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The wrinkling transition experimentally identified by Mutz et al. [Phys. Rev. Lett. 67, 923
(1991)] and then thoroughly studied by Chaieb et al. [Phys. Rev. Lett. 96, 078101 (2006)] in
partially polymerized lipid membranes is reconsidered. One shows that the features associated with
this transition, notably the various scaling behaviors of the height-height correlation functions that
have been observed, are qualitatively and quantitatively well described by a recent nonperturbative
renormalization group approach to quenched disordered membranes by Coquand et al. [Phys. Rev
E 97, 030102(R) (2018)]. As these behaviors are associated with fixed points of renormalization
group transformations they are universal and should also be observed in, e.g., defective graphene
and graphene-like materials.

I. INTRODUCTION

A considerable activity has been devoted these last
years to understanding both experimentally and theo-
retically the effects of disorder in membranes, mainly
within the contexts of the current study of graphene and
graphene-like materials on the one hand and, in a more
distant past, of partially polymerized lipid membranes
on the other hand. Indeed, the synthesis of graphene
[1, 2] followed by the discovery of its outstanding mechan-
ical, electronic, optical and thermal properties [3–6] has
stimulated intensive researches aiming at understanding
how the unavoidable presence of defects, vacancies, or
adatoms would alter the physical properties of pristine
compounds. Also, beyond the mere presence of native
imperfections, the introduction of artificial defects, e.g.
foreign adatoms or substitutional impurities, with the
help of various processes – particle (electrons or ions)
irradiation, chemical methods like oxidation or crystal
growth – has given rise to the emergence of a whole de-
fect engineering industry aiming at achieving new func-
tionalities for these topologically designed graphene and
graphene-like materials [7–10]. Among the numerous ef-
fects observed one finds: variation (increase or decrease)
of electronic conductivity according to the size of the de-
fects, increase of elasticity for moderate density of va-
cancies and decrease at higher density, decrease of ther-
mal conductance, of fracture strength, enhancement of
reactivity, appearance of ferromagnetism and so on [8–
12]. As part of this defect engineering activity, a specific
effort involving various experimental or numerical tech-
niques – (low pressure) chemical vapor deposition [13],
ion/electron irradiation [14–19] or molecular dynamic
simulation [20–22] – has been made toward the design
of defect-induced two-dimensional (2D) amorphous coun-
terparts of graphene and graphene-like materials. A high-
light of this activity is the achievement by electron irra-
diation of a step-by-step, atom-by-atom, crystal-to-glass

transition giving rise to a vacancy-amorphized graphene
structure [13–15] similar to the continuous random net-
work proposed by Zachariasen [23]. Many characteris-
tics of this transition have been determined: the onset
of the defect-induced amorphization process, its temper-
ature dependence, the structural response to vacancy in-
sertion, the nature of the electronic density of states of
the defective configurations [20], a transition in the frac-
ture response from brittle to ductile when increasing va-
cancy concentration [24]; finally a careful analysis of the
glassy-graphene structure in terms of a proliferation of
nonhexagonal carbon rings has been performed [15, 22].
However we emphasize that the very nature of this glass
transition is still unclear. Moreover there has been, up to
now, neither within this last context nor within the more
general one of the investigation of defective graphene and
graphene-like materials, no characterization of a quanti-
tative change between – still putative – ordered and dis-
ordered phases and a fortiori no indication of universal
behaviors associated with them.

In marked contrast with this situation, in a very dif-
ferent context, recent investigations of partially polymer-
ized lipid membranes by Chaieb et al.[25], following the
pioneering work of Mutz et al.[26], have led to identify
a remarkable folding-transition while varying the degree
of polymerization. More precisely these authors have
shown that, upon cooling below the chain melting tem-
perature, partially polymerized phospholipid vesicles un-
dergo a transition from a relatively smooth structure,
at high polymerization, to a wrinkled structure, at low
polymerization, characterized by randomly frozen nor-
mals. This has led them to suggest that this transition
would be the counterpart of the spin-glass transition oc-
curring in disordered spin systems [26, 27]. Chaieb et al.
[25], by considering the height-height correlation func-
tions, have been able to characterize quantitatively the
various phases as well as the wrinkling transition sepa-
rating them. However, despite the large amount of theo-
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retical work oriented towards understanding the physics
of disordered membranes, no theoretical explanation has
been given so far on the grounds of these results [27–38].

In this article, we show that a recent nonperturbative
renormaliation group (NPRG) study, performed by the
present authors [39], of the effective theory used to study
both curvature and metric disorders perfectly accounts
for this situation. In a first part, we recall the experimen-
tal status of wrinkled partially polymerized membranes.
In a second part, we lay out the unusually unsettled state
of the theoretical situation. Finally, in a third part, per-
forming an analysis of the long-distance morphology of
membranes at and in the vicinity of the wrinkling tran-
sition, we show how the NPRG approach reproduces the
experimental outputs. Finally we conclude, stressing the
consequences of our analysis for the physics of graphene
and graphene-like materials and claiming, in particular,
that the behaviors observed in partially polymerized lipid
membranes should also be observed in these materials.

II. WRINKLING TRANSITION IN PARTIALLY
POLYMERIZED MEMBRANES

The identification of a wrinkling transition in partially
polymerized membranes goes back to the work of Sack-
man et al. [40] on mixture of diacetylenic phospho-
lipids and dimyristoylphosphatidylcholine, followed by
those of Mutz et al. [26] and Chaieb et al. [25] on
diacetylenic phospholipids [1,2-bis(10,12-tricosadiynoyl)-
sn-glycero-3-phosphocholine], who have taken advantage
of the fact that, upon a chemical or photochemical pro-
cess, notably ultraviolet (UV) irradiation, these com-
pounds polymerize. In the case considered in [26] the
polymerizable phospholipids are first prepared as giant
vesicles and then cooled below the chain melting tem-
perature Tm ' 40◦C where they form tubular struc-
tures that are then partially polymerized by UV irra-
diation. The membranes are then reheated above Tm
where they reform spherical vesicles provided the de-
gree of polymerization does not exceed the percolation
threshold located around 40 %. These vesicles, of typical
size ranging from 0.3 to 40 µm, are then cooled down to
Tw ' 18 − 22◦C where they undergo a spontaneous, re-
versible, phase transition from a relatively smooth struc-
ture to a wrinkled, highly convoluted, rigid one display-
ing locally high spontaneous curvature. This observation
has led Mutz et al. [26] to conjecture that this state of
affairs should be well described by a theory of polymer-
ized membranes submitted to quenched curvature disor-
der. The outcomes of this experiment have been made
more quantitative by Chaieb et al. [25, 41–43] who have
studied the transition by various techniques. Small an-
gle neutron scattering has been used to investigate the
local structure, giving access to the fractal dimension
while environmental scanning electron microscopy has

been employed for the study of the surface topography
at mesoscopic scale [25, 41–43]. Finally a tapping-mode
atomic force microscope has provided information on the
mean-square fluctuations of the surface height h(x) at a
point x = (x1, x2), relative to the mean surface height,
〈(h(x) − h(0))2〉, and its Fourier transform, the power
spectrum P (k) [25]. This last quantity has been found
to display a remarkable power-law behavior in the range
0.1− 100 µm−1: P (k) ∼ k−γ where the power exponent
γ [64] is directly related to the roughness exponent ζ
by: γ = 1 + 2ζ. Three clear distinct regimes have been
observed [25] as the degree of polymerization φ is varied,
see Fig.1. At low polymerization, typically for φ < 30%,
the surface of the vesicles presents – at large scales –
large deformations, creases, of order of the vesicle size
(500 nm) typical of a wrinkled state. In this case one
finds [25]: γ = 2.9±0.1 corresponding to ζ = 0.95±0.05.
At high polymerization, typically between 32 and 40%
the vesicles are regular at large scales and the creases
are less pronounced (of order 20 nm) and one has [25] :
γ = 2 ± 0.06 and ζ = 0.5 ± 0.03. Finally, for φ in the
intermediary region 30% ≤ φ < 32% a transition occurs
and the vesicles display the morphology of a crumpled
elastic sheet with γ = 2.51 ± 0.03 and ζ = 0.75 ± 0.02
[25].

FIG. 1: The three scaling behaviors of the power spectrum
P (k) as function of k for various degrees of polymerization φ
of the membrane. From top to bottom: φ = 40%, φ = 30%
and φ = 9% and the corresponding membrane configurations.
From Chaieb et al. [25] with permission.

III. THEORETICAL CONTEXT

Early investigations of the wrinkling transition by
Mutz et al. [26] have triggered an impressive series of
theoretical works aiming to understand the effects of
quenched disorder contributions in the seminal model of
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Nelson and Peliti [44] used to describe the flat phase of
disorder-free polymerized membranes [45–55]. This series
has been initiated by Nelson and Radzihovsky [28, 29]
who have mainly investigated the effects of impurity-
induced disorder in the preferred metric tensor. They
have in particular shown that, below the dimension
D = 4 of the membrane, the flat phase of disorder-
free membranes remains stable at any finite tempera-
ture T but should be destabilized at vanishing T for any
amount of disorder due to a softening of the bending
rigidity, making possible the emergence of a spin-glass
behavior. This scenario has been strengthened by the
work of Radzihovsky and Le Doussal [30] who, studying
the limit of large embedding dimension d of the model,
have identified an instability of the flat phase toward
a spin-glass-like phase characterized by a nonvanishing
Edwards-Anderson order parameter [56]. At the same
time Morse et al. [57, 58], extending the work done in
[28, 29], have considered the role of both curvature and
metric quenched disorders. Using a perturbative, weak-
coupling, ε = 4 − D expansion, they have shown that
the curvature disorder gives rise to a new fixed point
at T = 0, stable with respect to randomness but un-
stable with respect to the temperature. These works
have been followed by an intensive search for various
kinds, i.e. flat or crumpled, of glassy phases by means
of mean-field approximations involving either short-range
[27, 30–35] or long-range disorders [36, 37] (see also [38]
for a review) that have led to predict that, at sufficiently
strong disorder, the flat phase could be even unstable
at any finite temperature toward a glassy phase that
would correspond to the experimentally observed wrin-
kled phase. However, we would like here to emphasize
several facts. The first one is that these last approaches,
based on mean-field, large d, computations, should be
considered with great caution when their conclusions are
extended in the finite d case, particularly when they in-
volve a breakdown of the symmetry between replica used
to perform the average over disorder. Second, none of
the approaches – involving 1/d or ε = 4−D expansions
– has been carried out at next-to-leading order, where
new physics could emerge. Finally, none of them has
produced quantitative predictions or explanations as for
the results of Chaieb et al. [25].

IV. NPRG ANALYSIS

Recently however, following previous works on
disorder-free polymerized membranes [50, 52, 55, 59–61]
the present authors [39] have performed a NPRG ap-
proach of the model considered within a perturbative
framework by Morse et al. [57, 58] and whose action

is given by

S[R] =

∫
dDx

{κ
2

(
∂2iR(x)

)2
+
λ

2
uii(x)2 + µuij(x)2

−c(x).∂2iR(x)− σij(x)uij(x)
}
.

(1)
In this action R(x) is a d-dimensional vector field
parametrizing, in the embedding space, the points x ≡
xi, i = 1 . . . D of D-dimensional membrane while uij is
the strain tensor that represents the fluctuations around
a flat reference configuration R0: uij = 1

2 (∂iR.∂jR −
∂iR

0.∂jR
0) with [65]

R0 = [〈R(x)〉] = xiei (2)

where 〈. . . 〉 and [. . . ] denote thermal and disorder aver-
ages respectively. In Eq.(2) the ei form an orthonormal
set of D vectors. The coupling constants κ and (λ, µ)
represent respectively the bending rigidity and the Lamé
coefficients. The action (1) includes curvature and met-
ric disorder contributions induced by two random fields
c(x) and σij(x) that couple to the curvature and strain
tensor respectively. They are considered here as short-
range, gaussian fields with [57, 58]

[ci(x) cj(x
′)] = ∆κ δij δ

(D)(x− x′)[
σij(x) σkl(x

′)
]

= (∆λδijδkl + 2∆µIijkl) δ
(D)(x− x′)

(3)
where Iijkl = 1

2 (δikδjl + δilδjk), with i, j, k, l = 1 . . . D
where ∆κ and (∆µ,∆λ+(2/D)∆µ) are positive coupling
constants associated with curvature and metric disor-
ders. Note finally that the ansatz (1), albeit reduced to
four powers of the fields and field derivatives, is expected
to lead to predictions not altered by higher orders, as
this happens quite remarkably in the disorder-free case
[52, 55, 60] and as this is strongly suggested by the very
weak sensitivity of our results with the changes of renor-
malization group (RG) process – see below.

The RG equations corresponding to action (1) have
been derived first perturbatively in [57, 58] and then
within a NPRG approach in [39]. Within this latter ap-
proach the RG equations have revealed that there exist,
in the space of coupling constants, not only two, as found
by Morse et al. [57, 58] but actually three nontrivial
fixed points: the usual finite-T , vanishing-disorder fixed
point P4 associated with disorder-free membranes [47]; a
vanishing-T , finite-disorder fixed point P5 identified for
the first time in [57, 58]; finally a finite-Tc, finite-disorder
fixed point Pc found in [39], missed within previous ap-
proaches, unstable with respect to T , thus associated with
a second-order phase transition and making the T = 0
fixed point fully attractive provided T < Tc. The con-
sequences of these facts are twofold: 1) a whole “glassy
phase” associated with the T = 0 fixed point is predicted
in agreement with the wrinkled phase observed in [25, 26]



4

and 2) three distinct universal scaling behaviors are ex-
pected, in agreement with the observations of Chaieb
et al. [25]. The subsequent analysis shows, moreover,
the quantitative agreement between the scaling behaviors
predicted and those observed. The quantity to consider is
the roughness exponent ζ. Let us recall how this quantity
is defined in a field-theoretical context. Let us decompose
R(x) around the flat phase configuration R0(x) accord-
ing to R(x) = R0(x)+u(x)+h(x) where u(x) and h(x)
are respectively the in-plane – phonon – and out-of-plane
– flexuron, – degrees of freedom parametrizing the fluc-
tuations around R0(x). Writing δh(x) = h(x)− 〈h(x)〉
one defines the connected and disconnected correlation
functions of the h field by:[

〈(h(x)− h(0))2〉
]

= Tχ(x) + C(x)

where Tχ(x) = [〈(δh(x)−δh(0))2〉] and C(x) = [〈h(x)−
h(0)〉2

]
that, as usual, respectively measure the ther-

mal and disorder fluctuations. The long-distance behav-
ior of these correlation functions is typically given by:
Tχ(x) ∼ |x|2ζ and C(x) ∼ |x|2ζ′ that define two rough-
ness exponents ζ and ζ ′. In the same way correlation
functions are defined for the phonon field with two rough-
ness exponents ζu and ζ ′u . They are related to the pre-
vious ones by: ζu = 2ζ − 1 and ζ ′u = 2ζ ′ − 1. Similarly,
in momentum space, writing δh(q) = h(q)−〈h(q)〉, one
defines:

Ghh(q) =
[
〈h(q)h(−q)〉

]
= Tχ(q) + C(q) (4)

where Tχ(q) =
[
〈δh(q)δh(−q)〉

]
and C(q) =[

〈h(q)〉〈h(−q)〉
]

that behave, at low momenta, as χ(q) ∼
q−(4−η) and C(q) ∼ q−(4−η

′) where η and η′ are the
anomalous dimensions evaluated at the fixed points of
the RG equations. As a consequence of expression (4) the
scaling behavior expected for the height-height correla-
tion function Ghh(q) is determined by the relative value
of η and η′ together with the position of the fixed point:
at finite or at vanishing T [66]. These exponents are re-
lated to the roughness exponents by: ζ = 1

2 (4−D−η) and
ζ ′ = 1

2 (4−D−η′) and to the power exponent γ = 5−D−η
or γ = 5−D− η′ depending on the exponent – η or η′ –
that controls the long-distance behavior.

At the fully attractive, vanishing-T , finite-disorder
fixed point P5 we find, by improving the results of [39],
η5 = 0.448(2) and η′5 = 0.275(2) [67]. This is in con-
trast with both [57, 58] and [38] where η5 = η′5 so
that P5 was found to correspond to a marginal – in fact
marginally unstable – fixed point. As a consequence we
find a roughness exponent ζ ′5 = 0.862(1) that, according
to (4) and the scaling laws of χ(q) and C(q), controls
the long-distance behavior of the height-height correla-
tion function Ghh(q). This corresponds to a power ex-
ponent γ5 = 2.725(2). This value is very close to that
found in [25] at low polymerization – for φ in [10%; 30%]
– and lies in the range [2.80, 2.92], see Fig.2. As done

in [25] we exclude the data point at lowest polymer-
ization (corresponding to γ = 3 in Fig.2), which does
not belong to the plateau identified for φ in [10%; 30%].
Note that such a value would correspond to the expected
value for a fluid membrane, which could be a hint that
below φ = 10%, partially polymerized lipid membranes
do not behave as polymerized membranes anymore. At
the stable, finite-T , finite-disorder fixed point P4, we
find η4 = η′4/2 = 0.849(3) (see [39, 50, 60] and also
[5] for a review of other approaches) that corresponds
to ζ4 = 0.575(2) and γ4 = 2.151(3). As seen in Fig.2
this is again in good agreement with the results found
in [25] at high polymerization with a value of γ that
saturates at 2. This value corresponds to the case of
disorder-free polymerized membranes. It is in agreement
with that obtained by Locatelli et al. [62] who have found
ζ = 0.54±0.02 by means of low energy electron diffraction
on free-standing graphene sheet. Finally, at the finite-
disorder, finite-T , critical, fixed point Pc found in [39] we
get ηc = η′c = 0.490(2) that corresponds to ζc = 0.755(1)
and γc = 2.510(2) that is in very good agreement with
the value γ = 2.51 found by Chaieb et al. [25] at critical
polymerization, see Fig.2.

FIG. 2: Power exponent γ as a function of the polymerization
rate φ. Adapted from Chaieb et al. [25]. Horizontal lines cor-
respond to the data extracted from our NPRG computations:
γ5 = 2.725(2), γc = 2.510(2) and γ4 = 2.151(3).

V. CONCLUSION

The conclusion of our work is fourfold. First, we
have shown that the longstanding problem of the wrin-
kling transition taking place in partially polymerized
lipid membranes is both qualitatively and quantitatively
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clarified by means of the NPRG approach used in [39].
Second, reciprocally, this agreement validates the NPRG
approach to disordered polymerized and, in particular,
consolidates the prediction of the existence of three non-
trivial fixed points in the RG flow of the model (1), in
contradiction with all previous works. At the formal level
this situation raises the question of the origin of the mis-
match between the NPRG approach and the previous
ones: the weak-coupling approach around D = 4 per-
formed by Morse et al. [57, 58] and the self-consistent
screening approximation used by Radzihovsky and Le
Doussal [30, 38]. Third, as the three different kinds of
scaling behaviors predicted in [39] are associated with
fixed points or RG flow, they are universal and should
be observed in a large class of defective materials able
to display curvature disorder [68]. This is in particular

the case of defective graphene, whose sp2-hybridized car-
bon structure can reorganize into a non-hexagonal struc-
ture displaying nonvanishing curvature. Fourth, and fi-
nally, the glassy graphene configurations observed dur-
ing the vacancy-amorphization process have been shown
to display a rough, static, wrinkled structure with re-
duced thermal fluctuations with respect to their purely
crystalline counterpart and exhibit a root mean squared
roughness increasing with vacancy concentration indi-
cating a change in the macroscopic morphological/shape
structure of defective graphene sheets [20, 22]. It would
be of considerable interest to see if this transition can
be moved closer to the wrinkling transition observed in
partially polymerized membranes.
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