1
+ 2

]
Again we have written first the contribution ns = 1, then ns = 2 and finally the ns = 3 term. Let us check that the
second equation from (131) is obeyed.

∂tZ3(x, t)− 2Z3(x, t)− 1

3
∂2
xZ3(x, t) = 4Z1(x, t)Z2(x, t) (B15)

The differential operator D3 = ∂t − 1
3∂

2
x − 2, gives again zero when applied on the first term ns = 1. On the second

term ns = 2, it multiplies the integrand by

D3 → −(2k2
1 + k2

2) +
1

3
(2k1 + k2)2 − 3

2
= −1

6
(4(k1 − k2)2 + 9) (B16)

thereby producing exactly the first term in the r.h.s of (B15) which reads explicitly

4Z1(x, t)Z2(x, t) = 4et/2
∫
dk1

2π

dk2

2π
e−ix(2k1+k2)−(2k21+k22)tSk1,2Sk2,1 (B17)

+4

∫
dk1

2π

dk2

2π

dk3

2π
e−ix(k1+k2+k3)−(k21+k22+k23)tSk1,1Sk2,1Sk3,1[

(k1 − k2)2

(k1 − k2)2 + 1
− 1]

Finally on the third term its action on the integrand gives exactly the second term in (B17) using that

(−k2
1 − k2

2 − k2
3 −

1

3
(k1 + k2 + k3)2 − 2) (B18)

×
[

(k1 − k2)2

(k1 − k2)2 + 1

(k1 − k3)2

(k1 − k3)2 + 1

(k3 − k3)2

(k2 − k3)2 + 1
− (k1 − k2)2

(k1 − k2)2 + 1
− (k1 − k3)2

(k1 − k3)2 + 1
− (k2 − k3)2

(k2 − k3)2 + 1
+ 2

]
=

4

3
[

(k1 − k2)2

(k1 − k2)2 + 1
− 1 + 2 perm]

Hence (B15) is obeyed.

Although we have not established it n ≥ 4, it is already clear on the cases n = 2, 3, that the mechanism of
”simplification” which transforms the n-th cumulant onto a sum of lower cumulants, upon application of the
differential linear operator, works only from some combinatoric property of the norm factor, and does not involve
Sk,m. Only the decoupled form of the overlap is crucial, hence it works in exactly the same way for droplet,

half-Brownian, and Brownian (in the latter case using the modified partition sum Z̃). Of course this decoupled form
is also the reason for a simple FD formula to exist (when summing up the moments in the generating function G)
but it is useful to see how it works on the cumulants.

Remark 7. One can ask how this mechanism works on the nested contour integral representation. Consider any
solution of the form

〈Z(x, t)n〉 =
∏
j

[

∫
Cj

dzj
2iπ

etz
2
j+xzjg(zj)]

∏
1≤i<j≤n

zi − zj
zi − zj − c̄

(B19)
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This formula holds for the droplet IC, with c̄ = 1 in our units, where the Cj are parallel to the imaginary axis with
real parts such that Re(zi − zj) > c̄ (see formula (6.6) in Ref.72). In that case g(z) = 1 but we consider here the
more general case. Note that the case c̄ < 0 is also of interest as it provides a solution for the repulsive delta Bose gas71.

Let us set c̄ = 1 (but the property extends for any c̄). For n = 2 the property is very simple. The operator
D2 = ∂t − 1

2∂
2
x − 1

2 leads to the multiplication of the integrand by

z2
1 + z2

2 −
1

2
(z1 + z2)2 − 1

2
=

1

2
(z1 − z2 − 1)(z1 − z2 + 1) (B20)

The following simplification thus occurs in the integrand

1

2
(z1 − z2 − 1)(z1 − z2 + 1)(

z1 − z2

z1 − z2 − 1
− 1) =

1

2
(z1 − z2 + 1)→ 1

2
(B21)

The last step arises from the symmetry of the integrand, which can now be used, since the poles have disappeared
and the contours Cj can be brought together. Hence (B11) holds. It works quite similarly to the previous paragraph,
although the factors are slightly different.

For n = 3, from the definition of the third cumulant in (B14), we implement the subtractions in a symmetric way,
which leads to the following factor in the integrand of Z3

Z3 ≡
∏

1≤i<j≤n

zi − zj
zi − zj − 1

− z1 − z2

z1 − z2 − 1
− z1 − z3

z1 − z3 − 1
− z2 − z3

z2 − z3 − 1
+ 2 =

2

(z1 − z2 − 1)(z2 − z3 − 1)
(B22)

which, we note, simplifies. The differential linear operator D3 acts by multiplying the integrand by D3(z1, z2, z3) =
z2

1 + z2
2 + z2

3 − 1
3 (z1 + z2 + z3)2 − 2 and an important property is that at the double pole of (B22),

D3(z1, z2, z3)|z1=z2+1,z2=z3+1 = 0. One also checks the following symmetrization property

D3(z1, z2, z3)symz1,z2,z3 [
2

(z1 − z2 − 1)(z2 − z3 − 1)
] = 4symz1,z2,z3 [

z1 − z2

z1 − z2 − 1
− 1] (B23)

which is necessary condition for (B15) to hold. It would be sufficient for c̄ < 0 but here for c̄ > 0 one need to examine
the poles to make sure it holds also for the nested contours. Since we did that in the previous paragraph, we know
that it must work, and we will not pursue it here. It seems clear that there is a general mechanism for the equations
on the cumulant to hold, provided, again, that the overlap is factorized. It would be interesting to establish it for any
value of n.

Appendix C: Large time large deviation for more general g(x), and linear statistics of the Airy process

As noted in Remark 2., for any function g(x), the function φ(t, r) = ∂2
rqt,β(σ = −e−r), where qt,β(σ = −e−r) is the

FD (32), must obey the KP equation with a more general initial condition φ(t, r) 't→0
1√
t
p′0(r) with

p′0(r) = L1(−e−r) =
β

π
(∂r)

2

∫ +∞

0

dx
√
xg(−e−x−r) (C1)

One can now choose a more general function g(x), as in Eq. (214) of Ref.34, with

βg(−e−r) = Γ(1 + γ)Liγ(−e−r) 'r→−∞ −(−r)γ+ (C2)

except that we do not include the factor t1−γ of (214), i.e. we must choose g(x) to be time-independent. The value
γ = 1 corresponds to the KPZ case, gKPZ(x) = − log(1− x). Then one has, from Eq. (218) of Ref.34,

p′0(r) = L1(−e−r) 'r→−∞ −
Ω

2
(−r)γ− 1

2 , Ω =
Γ(1 + γ)
√
πΓ( 1

2 + γ)
(C3)

which is a monomial at large negative r.
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We now ask about the large time large deviation regime. We will use the analysis of cumulants of Ref.34, extended
here in Section II E. Let us perform the counting of powers of time. We write, from (56) and (60)

log Ĝ =
∑
n≥1

κn(t, r)

n!
=
∑
n≥1

1

n!

[
t
n
2−12n−1(−1)n−1(∂r)

n−3(p′0(r))n + t
n
2 (∂r)

n−2(p′0)n−2 + . . .

]
(C4)

where the second (subleading) term is written only schematically. Because what we do is slightly different than in
Ref.34 we must scale r ∼ tα and determine α later. We thus set r = ztα with fixed z < 0. Then the powers of time
in the first term are t

n
2−1−α(n−3)+nα(γ− 1

2 ). To make it independent of n we must choose α = 1
3−2γ (we will restrict

here to γ < 3/2). The power of time of each term is then log Ĝ ∼ t3α−1 = t
2γ

3−2γ . The subleading term (second

term) then scales as log Ĝ ∼ t
n
2−α(n−2)+(n−2)α(γ− 1

2 ) = t, hence it is indeed subdominant at large time for γ > 3/4,
which is α > 2/3. Now we note that although the power counting in t is different, all coefficients being the same, the
summation of the leading term should lead to the same function as in Ref.34, i.e

log Ĝ(t, r) ' −t3α−1Φ−(z) , Φ−(z) = −1

2

∑
n≥1

(−Ω)n

Γ(n+ 1)

Γ(n(γ − 1
2 ) + 1)

Γ(4− n( 3
2 − γ))

(−z)3−n( 3
2−γ) (C5)

On the other hand, we can directly search for a solution of the reduced KP equation (13) which scales for large
negative r as

log Ĝ(t, r) = −t3α−1Φ−(
r

tα
) , ψ(t, r) = ∂2

r log Ĝ(t, r) = tα−1H0(
r

tα
) (C6)

with H0 = −Φ′′−. It leads to a generalisation of (38), to which it reduces for α = 1

(α− 1

2
)H0(z)− αzH ′0(z) +H0(z)H ′0(z) = 0 (C7)

This equation is solved by the change of variable H0(z) = zh(z) and z = −eu which leads to dh
du =

h( 1
2−h)

h−a leading to

−Kz = (1− 2
H0(z)

z
)2α−1(

z

H0(z)
)2α (C8)

where K is an integration constant. For α = 1 one recovers H0(z) = 1
K (1 −

√
1−Kz) with K = π2 for the KPZ

equation.
At large negative z, from (C8) one has that H0(z) ' −K− 1

2α (−z)1− 1
2α . If we set α = 1

3−2γ as suggested by the

above cumulant analysis, we obtain H0(z) ' −Kγ− 3
2 (−z)γ− 1

2 . This is indeed the behavior predicted in (C5) from
the leading term n = 1 (for γ < 3/2 which we assume here), that is for z → −∞

Φ−(z) ' Γ(1 + γ)√
4πΓ( 5

2 + γ)
(−z)γ+ 3

2 , H0(z) = −Φ′′−(z) ' −Ω

2
(−z)γ− 1

2 (C9)

hence we identify K = (Ω
2 )

−2
3−2γ which reproduces K = π2 for the KPZ case γ = 1 (with Ω = 2/π). From (C5) the

(large |z|) series expansion predicted by the cumulants reads is

H0(z)

z
= −

Φ′′−(z)

z
= −1

2

∑
n≥1

(−1)n

Γ(n+ 1)

Γ(n(γ − 1
2 ) + 1)

Γ(2− n( 3
2 − γ))

(Ω(−z)−( 3
2−γ))n (C10)

which we can compare with the small y, h = H0

z expansion of the equation y = h(1−2h)
1
2α−1 with y = 1/(−Kz)1/(2α).

Setting α = 1
3−2γ one has y = Ω

2 (−z)−( 3
2−γ) and the equation becomes y = h(1 − 2h)

1
2−γ . It is then easy to check

with Mathematica that the two series coincide.

Hence the cumulant method and the KP equation once again agree, now for a larger class of functions g, i.e. a
larger class of linear statistics of the Airy2 point process. One recovers then from the KP equation the results for the
large deviation function Φ−(z) of Ref.34 and Ref.36 for monomials xγ+, although in a slightly different setting.
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Let us close by showing how the above results can be equivalently be derived using the semi-classical expansion
discussed in Section II E, which, to leading order, maps to the Burgers equation. We can use the solution of the
Burgers equation (66), in the form ψ0(t, r) = 1√

t
p′0(r − 2tψ0(t, r)). In the large time limit we insert the scaling form

ψ0(t, r) = tα−1H0(r/tα) and use the asymptotics (C3) of p′0(r) at large negative r = ztα. One sees that the powers of
t cancel out only if α = 1/(3− 2γ), in agreement with the above results, and we obtain

H0 = −Ω

2
(−z + 2H0)γ−

1
2 (C11)

It is easy to see that this equation is equivalent to the equation (C8) with K = (Ω
2 )

−2
3−2γ in full agreement with the

above results. This already indicates that the Burgers equation solution is equivalent to the self-consistent equation
(15) found in Ref.36, but we leave the full analysis of these connections to a future work.

Appendix D: Cumulants for the half-Brownian IC in the small time large deviation regime

We give explicit expressions for the cumulants at short time for the half-Brownian IC. One can solve directly the
linear equations for the cumulants in the small time large deviation regime, from the main text

[∂t −
n3 − n

12
− 1

n
∂2
x]Zn(x, t) = 0 (D1)

One can look for solutions of the form

Zn(x, t) ' 1√
πt
tn/2Fn(y = x/

√
t) (D2)

Inserting we find that it is solved by hypergeometric functions. One finds, for w = 0

Fn(y) = 2n−2n
n−3
2

(
Γ
(n

2

)
1F1

(
1− n

2
;

1

2
;−ny

2

4

)
+
√
nyΓ

(
n+ 1

2

)
1F1

(
1− n

2
;

3

2
;−ny

2

4

))
(D3)

leading to the explicit forms for e.g. the lowest cumulants

Z1(x, t) ' 1

2

(
erf

(
x

2
√
t

)
+ 1

)
(D4)

Z2(x, t) ' 1

2
x

(
erf

(
x√
2
√
t

)
+ 1

)
+

√
te−

x2

2t

√
2π

(D5)

Z3(x, t) ' 1

2

(
2t+ 3x2

)(
erf

(√
3x

2
√
t

)
+ 1

)
+

√
3

π

√
txe−

3x2

4t (D6)

and one can check that they have the correct t = 0 limits (143). For w > 0 one finds

Zn(x, t) ' 1√
πt
tn/2Fn(y = x/

√
t) (D7)

Fn(y) = 2n−2n
n−3
2 e−

ny2

4

(
Γ
(n

2

)
1F1

(
n

2
;

1

2
;

1

4
n(y − 2w̃)2

)
+
√
nΓ

(
n+ 1

2

)
(y − 2w̃) 1F1

(
n+ 1

2
;

3

2
;

1

4
n(y − 2w̃)2

))

Appendix E: Fredholm determinant and KP equation

In a seminal paper74,75 Pöppe and Sattinger found a family of Fredholm determinants (FD) which satisfy the KP
hierarchy. Following their (redundant) notation, consider X = (x1, x2, x3, ..), Z = (z1, x2, x3, ..) and a kernel F (X,Z)
which satisfies the linear equation (Eq. (2.4) in Ref.74)

∂xnF − ∂nx1
F + (−)n∂nz1F = 0 , n = 2, 3.. (E1)
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Note that xn for n > 1 occurs in both X and Z, hence ∂xn acts on both arguments of the kernel. One then defines
the FD noted D(X) on L2[x1,+∞[, with x2, x3, . . . being parameters

D(X) = Det(I + P[x1,+∞[F ) =

+∞∑
n=0

1

n!

n∏
a=1

∫ +∞

x1

dya1 det
1≤b,c≤n

F (Yb, Yc) , Ya = (ya1 , x2, x3, . . . ) (E2)

and P[x1,+∞[ the projector on the interval [x1,+∞[. In other words D(X) is the standard FD on L2[x1,+∞[ for the

operator F̃ with kernel F̃ (y, y′) = F ((y, x2, . . . ), (y
′, x2, . . . )). Then (Theorem 3.1 in74) the function

u(X) = 2∂2
x1

logD(X) (E3)

satisfies the KP hierarchy, D(X) being the tau function. The lowest member is the KP equation, obtained for
X = (x1, x2, x3), which reads (in the conventions of Ref.74)

∂x3u−
1

4
(∂3
x1
u+ 6u∂x1u) =

3

4
∂−1
x1
∂2
x2
u (E4)

To connect with the present paper we set

x1 = r , x2 =
x

2
, x3 = − t

3
, u(x1, x2, x3) = 2φ(x, t, r) , D(x1, x2, x3) = G(x, t, r) (E5)

Let us now define the following kernel on L2[0,+∞[ (v, v′ > 0)

Kxtr(v, v
′) = Kxt(r + v, r + v′) = F ((v + r,

x

2
,− t

3
), (v′ + r,

x

2
,− t

3
)) (E6)

where x, t are parameters. By construction it satisfies

∂rKxtr(v, v
′) = (∂v + ∂v′)Kxtr(v, v

′) (E7)

and the conditions obtained from (E1) read

∂tK = −1

3
(∂3
v + ∂3

v′)K , ∂xK =
1

2
(∂2
v − ∂2

v′)K (E8)

Hence, if these conditions are satisfied, one has that

φ(x, t, r) = ∂2
rDet(1 + αP[0,+∞[Kxtr) (E9)

satisfies the KP equation (5) for any α such that the FD is well-defined. Eqs (E7),(E8) are the conditions given in
Ref.1.

The generating function for the droplet IC can be written as

G(x, t, r) = Det(I −Mxtr)|L2(R+) (E10)

Mxtr(v, v
′) =

∫
duΣ(t1/3u− r) Ai(u+ v +

x2

4t4/3
)Ai(u+ v′ +

x2

4t4/3
) , Σ(z) =

1

1 + e−z
(E11)

Performing the shift u → u + t−1/3r, using the integral representation of both Airy functions, rescaling z, w →
t1/3z, t1/3w, u → t−1/3u, and, in a second stage, using the translation z → z + x

2t , w → w − x
2t we see that M is

equivalent under a similarity transformation (which does not change the FD) to the kernel

Kxtr(v, v
′) =

∫ +∞

−∞
duΣ(u)

∫
C2

dzdw

(2iπ)2
et(

z3

3 +w3

3 )−z(v+r+u)−w(v′+r+u)+x( z
2

2 −
w2

2 ) (E12)

with Mxtr(v, v
′) = t1/3Kxtr(vt

1/3, v′t1/3)e
x
2t (v′−v). The kernel K manifestly satisfies the above conditions Eqs

(E7),(E8). This establishes that for the droplet IC, φ(x, t, r) = ∂2
rG(x, t, r) satisfies the KP equation.

Furthermore, the same conditions Eqs (E7),(E8) are also satisfied for any choice of Σ(u) in (E12) (for which we
assume the FD to be well defined). For the choice Σ(u) = 1 − eβg(−eu) one recovers exactly the FD considered
in the Remark 2 (and in Ref.34). Indeed one then has Det(I − Mxtr)|L2(R+) = Det[I − (1 − eβĝt,σ )KAi] where
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ĝt,σ(u) = g(σet
1/3u) and σ = −e−r, as in (32) (this is easily seen e.g. expanding in traces and using the cyclic

property). Hence the whole class of FD (32), useful to evaluate linear statistics of the Airy point process, satisfy the
KP property, as claimed in the text.

Finally note that the N soliton solution of the KP hierarchy is obtained from a linear superposition of a particular
solution of (E1)

F =

N∑
j=1

aje
x1pj−z1qj+

∑
n≥2 xn(pnj −q

n
j ) (E13)

One finds that

D(x) = det
N×N

(
δij −

ai
pi − qj

ex1(pi−qj)+
∑
n≥2 xn(pni −q

n
j )

)
(E14)

More general solutions are obtained from the continuous superposition

F =

∫
dµ(p, q)ex1p−z1q+

∑
n≥2 xn(pn−qn) (E15)

for some weight measure dµ(p, q), leading to kernels generalizing (E12) and which obey the KP hierarchy property.
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