K. Y. Lee and D. J. Mooney, Hydrogels for Tissue Engineering, Chemical Reviews, vol.101, issue.7, pp.1869-1880, 2001.

A. S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews, vol.64, pp.18-23, 2012.

A. M. Jonker, D. W. Löwik, and J. C. Van-hest, Peptide- and Protein-Based Hydrogels, Chemistry of Materials, vol.24, issue.5, pp.759-773, 2012.

S. Mondal, S. Das, and A. K. Nandi, A review on recent advances in polymer and peptide hydrogels, Soft Matter, vol.16, issue.6, pp.1404-1454, 2020.

P. Katyal, F. Mahmoudinobar, and J. K. Montclare, Recent trends in peptide and protein-based hydrogels, Current Opinion in Structural Biology, vol.63, pp.97-105, 2020.

R. C. Dutta and A. K. Dutta, Cell-interactive 3D-scaffold; advances and applications, Biotechnology Advances, vol.27, issue.4, pp.334-339, 2009.

P. B. Malafaya, G. A. Silva, and R. L. Reis, Natural?origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Advanced Drug Delivery Reviews, vol.59, issue.4-5, pp.207-233, 2007.

H. Geckil, F. Xu, X. Zhang, S. Moon, and U. Demirci, Engineering hydrogels as extracellular matrix mimics, Nanomedicine, vol.5, issue.3, pp.469-484, 2010.

S. Van-vlierberghe, P. Dubruel, and E. Schacht, Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review, Biomacromolecules, vol.12, issue.5, pp.1387-1408, 2011.

G. S. Hussey, J. L. Dziki, and S. F. Badylak, Extracellular matrix-based materials for regenerative medicine, Nature Reviews Materials, vol.3, issue.7, pp.159-173, 2018.

H. Yan, A. Nykanen, J. Ruokolainen, D. Farrar, and A. F. Miller, Protein Fibrillar Hydrogels for three-Dimensional Tissue Engineering, Research Letters in Nanotechnology, vol.2009, pp.1-4, 2009.

P. Fratzl and R. Weinkamer, Nature?s hierarchical materials, Progress in Materials Science, vol.52, issue.8, pp.1263-1334, 2007.

T. Scheibel, Fibrous Proteins, 2008.

B. J. Pieters, M. B. Van-eldijk, R. J. Nolte, and J. Mecinovi?, Natural supramolecular protein assemblies, Chemical Society Reviews, vol.45, issue.1, pp.24-39, 2016.

H. Yao, H. Fang, X. Wang, and S. Yu, Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials, Chemical Society Reviews, vol.40, issue.7, p.3764, 2011.

K. A. Kyburz and K. S. Anseth, Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough?, Annals of Biomedical Engineering, vol.43, issue.3, pp.489-500, 2015.

C. Zhang, D. A. Mcadams, and . Ii;,

J. C. Grunlan, Nano/micro-Manufacturing of Bioinspired Materials: Methods to Mimic Natural Structures, Adv. Mater, vol.28, pp.6292-6321, 2016.

F. J. Martin-martinez, K. Jin, D. López-barreiro, and M. J. Buehler, The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature, ACS Nano, vol.12, issue.8, pp.7425-7433, 2018.

N. C. Abascal and L. Regan, The past, present and future of protein-based materials, Open Biology, vol.8, issue.10, p.180113, 2018.

C. D. Spicer, Hydrogel scaffolds for tissue engineering: the importance of polymer choice, Polymer Chemistry, vol.11, issue.2, pp.184-219, 2020.

M. M. Giraud-guille, C. Helary, S. Vigier, and N. Nassif, Dense fibrillar collagen matrices for tissue repair, Soft Matter, vol.6, issue.20, p.4963, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525304

C. H. Nair, G. A. Shah, and D. P. Dhall, Effect of temperature, ph and ionic strength and composition on fibrin network structure and its development, Thrombosis Research, vol.42, issue.6, pp.809-816, 1986.

F. A. Osorio, E. Bilbao, R. Bustos, and F. Alvarez, Effects of Concentration, Bloom Degree, and pH on Gelatin Melting and Gelling Temperatures Using Small Amplitude Oscillatory Rheology, International Journal of Food Properties, vol.10, issue.4, pp.841-851, 2007.

U. J. Kim, J. Park, C. Li, H. Jin, R. Valluzzi et al., Structure and Properties of Silk Hydrogels, Biomacromolecules, vol.5, issue.3, pp.786-792, 2004.

F. Ullah, M. B. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Classification, processing and application of hydrogels: A review, Materials Science and Engineering: C, vol.57, pp.414-433, 2015.

H. Li, C. Tan, and L. Li, Review of 3D printable hydrogels and constructs, Materials & Design, vol.159, pp.20-38, 2018.

A. De-mori, M. Peña-fernández, G. Blunn, G. Tozzi, and M. Roldo, 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering, Polymers, vol.10, issue.3, p.285, 2018.

C. Rieu, C. Parisi, G. Mosser, B. Haye, T. Coradin et al., Topotactic Fibrillogenesis of Freeze-Cast Microridged Collagen Scaffolds for 3D Cell Culture, ACS Applied Materials & Interfaces, vol.11, issue.16, pp.14672-14683, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02124299

W. E. Hennink and C. F. Van-nostrum, Novel crosslinking methods to design hydrogels, Advanced Drug Delivery Reviews, vol.54, issue.1, pp.13-36, 2002.

W. Hu, Z. Wang, Y. Xiao, S. Zhang, and J. Wang, Advances in crosslinking strategies of biomedical hydrogels, Biomaterials Science, vol.7, issue.3, pp.843-855, 2019.

A. K. Gaharwar, N. A. Peppas, and A. Khademhosseini, Nanocomposite hydrogels for biomedical applications, Biotechnology and Bioengineering, vol.111, issue.3, pp.441-453, 2013.

C. Aimé and T. Coradin, Nanocomposites from biopolymer hydrogels: Blueprints for white biotechnology and green materials chemistry, Journal of Polymer Science Part B: Polymer Physics, vol.50, issue.10, pp.669-680, 2012.

A. Vashist, A. Kaushik, A. Ghosal, J. Bala, R. Nikkhah-moshaie et al., Nanocomposite Hydrogels: Advances in Nanofillers Used for Nanomedicine, Gels, vol.4, issue.3, p.75, 2018.

M. Guvendiren and J. A. Burdick, Engineering synthetic hydrogel microenvironments to instruct stem cells, Current Opinion in Biotechnology, vol.24, issue.5, pp.841-846, 2013.

S. Hinderer, S. L. Layland, and K. Schenke-layland, ECM and ECM-like materials ? Biomaterials for applications in regenerative medicine and cancer therapy, Advanced Drug Delivery Reviews, vol.97, pp.260-269, 2016.

G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington et al., Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers, Science, vol.303, issue.5662, pp.1352-1355, 2004.

N. Debons, D. Dems, C. Hélary, S. Le-grill, L. Picaut et al., Differentiation of neural-type cells on multi-scale ordered collagen-silica bionanocomposites, Biomaterials Science, vol.8, issue.2, pp.569-576, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02456407

J. Zhu and R. E. Marchant, Design properties of hydrogel tissue-engineering scaffolds, Expert Review of Medical Devices, vol.8, issue.5, pp.607-626, 2011.

L. S. Liu, J. Kost, F. Yan, and R. C. Spiro, Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications, Polymers, vol.4, issue.2, pp.997-1011, 2012.

E. J. Bealer, S. Onissema-karimu, A. Rivera-galletti, M. Francis, J. Wilkowski et al., Protein?Polysaccharide Composite Materials: Fabrication and Applications, Polymers, vol.12, issue.2, p.464, 2020.

I. Hirasa, Forestation technology, Gels Handbook, vol.6, pp.21-36, 2001.

K. E. Kadler, C. Baldock, J. Bella, and R. P. Boot-handford, Collagens at a glance, Journal of Cell Science, vol.120, issue.12, pp.1955-1958, 2007.

K. Gelse, E. Pöschl, and T. Aigner, Collagens?structure, function, and biosynthesis, Advanced Drug Delivery Reviews, vol.55, issue.12, pp.1531-1546, 2003.

M. K. Gordon and R. A. Hahn, Collagens, Cell and Tissue Research, vol.339, issue.1, pp.247-257, 2009.

M. D. Shoulders and R. T. Raines, Collagen Structure and Stability, Annual Review of Biochemistry, vol.78, issue.1, pp.929-958, 2009.

D. S. Greenspan, Biosynthetic Processing of Collagen Molecules, Topics in Current Chemistry, vol.247, pp.149-183, 2005.

K. Reiser, R. J. Mccormick, and R. B. Rucker, Enzymatic and nonenzymatic cross?linking of collagen and elastin, The FASEB Journal, vol.6, issue.7, pp.2439-2449, 1992.

D. R. Stamov and T. Pompe, Structure and function of ECM-inspired composite collagen type I scaffolds, Soft Matter, vol.8, issue.40, p.10200, 2012.

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, and S. Asnacios, Power law rheology and strain-induced yielding in acidic solutions of type I-collagen, Soft Matter, vol.6, issue.16, p.3769, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525912

P. De-sa-peixoto, A. Deniset-besseau, M. Schanne-klein, and G. Mosser, Quantitative assessment of collagen I liquid crystal organizations: role of ionic force and acidic solvent, and evidence of new phases, Soft Matter, vol.7, issue.23, p.11203, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00804597

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M. Giraud-guille, Dense tissue-like collagen matrices formed in cell-free conditions, Matrix Biology, vol.25, issue.1, pp.3-13, 2006.

B. D. Walters and J. P. Stegemann, Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales, Acta Biomaterialia, vol.10, issue.4, pp.1488-1501, 2014.

E. E. Antoine, P. P. Vlachos, and M. N. Rylander, Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport, Tissue Engineering Part B: Reviews, vol.20, issue.6, pp.683-696, 2014.

S. Zhu, Q. Yuan, T. Yin, J. You, Z. Gu et al., Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications, Journal of Materials Chemistry B, vol.6, issue.18, pp.2650-2676, 2018.

L. Besseau and M. M. Giraud-guille, Stabilization of Fluid Cholesteric Phases of Collagen to Ordered Gelated Matrices, Journal of Molecular Biology, vol.251, issue.2, pp.197-202, 1995.

C. Helary, A. Abed, G. Mosser, L. Louedec, A. Meddahi-pellé et al., Synthesis and in vivo integration of improved concentrated collagen hydrogels, Journal of Tissue Engineering and Regenerative Medicine, vol.5, issue.3, pp.248-252, 2011.

R. A. Brown, M. Wiseman, C. Chuo, U. Cheema, and S. N. Nazhat, Ultrarapid Engineering of Biomimetic Materials and Tissues: Fabrication of Nano-and Microstructures by Plastic Compression, Adv. Funct. Mater, vol.15, pp.1762-1770, 2005.

G. Griffanti and S. N. Nazhat, Dense fibrillar collagen-based hydrogels as functional osteoid-mimicking scaffolds, International Materials Reviews, vol.65, issue.8, pp.502-521, 2020.

X. Lang and J. G. Lyubovitsky, Structural dependency of collagen fibers on ion types revealed by in situ second harmonic generation (SHG) imaging method, Analytical Methods, vol.7, issue.5, pp.1680-1690, 2015.

C. Helary, A. Abed, G. Mosser, L. Louedec, D. Letourneur et al., Evaluation of dense collagen matrices as medicated wound dressing for the treatment of cutaneous chronic wounds, Biomaterials Science, vol.3, issue.2, pp.373-382, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01274322

N. Nassif, F. Gobeaux, J. Seto, E. Belamie, P. Davidson et al., Self-Assembled Collagen?Apatite Matrix with Bone-like Hierarchy, Chemistry of Materials, vol.22, issue.11, pp.3307-3309, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526857

L. Cen, W. Liu, L. Cui, W. Zhang, and Y. Cao, Collagen Tissue Engineering: Development of Novel Biomaterials and Applications, Pediatr. Res, vol.63, pp.492-496, 2008.

R. Parenteau-bareil, R. Gauvin, and F. Berthod, Collagen-Based Biomaterials for, Tissue Engineering Applications. Materials, vol.3, pp.1863-1887, 2010.

K. Lin, D. Zhang, M. H. Macedo, W. Cui, B. Sarmento et al., Advanced Collagen-Based Biomaterials for Regenerative Biomedicine, Adv. Funct. Mater, vol.29, 2019.

S. Macneil, Biomaterials for tissue engineering of skin, Mater. Today, vol.11, pp.36-54, 2008.

A. M. Ferreira, P. Gentile, V. Chiono, and G. Ciardelli, Collagen for bone tissue regeneration, Acta Biomater, vol.8, pp.3191-3200, 2012.

M. Meyer, Processing of collagen based biomaterials and the resulting materials properties, BioMedical Engineering OnLine, vol.18, issue.1, 2019.

S. M. Willerth and S. E. Sakiyama-elbert, Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery, StemBook

. Sakiyama-elbert, Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery, StemBook, 2008.

J. W. Semple, J. E. Italiano, and J. Freedman, Platelets and the immune continuum, Nature Reviews Immunology, vol.11, issue.4, pp.264-274, 2011.

A. S. Wolberg, Thrombin generation and fibrin clot structure, Blood Rev, vol.109, pp.131-142, 2007.

M. W. Mosesson, Fibrinogen and fibrin structure and functions, Journal of Thrombosis and Haemostasis, vol.3, issue.8, pp.1894-1904, 2005.

M. Pieters and A. S. Wolberg, Fibrinogen and fibrin: An illustrated review, Research and Practice in Thrombosis and Haemostasis, vol.3, issue.2, pp.161-172, 2019.

J. W. Weisel and R. I. Litvinov, Fibrin Formation, Structure and Properties, Subcellular Biochemistry, vol.82, pp.405-456, 2017.

R. I. Litvinov, O. V. Gorkun, S. F. Owen, H. Shuman, and J. W. Weisel, Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level, Blood, vol.106, issue.9, pp.2944-2951, 2005.

O. Klykov, C. Van-der-zwaan, A. J. Heck, A. B. Meijer, and R. A. Scheltema, Missing regions within the molecular architecture of human fibrin clots structurally resolved by XL-MS and integrative structural modeling, Proceedings of the National Academy of Sciences, vol.117, issue.4, pp.1976-1987, 2020.

B. Blombäck and M. Okada, Fibrin gel structure and clotting time, Thrombosis Research, vol.25, issue.1-2, pp.51-70, 1982.

E. L. Hethershaw, A. L. Cilia-la-corte, C. Duval, M. Ali, P. J. Grant et al., The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis, Journal of Thrombosis and Haemostasis, vol.12, issue.2, pp.197-205, 2014.

J. D. Ferry and P. R. Morrison, Preparation and Properties of Serum and Plasma Proteins. VIII. The Conversion of Human Fibrinogen to Fibrin under Various Conditions1,2, Journal of the American Chemical Society, vol.69, issue.2, pp.388-400, 1947.

H. Zhao, L. Ma, J. Zhou, Z. Mao, C. Gao et al., Fabrication and physical and biological properties of fibrin gel derived from human plasma, Biomedical Materials, vol.3, issue.1, p.015001, 2007.

P. A. Janmey, J. P. Winer, and J. W. Weisel, Fibrin gels and their clinical and bioengineering applications, Journal of The Royal Society Interface, vol.6, issue.30, pp.1-10, 2008.

J. W. Weisel and R. I. Litvinov, Mechanisms of fibrin polymerization and clinical implications, Blood, vol.121, issue.10, pp.1712-1719, 2013.

K. M. Weigandt, D. C. Pozzo, and L. Porcar, Structure of high density fibrin networks probed with neutron scattering and rheology, Soft Matter, vol.5, issue.21, p.4321, 2009.

J. W. Weisel and R. I. Litvinov, Fibrin mechanical properties and their structural origins, Matrix Biol, pp.110-123, 2017.

E. A. Ryan, L. F. Mockros, J. W. Weisel, and L. Lorand, Structural Origins of Fibrin Clot Rheology, Biophysical Journal, vol.77, issue.5, pp.2813-2826, 1999.

S. L. Rowe, S. Lee, and J. P. Stegemann, Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels, Acta Biomaterialia, vol.3, issue.1, pp.59-67, 2007.

M. Wasilewska, Z. Adamczyk, and B. Jachimska, Structure of Fibrinogen in Electrolyte Solutions Derived from Dynamic Light Scattering (DLS) and Viscosity Measurements, Langmuir, vol.25, issue.6, pp.3698-3704, 2009.

K. Stapelfeldt, S. Stamboroski, I. Walter, N. Suter, T. Kowalik et al., Controlling the Multiscale Structure of Nanofibrous Fibrinogen Scaffolds for Wound Healing, Nano Letters, vol.19, issue.9, pp.6554-6563, 2019.

C. Rieu, G. Mosser, B. Haye, N. Sanson, T. Coradin et al., Thrombin-free polymerization leads to pure fibrin(ogen) materials with extended processing capacity, vol.2020, 2020.

A. Mathur, W. A. Schlapkohl, and E. Di-cera, Thrombin-fibrinogen interaction: pH dependence and effects of the slow .fwdarw. fast transition, Biochemistry, vol.32, issue.29, pp.7568-7573, 1993.

S. Shulman, The effects of certain ions and neutral molecules on the conversion of fibrinogen to fibrin, Discussions of the Faraday Society, vol.13, p.109, 1953.

T. A. Ahmed, E. V. Dare, and M. Hincke, Fibrin: A Versatile Scaffold for Tissue Engineering Applications, Tissue Engineering Part B: Reviews, vol.14, issue.2, pp.199-215, 2008.

E. D. Grassl, T. R. Oegema, and R. T. Tranquillo, Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent, Journal of Biomedical Materials Research, vol.60, issue.4, pp.607-612, 2002.

F. M. Shaikh, A. Callanan, E. G. Kavanagh, P. E. Burke, P. A. Grace et al., Fibrin: A Natural Biodegradable Scaffold in Vascular Tissue Engineering, Cells Tissues Organs, vol.188, issue.4, pp.333-346, 2008.

A. Breen, T. O'brien, and A. Pandit, Fibrin as a Delivery System for Therapeutic Drugs and Biomolecules, Tissue Engineering Part B: Reviews, vol.15, issue.2, pp.201-214, 2009.

A. Noori, S. J. Ashrafi, R. Vaez-ghaemi, A. Hatamian-zaremi, and T. J. Webster, A review of fibrin and fibrin composites for bone tissue engineering, International Journal of Nanomedicine, vol.Volume 12, pp.4937-4961, 2017.

Z. Yu, H. Li, P. Xia, W. Kong, Y. Chang et al., Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury, Journal of Biological Engineering, vol.14, issue.1, 2020.

B. Nazari, M. Kazemi, A. Kamyab, B. Nazari, S. Ebrahimi?barough et al., Fibrin hydrogel as a scaffold for differentiation of induced pluripotent stem cells into oligodendrocytes, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.108, issue.1, pp.192-200, 2019.

X. Wang and C. Liu, Fibrin Hydrogels for Endothelialized Liver Tissue Engineering with a Predesigned Vascular Network, Polymers, vol.10, issue.10, p.1048, 2018.

S. Yao, S. Yu, Z. Cao, Y. Yang, X. Yu et al., Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury, International Journal of Nanomedicine, vol.Volume 13, pp.2883-2895, 2018.

D. M.-dohan-ehrenfest, T. Bielecki, A. Mishra, P. Borzini, F. Inchingolo et al., In Search of a Consensus Terminology in the Field of Platelet Concentrates for Surgical Use: Platelet-Rich Plasma (PRP), Platelet-Rich Fibrin (PRF), Fibrin Gel Polymerization and Leukocytes, Current Pharmaceutical Biotechnology, vol.13, issue.7, pp.1131-1137, 2012.

D. M. Dohan, J. Choukroun, A. Diss, S. L. Dohan, A. J. Dohan et al., Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol.101, issue.3, pp.e37-e44, 2006.

S. Al-maawi, C. Herrera-vizcaíno, A. Orlowska, I. Willershausen, R. Sader et al., Biologization of Collagen-Based Biomaterials Using Liquid-Platelet-Rich Fibrin: New Insights into Clinically Applicable Tissue Engineering, Materials, vol.12, issue.23, p.3993, 2019.

V. Pavlovic, M. Ciric, V. Jovanovic, and P. Stojanovic, Platelet Rich Plasma: a short overview of certain bioactive components, Open Medicine, vol.11, issue.1, pp.242-247, 2016.

E. Prosecká, M. Rampichová, A. Litvinec, Z. Tonar, M. Králí?ková et al., Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo, Journal of Biomedical Materials Research Part A, vol.103, issue.2, pp.671-682, 2014.

J. K. Gandhi, F. Mano, R. Iezzi, S. A. Lobue, B. H. Holman et al., Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implantation, PLOS ONE, vol.15, issue.1, p.e0227641, 2020.

P. Heher, B. Maleiner, J. Prüller, A. H. Teuschl, J. Kollmitzer et al., A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain, Acta Biomaterialia, vol.24, pp.251-265, 2015.

O. Juhl, N. Zhao, A. Merife, D. Cohen, M. Friedman et al., Aptamer-Functionalized Fibrin Hydrogel Improves Vascular Endothelial Growth Factor Release Kinetics and Enhances Angiogenesis and Osteogenesis in Critically Sized Cranial Defects, ACS Biomaterials Science & Engineering, vol.5, issue.11, pp.6152-6160, 2019.

R. C. Deller, T. Richardson, R. Richardson, L. Bevan, I. Zampetakis et al., Artificial cell membrane binding thrombin constructs drive in situ fibrin hydrogel formation, Nature Communications, vol.10, issue.1, 2019.

C. Schneider-barthold, S. Baganz, M. Wilhelmi, T. Scheper, and I. Pepelanova, Hydrogels based on collagen and fibrin ? frontiers and applications, BioNanoMaterials, vol.17, issue.1-2, pp.3-12, 2016.

K. M. Hakkinen, J. S. Harunaga, A. D. Doyle, and K. M. Yamada, Direct Comparisons of the Morphology, Migration, Cell Adhesions, and Actin Cytoskeleton of Fibroblasts in Four Different Three-Dimensional Extracellular Matrices, Tissue Engineering Part A, vol.17, issue.5-6, pp.713-724, 2011.

V. Gassling, J. Hedderich, Y. Açil, N. Purcz, J. Wiltfang et al., Comparison of platelet rich fibrin and collagen as osteoblast-seeded scaffolds for bone tissue engineering applications, Clinical Oral Implants Research, vol.24, issue.3, pp.320-328, 2011.

C. Rieu, N. Rose, A. Taleb, G. Mosser, B. Haye et al., Differential myoblast and tenoblast affinity to collagen, fibrin and mixed threads in the prospect of muscle-tendon junction modelisation, vol.2020, 2020.

A. R. Rausen, A. Cruchaud, C. W. Mcmillan, and D. Gitlin, A Study of Fibrinogen Turnover in Classical Hemophilia and Congenital Afibrinogenemia, Blood, vol.18, issue.6, pp.710-716, 1961.

D. C. Paik, S. L. Trokel, and L. H. Suh, Just What Do We Know About Corneal Collagen Turnover?, Cornea, vol.37, issue.11, pp.e49-e50, 2018.

R. A. Wagenaar-miller, L. H. Engelholm, J. Gavard, S. S. Yamada, J. S. Gutkind et al., Complementary Roles of Intracellular and Pericellular Collagen Degradation Pathways In Vivo, Molecular and Cellular Biology, vol.27, issue.18, pp.6309-6322, 2007.

J. C. Chapin and K. A. Hajjar, Fibrinolysis and the control of blood coagulation, Blood Reviews, vol.29, issue.1, pp.17-24, 2015.

T. A. Ahmed, M. Griffith, and M. Hincke, Characterization and Inhibition of Fibrin Hydrogel?Degrading Enzymes During Development of Tissue Engineering Scaffolds, Tissue Engineering, vol.13, issue.7, pp.1469-1477, 2007.

B. Kim, J. S. Kim, and J. Lee, Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold, Journal of Biomedical Materials Research Part A, vol.101A, issue.9, pp.2661-2666, 2013.

C. Deblois, M. Côté, and C. J. Doillon, Heparin-fibroblast growth factorfibrin complex: in vitro and in vivo applications to collagen-based materials, Biomaterials, vol.15, issue.9, pp.665-672, 1994.

A. Takei, Y. Tashiro, Y. Nakashima, and K. Sueishi, Effects of fibrin on the angiogenesis in vitro of bovine endothelial cells in collagen gel, In Vitro Cellular & Developmental Biology - Animal, vol.31, issue.6, pp.467-472, 1995.

C. M. Brougham, T. J. Levingstone, S. Jockenhoevel, T. C. Flanagan, and F. J. O?brien, Incorporation of fibrin into a collagen?glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction, Acta Biomaterialia, vol.26, pp.205-214, 2015.

C. L. Cummings, D. Gawlitta, R. M. Nerem, and J. P. Stegemann, Properties of engineered vascular constructs made from collagen, fibrin, and collagen?fibrin mixtures, Biomaterials, vol.25, issue.17, pp.3699-3706, 2004.

R. R. Rao, A. W. Peterson, J. Ceccarelli, A. J. Putnam, and J. P. Stegemann, Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials, Angiogenesis, vol.15, issue.2, pp.253-264, 2012.

S. L. Rowe and J. P. Stegemann, Microstructure and Mechanics of Collagen-Fibrin Matrices Polymerized Using Ancrod Snake Venom Enzyme, Journal of Biomechanical Engineering, vol.131, issue.6, p.61012, 2009.

S. L. Rowe and J. P. Stegemann, Interpenetrating Collagen-Fibrin Composite Matrices with Varying Protein Contents and Ratios, Biomacromolecules, vol.7, issue.11, pp.2942-2948, 2006.

C. E. Helm, A. Zisch, and M. A. Swartz, Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow, Biotechnology and Bioengineering, vol.96, issue.1, pp.167-176, 2006.

R. R. Rao, A. W. Peterson, and J. P. Stegemann, Winner for outstanding research in the Ph.D. category for the 2013 society for biomaterials meeting and exposition, April 10-13, 2013, Boston, Massachusetts, Journal of Biomedical Materials Research Part A, vol.101A, issue.6, pp.1531-1538, 2013.

A. W. Peterson, D. J. Caldwell, A. Y. Rioja, R. R. Rao, A. J. Putnam et al., Vasculogenesis and angiogenesis in modular collagen?fibrin microtissues, Biomater. Sci., vol.2, issue.10, pp.1497-1508, 2014.

N. Bonzon, X. Carrat, C. Deminière, G. Daculsi, F. Lefebvre et al., New artificial connective matrix made of fibrin monomers, elastin peptides and type I + III collagens: structural study, biocompatibility and use as tympanic membranes in rabbit, Biomaterials, vol.16, issue.11, pp.881-885, 1995.

X. Chatzistavrou, R. R. Rao, D. J. Caldwell, A. W. Peterson, B. Mcalpin et al., Collagen/fibrin microbeads as a delivery system for Ag-doped bioactive glass and DPSCs for potential applications in dentistry, Journal of Non-Crystalline Solids, vol.432, pp.143-149, 2016.

O. V. Kim, R. I. Litvinov, J. Chen, D. Z. Chen, J. W. Weisel et al., Compression-induced structural and mechanical changes of fibrin-collagen composites, Matrix Biology, vol.60-61, pp.141-156, 2017.

M. Michalska, M. Kozakiewicz, A. Bodek, and K. H. Bodek, Estimation of the use of fibrin and collagen membranes as carriers for platelet-derived growth factor-BB (PGDF-BB) in the presence of amoxicillin, Indian J. Biochem. Biophys, vol.52, pp.196-202, 2015.

R. Narayan, T. Agarwal, D. Mishra, T. K. Maiti, and S. Mohanty, Goat tendon collagen-human fibrin hydrogel for comprehensive parametric evaluation of HUVEC microtissue-based angiogenesis, Colloids and Surfaces B: Biointerfaces, vol.163, pp.291-300, 2018.

C. Perka, M. Sittinger, O. Schultz, R. S. Spitzer, D. Schlenzka et al., Tissue Engineered Cartilage Repair Using Cryopreserved and Noncryopreserved Chondrocytes, Clinical Orthopaedics and Related Research, vol.378, pp.245-254, 2000.

C. M. Schuh, A. G. Day, H. Redl, and J. Phillips, An Optimized Collagen-Fibrin Blend Engineered Neural Tissue Promotes Peripheral Nerve Repair, Tissue Engineering Part A, vol.24, issue.17-18, pp.1332-1340, 2018.

N. J. Kaiser, R. J. Kant, A. J. Minor, and K. L. Coulombe, Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes, ACS Biomaterials Science & Engineering, vol.5, issue.2, pp.887-899, 2018.

V. K. Lai, S. P. Lake, C. R. Frey, R. T. Tranquillo, and V. H. Barocas, Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content, Journal of Biomechanical Engineering, vol.134, issue.1, 2012.

V. K. Lai, C. R. Frey, A. M. Kerandi, S. P. Lake, R. T. Tranquillo et al., Microstructural and mechanical differences between digested collagen?fibrin co-gels and pure collagen and fibrin gels, Acta Biomaterialia, vol.8, issue.11, pp.4031-4042, 2012.

E. Filová, F. Jelínek, M. Handl, A. Lytvynets, M. Rampichová et al., Novel composite hyaluronan/type I collagen/fibrin scaffold enhances repair of osteochondral defect in rabbit knee, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.87B, issue.2, pp.415-424, 2008.

D. N. Heo, M. Hospodiuk, and I. T. Ozbolat, Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering, Acta Biomaterialia, vol.95, pp.348-356, 2019.

R. G. Mooney, C. A. Costales, E. G. Freeman, J. M. Curtin, A. A. Corrin et al., Indentation micromechanics of three-dimensional fibrin/collagen biomaterial scaffolds, Journal of Materials Research, vol.21, issue.8, pp.2023-2034, 2006.

H. Nomori, H. Horio, and K. Suemasu, Mixing collagen with fibrin glue to strengthen the sealing effect for pulmonary air leakage, The Annals of Thoracic Surgery, vol.70, issue.5, pp.1666-1670, 2000.

H. Hong and J. P. Stegemann, 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells, Journal of Biomaterials Science, Polymer Edition, vol.19, issue.10, pp.1279-1293, 2008.

D. S. Nedrelow, D. Bankwala, J. D. Hyypio, V. K. Lai, and V. H. Barocas, Mechanics of a two-fiber model with one nested fiber network, as applied to the collagen-fibrin system, Acta Biomaterialia, vol.72, pp.306-315, 2018.

V. Reyhani, P. Seddigh, B. Guss, R. Gustafsson, L. Rask et al., Fibrin binds to collagen and provides a bridge for ?V?3 integrin-dependent contraction of collagen gels, Biochemical Journal, vol.462, issue.1, pp.113-123, 2014.

G. Montalbano, S. Toumpaniari, A. Popov, P. Duan, J. Chen et al., Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering, Materials Science and Engineering: C, vol.91, pp.236-246, 2018.

A. M. Ferreira, Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering, Mater. Sci. Eng. C, vol.91, pp.236-246, 2018.