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Abstract	

The	 presence	 of	 peripheral	 myelinating	 cells	 in	 the	 central	 nervous	 system	 (CNS)	 has	 gained	 the	
neurobiologist	attention	over	the	years.	Despite	the	confirmed	presence	of	Schwann	cells	in	the	CNS	
in	pathological	conditions,	and	 the	 long	 list	of	 their	beneficial	effects	on	central	 remyelination,	 the	
cues	 that	 impede	 or	 allow	 Schwann	 cells	 to	 successfully	 conquer	 and	 remyelinate	 central	 axons	
remain	partially	undiscovered.	A	better	knowledge	of	these	factors	stand	out	as	crucial	to	foresee	a	
rational	therapeutic	approach	for	the	use	of	Schwann	cells	in	CNS	repair.	Here,	we	review	the	diverse	
origins	of	Schwann	cells	 into	 the	CNS,	both	peripheral	and	central,	as	well	as	 the	CNS	components	
that	 inhibit	 Schwann	 survival	 and	migration	 into	 the	 central	 parenchyma.	Namely,	we	 analyze	 the	
astrocyte-	and	the	myelin-derived	components	that	restrict	Schwann	cells	 into	the	CNS.	Finally,	we	
highlight	 the	unveiled	mode	of	 invasion	of	 these	peripheral	 cells	 through	 the	central	environment,	
using	 blood	 vessels	 as	 scaffolds	 to	 pave	 their	 ways	 towards	 demyelinated	 lesions.	 In	 short,	 this	
review	 presents	 the	 so	 far	 uncovered	 knowledge	 of	 this	 complex	 CNS-peripheral	 nervous	 system	
(PNS)	relationship.	
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Main	Points	

• Schwann	cells,	from	PNS	and	CNS	origin,	are	able	myelinate	demyelinated	CNS.	
• Schwann	cells	need	to	overcome	inhibitory	signals	from	astrocytes	and	CNS	myelin	to	invade	

CNS.	
• Blood	vessels	provide	routes	for	their	migration	guided	within	CNS.	
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The	nervous	system,	although	working	as	a	sole	system,	is	divided	into	two	separated	compartments:	
the	central	(CNS)	and	the	peripheral	(PNS)	nervous	systems,	which	differ	in	cellular	compositions.		

The	CNS	includes	the	optic	nerve,	brain	and	spinal	cord,	while	the	PNS	consists	mainly	of	nerves.	The	
CNS	 and	 PNS	 converge	 at	 the	motor	 exit	 points	 (MEP)	 and	 at	 the	 dorsal	 root	 entry	 zones	 (DREZ),	
where	 transition	 zones	 draw	 the	 limit	 of	 both	 systems	 and	 segregate	 the	 CNS	 and	 PNS	 cellular	
components.	These	boundaries	seal	off	neurons	as	well	as	central	and	peripheral	glia	(Fraher,	1999;	
Fraher	&	Kaar,	1986),	leaving	only	space	dorsally	for	PNS	axon	entry,	and	ventrally	for	CNS	axon	exit.	

Due	to	the	mentioned	compartmentalization,	different	glial	cells	share	to	some	extent,	similar	roles	
in	 both	 systems.	 Regarding	 myelination,	 oligodendrocytes	 are	 the	 cells	 in	 charge	 of	 forming	 the	
myelin	 sheaths	 in	 the	CNS,	while	Schwann	cells	 (in	mammals),	and	MEP	glia	 (in	 zebrafish)	perform	
this	same	function	in	the	PNS	(Emery,	2010;	Fraher	&	Rossiter,	1983;	Jessen	&	Mirsky,	2005).	Despite	
the	 successful	 maintenance	 of	 the	 correct	 composition	 in	 both	 systems,	 some	 examples	 of	
transgression	by	Schwann	cells	or	oligodendrocytes	(Coulpier	et	al.,	2011)	have	been	reported	both	
in	normal	and	pathological	conditions.	This	review	is	dedicated	to	our	understanding	of	Schwann	cell	
presence	in	the	CNS.	

	

Schwann	cell	presence	in	the	CNS.	

The	ectopic	presence	of	Schwann	cells	within	the	CNS	has	been	extensively	described	over	the	years.	
Schwann	cell	presence	in	the	human	CNS,	was	first	highlighted	by	Adelman	and	Aronson	(Adelman	&	
Aronson,	1972),	and	later,	in	the	non-human	primate	CNS	(Raine,	1976).	This	PNS-CNS	transgression	
capacity	of	the	endogenous	Schwann	cells	was	experimentally	challenged	in	different	demyelinating	
models	including	experimental	autoimmune	encephalomyelitis	(Raine,	Traugott,	&	Stone,	1978),	viral	
encephalomyelitis	 (Dal	Canto	&	Lipton,	1980),	 focal	myelinotoxic	 injections	 (Blakemore,	1982),	and	
focal	compressive/contusive	lesions	of	the	spinal	cord	(Blight	&	Young,	1989;	Griffiths	&	McCulloch,	
1983),	demonstrating	the	capacity	of	endogenous	(as	opposed	to	grafted,	exogenous)	Schwann	cells	
to	colonize	the	CNS	under	pathological	conditions.		

The	presence	of	these	endogenous	Schwann	cells	 in	the	CNS	opened	the	question	of	how	and	why	
this	 transgression	 occurs,	 and	 introduced	 the	 idea	 of	 the	 ability	 of	 Schwann	 cells	 to	 rescue	 the	
lesioned	CNS.	Advocating	this	notion,	a	large	number	of	Schwann	cells	were	also	found	myelinating	
CNS	axons	 in	human	pathological	 conditions,	 such	as	multiple	 sclerosis	 (Itoyama,	Ohnishi,	 Tateishi,	
Kuroiwa,	&	Webster,	 1985;	 Itoyama,	Webster,	 Richardson,	&	 Trapp,	 1983;	 Yamamoto,	 Kawamura,	
Hashimoto,	 &	Nakamura,	 1991)	 or	 spinal	 cord	 injury	 (Bunge,	 1993;	 J.	 D.	 Guest,	 Hiester,	 &	 Bunge,	
2005;	Wang,	Walter,	 &	 Gerhard,	 1996)	 as	 well	 as	 in	 long-lived	 rodent	 and	 canine	myelin	 mutant	
(Duncan	&	Hoffman,	1997).	 In	 these	mutants,	Schwann	cells	were	mainly	 found	 in	 the	spinal	 cord,	
they	were	also	present	in	the	forebrain,	brain	stem,	and	cerebellum.		

	

Origin	of	the	Schwann	cell	presence	in	CNS.	

For	decades,	these	CNS	remyelinating	Schwann	cells	were	considered	to	arise	from	outside	the	CNS	
(Franklin	&	Blakemore,	1993;	Gilmore,	1971;	Gilmore,	Sims,	&	Heard,	1982;	Jasmin,	Janni,	Moallem,	
Lappi,	 &	 Ohara,	 2000;	 Sims,	 Durgun,	 &	 Gilmore,	 1998),	 with	 neural	 crest-derived	 Schwann	 cells	
migrating	from	the	PNS	into	the	CNS	to	contribute	to	myelin	repair.	 In	this	situation,	Schwann	cells	
would	need	to	trespass	the	PNS-CNS	transition	zone.	However,	the	recent	developments	of	genetic	
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tools	allowed	digging	 into	the	source	of	these	cells	and	demonstrated	that	their	origin	 is	not	solely	
peripheral	(Assinck	et	al.,	2017;	Ma	et	al.,	2018;	Zawadzka	et	al.,	2010).		

As	 thought	before,	 genetic	 fate	mapping	 studies	have	proven	 that	peripheral	 non-myelinating	 and	
myelinating	Schwann	cells	are	recruited	from	the	periphery	into	the	CNS	where	they	provide	axons	
with	 peripheral	 myelin,	 thus	 implying	 their	 ability	 to	 migrate	 and	 cross	 the	 CNS-PNS	 border	 to	
provide	ensheathment	to	central	axons	(Assinck	et	al.,	2017;	Ma	et	al.,	2018).	Despite	this	expected	
observation,	 genetic	 tools	 have	 also	 revealed	 more	 surprising	 findings.	 Non-neural	 crest	 derived	
resident	 cells	 of	 the	 CNS,	 the	 oligodendrocyte	 precursor	 cells	 (OPC),	 are	 able	 to	 differentiate	 into	
remyelinating	 Schwann	 cells	 in	 response	 to	 spinal	 cord	 demyelination	 or	 injury	 (Zawadzka	 et	 al.,	
2010;	Assinck	et	al.,	2017).	After	spinal	cord	injury,	Schwann	cell	myelin	sheaths	in	the	vicinity	of	the	
dorsal	 root	 entry	 zone,	 are	 typically	 derived	 from	 peripheral	 cells.	 However	 those	 myelinating	
Schwann	 cells	 at	 the	 epicentre	 of	 the	 lesion	 are	 derived	 from	 central	 OPC	 (Assinck	 et	 al.,	 2017).	
Interestingly,	 the	 number	 OPC-derived	 Schwann	 cells	 increases	 overtime	 indicating	 an	 ongoing	
production	of	Schwann	cells	by	non-neural	crest	progenitors.	In	contrast,	the	number	of	neural	crest-
derived	 Schwann	 cell	 does	 not	 change	 after	 the	 first	 days	 of	 remyelination,	 suggesting	 that	 the	
“outside-in”	Schwann	cell	migration	occurs	only	in	the	first	steps	of	the	lesion	healing	(Zawadzka	et	
al.,	 2010;	 Assinck	 et	 al.,	 2017).	 These	 unexpected	 observations	 support	 the	 view	 that	most	 of	 the	
myelinating	Schwann	cells	present	within	CNS	are	derived	 from	the	OPC,	which	upon	activation	by	
micro-environmental	 cues	 via	 BMP/Wnt	 signaling,	 differentiate	 into	 Schwann	 cells	 (Ulanska-
Poutanen	et	al.,	2018)	and	remyelinate	central	axons	both	in	demyelinating	lesions	(Zawadzka	et	al.,	
2010)	and	spinal	cord	injury	(Assinck	et	al.,	2017).			

Although	 increasing	 studies	 have	 addressed	 the	 ability	 of	 OPC	 to	 differentiate	 into	 myelinating	
Schwann	cells,	based	on	their	expression	of	pre-myelinating	(SCIP	and	OCT6)	or	myelinating	Schwann	
cell	markers	(P0	myelin	protein	or	periaxin)	(Zawadzka	et	al.,	2010),	their	capacity	to	give	rise	to	non-
myelinating	 Remak	 glia	 remains	 unexplored.	 Due	 to	 Schwann	 cell	 plasticity	 and	 their	 capacity	 of	
transdifferentiation	between	myelinating	and	non-myelinating	Schwann	cells	under	(Jessen	&	Mirsky,	
2019),	 it	 will	 be	 of	 interest	 to	 further	 elucidate	 whether	 CNS-resident	 Schwann	 cell	 conserve	 this	
capacity	in	the	central	environment.	Nevertheless,	new	genetic	tools	to	specifically	label	their	lineage	
independently	of	their	myelination	ability	will	be	required	to	investigate	this	question.	

	

Exogenous	Schwann	cells	as	potential	candidates	to	enhance	CNS	remyelination	

A	large	number	of	pre-clinical	studies	using	cell	transplantation	corroborated	overtime	Schwann	cell	
great	 capacity	 to	 contribute	 to	 CNS	 repair.	 Engraftment	 of	 nerve	 fragments	 (Richardson,	 Issa,	 &	
Shemie,	1982)	first,	and	of	purified	Schwann	cells	later,	highlighted	the	role	of	myelinating	Schwann	
cells	 in	 promoting	 CNS	 axonal	 survival	 (Blakemore,	 Crang,	&	 Patterson,	 1987;	 Pearse	 et	 al.,	 2007),	
long-term	maintenance	of	normal	distribution	of	sodium	and	potassium	channels	(Black,	Waxman,	&	
Smith,	2006)	and	 restoration	of	axonal	 conduction	 (Felts	&	Smith,	1992).	As	a	 result,	 Schwann	cell	
remyelination	 of	 experimental	 CNS	 lesions	 ultimately	 lead	 to	 functional	 rescue	 of	 neurological	
deficits	 (Blight	&	Young,	 1989;	Deng,	Walker,	&	Xu,	 2015;	Girard	et	 al.,	 2005;	 Jasmin	et	 al.,	 2000).	
Furthermore,	 the	 list	 of	 Schwann	 cell	 beneficial	 effects	 in	 CNS	 repair	 is	 not	 restricted	 to	 their	
myelinating	 capacity,	 and	 includes	 axon	 growth	 promoting	 activities	 by	 the	 secretion	 of	 trophic	
factors	including	NGF	and	BDNF	(Assouline	et	al.,	1987;	Bampton	&	Taylor,	2005),	expression	on	their	
membrane	of	permissive	extracellular	matrix	(ECM)	proteins	such	as	laminin	and	fibronectin	(Baron-
Van	Evercooren,	Kleinman,	 Seppa,	Rentier,	&	Dubois-Dalcq,	 1982;	Chiu,	 Espinosa	de	 los	Monteros,	
Cole,	Loera,	&	de	Vellis,	1991),	and	a	variety	of	adhesion	molecules	(NCAM,	L1	etc)	(Reichardt	et	al.,	
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1989).	 Recently,	 Wei	 and	 collaborators	 (Wei	 et	 al.,	 2019)	 unveiled	 the	 promising	 role	 of	 the	
exosomes	produced	by	Schwann	cells	 in	 repairing	 the	CNS.	These	Schwann	cell-secreted	exosomes	
harbor	 proteins	 related	 to	 important	 CNS	 repair	 mechanisms,	 such	 as	 axon	 regeneration	 and	
inflammation	 inhibition.	 To	 date,	 the	 therapeutic	 use	 of	 Schwann	 cells,	 by	 exogenous	
transplantation,	 has	 been	 broadly	 explored	 in	 a	 variety	 of	 animal	models	 of	 CNS	 diseases	 such	 as	
toxin-induced	 demyelination	 (Girard	 et	 al.,	 2005;	 Kocsis	&	Waxman,	 2007;	Woodhoo	 et	 al.,	 2007),	
multiple	sclerosis	and	spinal	cord	injury	(Bastidas	et	al.,	2017;	Kanno,	Pearse,	Ozawa,	Itoi,	&	Bunge,	
2015;	Pearse	et	al.,	2004;	Sparling	et	al.,	2015).		

The	 idea	 of	 using	 Schwann	 cells	 to	 therapeutically	 enhance	 CNS	myelin	 repair	 gained	 even	more	
relevance	due	to	the	possibility	of	obtaining	and	expanding	human	and	non-human	primate	Schwann	
cells	 (Avellana-Adalid	et	al.,	1998;	Casella,	Bunge,	&	Wood,	1996;	Levi	et	al.,	1995;	Rutkowski,	Kirk,	
Lerner,	&	Tennekoon,	1995).	Thus,	these	cells	started	being	considered	as	promising	candidates	for	
autologous	 transplantation	 in	 CNS	 diseases	 (Anderson	 et	 al.,	 2017;	 Kocsis,	 Akiyama,	 Lankford,	 &	
Radtke,	 2002),	 avoiding	 concerns	 about	 immunological	 rejection	of	 the	 grafted	 cells.	 Relieving	 any	
safety	 issues,	 pre-clinical	 studies	 showed	 that	 autologous	 Schwann	 cell	 transplantation	 could	 be	 a	
clinically	 safe	approach	 to	 repair	 the	CNS	 in	 rodents	 (Bastidas	et	al.,	 2017;	 J.	Guest,	 Santamaria,	&	
Benavides,	2013;	Pearse	et	al.,	2004;	Sparling	et	al.,	2015)	and	non-human	primates	(Bachelin	et	al.,	
2005).	 To	 date,	 the	 therapeutic	 use	 of	 Schwann	 cells	 has	 been	 tested	 in	 clinical	 trials	 for	 spinal	
trauma	(Anderson	et	al.,	2017)		(Clinical	trial.gov:	NCT01739023).		

Despite	 these	 promising	 clinical	 effects,	 exogenous	 Schwann	 cell	 transplantation	 still	 opposes	
obvious	 limitations,	 hindering	 the	 possibility	 of	 complete	 success	 for	 these	 types	 of	 treatments.	
Although	Schwann	cells	were	 found	highly	motile	 cells	 in	vitro	 (Baron-Van	Evercooren	et	al.,	1982;	
Milner	 et	 al.,	 1997)	 and	 in	 vivo	 within	 the	 PNS	 (Cattin	 et	 al.,	 2015),	 they	 exhibit	 poor	 migration	
through	the	parenchyma,	from	their	injection	site	once	grafted	in	the	CNS	(Baron-Van	Evercooren	et	
al.,	 1992;	Woodhoo	 et	 al.,	 2007).	 Their	 survival	 within	 the	 CNS	 parenchyma	 is	 also	 compromised	
(Iwashita	 &	 Blakemore,	 2000;	 Iwashita,	 Fawcett,	 Crang,	 Franklin,	 &	 Blakemore,	 2000).	 This	 poor	
migration	 and	 survival	 in	 the	 CNS	 is	 stage-dependent	 since	more	 immature	 stages	 of	 the	 lineage,	
such	as	boundary	cap	cells	(Zujovic	et	al.,	2011)	and	Schwann	cell	precursors	(Woodhoo	et	al.,	2007)	
grafted	 in	 similar	 conditions	 survive	 and	 migrate	 more	 efficiently	 in	 the	 adult	 CNS	 parenchyma.		
These	findings	indicate	that	the	CNS/PNS	segregation	is	not	exclusively	due	to	a	physical	confinement	
of	 both	 compartments	 by	 the	 glia	 limitans	 and	 specialized	 glial	 cells,	 which	 together	 form	 the	
transitional	zone	(Fontenas	&	Kucenas,	2018;	Fraher,	1992)	but	rather	to	a	more	complex	molecular	
and	cellular	inhibition	from	different	CNS	components.	

	

What	prevents	Schwann	cells	to	successfully	remyelinate	the	injured	CNS?		

Hence,	deciphering	what	prevents	Schwann	cells	from	extensively	populate	and	myelinate	CNS	axons	
in	 physiological	 conditions,	 and	 what	 grants	 their	 incursion	 and	 survival	 under	 others,	 is	 of	 high	
relevance	to	myelin	repair.	Based	on	the	original	hypothesis	of	the	exclusive	peripheral	origin	of	the	
CNS	 remyelinating	 Schwann	 cells,	 the	main	barrier	 preventing	 their	 invasion	of	 the	CNS,	would	be	
physical,	and	formed	by	astrocytes.	However,	despite	this	physical	impediment,	the	migration	failure	
of	 Schwann	 cells	 grafted	 into	 the	 CNS	 or	 centrally	 originated	 from	 OPCs	 to	 invade	 the	 system,	
indicates	that	other	mechanisms	ensure	Schwann	cell	restriction	from	the	CNS.		
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Here,	we	will	review	the	known	aspects	of	Schwann	cell	exclusion	from	the	CNS	and	their	ability	to	
overpass	 this	 inhibition	 under	 certain	 conditions.	 In	 particular,	 we	 will	 review	 Schwann	 cell	
interactions	with	the	major	CNS	components:	astrocytes,	oligodendrocyte	and/or	myelin.		

	

Astrocyte	

In	 the	 mature	 spinal	 cord,	 astrocyte	 processes	 branch	 profusely	 and	 come	 to	 form	 the	 principal	
central	 nervous	 tissue	 component	 of	 the	 transition	 zone,	 and	 therefore,	 constitute	 the	 main	
component	 of	 the	 physical	 barrier	 between	 CNS	 and	 PNS,	 the	 glia	 limitans	 (Fraher,	 1992).	 This	
astrocytic	barrier	 is	also	found	around	blood	vessels.	As	examples	of	their	 importance	 in	delimiting	
both	territories,	ectopic	entries	of	peripheral	cells	into	the	spinal	cord	are	largely	correlated	with	the	
disruption	 of	 astrocyte	 integrity	 in	 the	 mature	 nervous	 system	 (Blakemore	 &	 Patterson,	 1975;	
Duncan,	Hammang,	&	Gilmore,	1988;	Duncan	&	Hoffman,	1997;	Franklin	&	Blakemore,	1993).	

In	support	of	astrocyte	inhibition,	exogenous	Schwann	cells	show	poor	survival	and	migration	out	of	
the	 site	of	 injection,	which	 is	 generally	 confined	by	 reactive	astrocytes	 (Andrews	&	Stelzner,	2007;	
Baron-Van	Evercooren	et	al.,	1992;	Duncan	et	al.,	1988;	Franklin	&	Blakemore,	1993;	Iwashita	et	al.,	
2000;	 Wilby	 et	 al.,	 1999).	 In	 contrast,	 endogenous	 (Woodruff	 &	 Franklin,	 1999)	 and	 exogenous	
Schwann	 cell	 remyelination	 (Shields,	 Blakemore,	 &	 Franklin,	 2000)	 is	 extensive	 in	 astrocyte-free	
areas.	 The	 astrocyte-Schwann	 cell	 exclusion	 also	 occurs	 during	 spontaneous	 remyelination	 in	
irradiated	rats	where	astrocytes	are	ablated	and	Schwann	cells	conquer	the	territory	(Blakemore	&	
Patterson,	1975;	Gilmore	et	al.,	1982;	Heard	&	Gilmore,	1980)	.	

This	 constraint	 is	 far	 from	 being	 exclusively	 physical.	 In	 vitro	 co-culture	 studies	 showed	 sharp	
boundaries	 between	 Schwann	 cells	 and	 astrocytes	 (Ghirnikar	 &	 Eng,	 1995;	 Lakatos,	 Franklin,	 &	
Barnett,	 2000;	 Wilby	 et	 al.,	 1999).	 This	 observation	 led	 to	 investigate	 about	 the	 molecular	 cues	
responsible	 for	 this	 repulsion.	 In	 this	 line,	 in	 vitro	 studies	 demonstrated	 that	 Schwann	 cell	 N-
cadherin-mediated	 adhesion	 to	 astrocytes,	 trigger	 astrocyte	 hypertrophy,	 reducing	 Schwann	 cell	
migration	within	astrocyte-rich	environments	 (Fairless,	Frame,	&	Barnett,	2005;	Wilby	et	al.,	1999).	
Moreover,	 Schwann	 cell-astrocyte	 contacts	 induce	 astrocytic-stress	 response	 consisting	 in	
cytoplasmic	hypertrophy	and	elevated	expression	of	GFAP,	chondroitin	sulfate	proteoglycan		(CSPG)	
and	 aggrecan	 (Fishman,	 Nilaver,	 &	 Kelly,	 1983;	 Ghirnikar	 &	 Eng,	 1994,	 1995;	 Lakatos,	 Barnett,	 &	
Franklin,	 2003;	 Plant,	 Bates,	 &	 Bunge,	 2001;	 Santos-Silva	 et	 al.,	 2007).	 In	 turn,	 both	 CSPG	 and	
aggrecans	block	Schwann	cell	migration	and	induce	the	formation	of	a	Schwann	cell-astrocyte	border	
line	(Afshari,	Kwok,	&	Fawcett,	2010;	Grimpe	et	al.,	2005;	Santos-Silva	et	al.,	2007).	Recently,	Barnett	
and	collaborators	reported	the	presence	of	heparan	sulfate	proteoglycans	(HSPG)	 in	astrocyte	ECM	
preventing	 Schwann	 cells	 to	 mingle	 with	 astrocytes,	 and	 sequestering	 the	 soluble	 neuregulin	
required	 for	 their	 migration	 (O'Neill	 et	 al.,	 2017).	 Finally,	 expression	 of	 NCAM	 by	 astrocytes	 and	
Schwann	 cells	 contributes	 to	 this	 borderline.	 Forced	 expression	 of	 the	 sialylated	 form	of	NCAM	 in	
Schwann	 cells	 hinders	 their	 self-self	 aggregation	 and	 promotes	 their	 migration	 and	 mixing	 with	
astrocytes	 in	 vitro	 (Bachelin,	 Zujovic,	 Buchet,	 Mallet,	 &	 Baron-Van	 Evercooren,	 2010;	 Lavdas,	
Franceschini,	 Dubois-Dalcq,	 &	Matsas,	 2006).	 Furthermore,	 sialylation	 of	 NCAM	 on	 Schwann	 cells	
facilitates	 their	migration	 in	 vivo,	 enhancing	 their	 recruitment	 and	 remyelination	 at	 the	 lesion	 site	
(Bachelin	et	al.,	2010)	and	promoting	functional	recovery	 in	spinal	cord	 injury	(Papastefanaki	et	al.,	
2007).	

Other	 molecules	 responsible	 for	 Schwann	 cell-astrocyte	 segregation	 are	 the	 Eph/ephrin	 family	
(Afshari	 et	 al.,	 2010).	 Astrocytes	 producing	 ephrinA1,	 ephrinA3,	 and	 ephrinA5	 inhibit	 Schwann	 cell	
migration	 on	 a	 laminin	 substrate.	 This	 response	 is	 mediated	 by	 the	 expression	 of	 the	 ephrin	
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receptors	 EphA2,	 EphA4,	 and	 EphA7	 in	 Schwann	 cell.	 In	 particular,	 blocking	 these	 inhibitory	
molecules	 by	 the	 soluble	 receptor	 EphA4–Fc	 enhances	 Schwann	 cell	 ability	 to	 migrate	 on	 and	
intermingle	with	astrocytes.	

Astrocytes	also	hold	a	more	indirect	role	in	Schwann	cell	exclusion	from	the	CNS.	Beyond	the	role	of	
astrocyte-derived	 inhibitory	 cues,	 activated	 astrocytes	 via	 STAT3,	 play	 a	major	 role	 in	 determining	
the	 balance	 of	 OPC-derived	 oligodendrocytes	 vs.	 Schwann	 cells	 in	 favor	 of	 oligodendrocytes	
(Monteiro	de	Castro,	Deja,	Ma,	 Zhao,	&	 Franklin,	 2015;	 Talbott	 et	 al.,	 2005),	 and	 thus	 counting	 as	
another	mechanism	to	maintain	the	specific	CNS	cellular	composition.		

Myelin	

Other	CNS	components	 that	have	been	 suggested	as	potential	 candidates	 to	 restrain	Schwann	cell	
migration	 across	 the	 CNS/PNS	 border	 are	 the	 mature	 oligodendrocytes	 and	 CNS-myelin.	 Yet,	 in	
myelin	 mutants,	 where	 myelin	 is	 defective	 but	 oligodendrocytes	 are	 still	 present	 (such	 as	 myelin	
deficient	(md),	taiep	rats,	and	canine	shaking	(sh)	pups),	spontaneous	Schwann	cell	 invasion	occurs	
into	 the	 dysmyelinated	 CNS	 (Duncan	&	 Hoffman,	 1997).	 This	 pointed	 out	 that	 CNS-myelin,	 rather	
than	oligodendrocytes,	are	the	major	players	in	Schwann	cell	exclusion	from	CNS	white	matter.		

Several	facts	support	this	hypothesis.	Langford	and	Owens	(Langford	&	Owens,	1990)	made	the	first	
observation	 that	 Schwann	 cells	 transplanted	 into	 the	 demyelinated	 spinal	 cord	 avoid	 the	 white	
matter	 parenchyma	 when	 migrating	 towards	 the	 lesion.	 Grafting	 Schwann	 cells	 in	 wild-type	 and	
myelin	mutant	mice	 revealed	 that	 Schwann	 cells	 do	 not	 interact	 directly	with	myelin	 sheaths	 nor	
with	mature	oligodendrocytes	in	the	wild-type	white	matter,	but	do	so	in	the	hypomyelinated	white	
matter	of	MBP	deficient-mice	(Baron-Van	Evercooren	et	al.,	1996;	Baron-Van	Evercooren,	Duhamel-
Clerin,	 Boutry,	 Hauw,	 &	 Gumpel,	 1993).	 Yet	 these	 observations	 could	 have	 reflected	 the	 lack	 of	
compaction	or	altered	composition	of	the	mutant	myelin.	

While	the	poor	migration	and	survival	of	exogenous	Schwann	cells	within	wild-type	CNS	white	matter	
has	 been	 well	 documented	 over	 the	 years	 (Bachelin	 et	 al.,	 2010;	 Iwashita	 &	 Blakemore,	 2000;	
Iwashita	et	al.,	 2000),	 the	molecular	mechanisms	 involved	 in	Schwann	cells–myelin	 repellence	was	
not	 addressed.	We	 started	 to	 investigate	 on	 the	 potential	 mechanisms	 ruling	 this	 Schwann	 cells-
myelin	 inhibition,	 and	 discovered	 that	 two	 different	myelin-associated	 inhibitors	 of	 axonal	 growth	
also	negatively	regulate	Schwann	cell	migration	(Chaudhry	et	al.,	2017;	Garcia-Diaz	et	al.,	2019).		

The	first	player	in	this	negative	interaction	is	the	myelin-associated	glycol	protein	(MAG)	(Chaudhry	
et	al.,	2017).	In	collaboration	with	Marie	Filbin’s	group,	we	found	that	MAG,	as	well	as	CNS	myelin,	is	
able	to	inhibit	Schwann	cell	migration	and	induces	cell	death	through	the	p75	neurotrophin	receptor	
(p75NTR)	 in	vitro.	MAG	interaction	with	p75NTR	undergoes	γ-secretase-dependent	cleavage,	which	
in	 turn	 inhibits	 Schwann	 cell	 migration	 and	 induces	 their	 death.	 This	 mechanism	 of	 action	 was	
validated	in	vivo,	by	transplanting	Schwann	cell	remotely	from	a	lesion.	We	also	found	that	blocking	
p75	 cleavage	 improved	 their	migration,	 and	consequently,	 their	participation	 in	CNS	 remyelination	
(Chaudhry	et	al.,	2017).	

Additionally,	using	different	 in	vitro,	ex	vivo	 and	 in	vivo	paradigms,	we	 recently	demonstrated	 that	
EphrinB3,	 another	myelin	 inhibitor	 of	 axonal	 growth	 (Duffy	 et	 al.,	 2012),	 plays	 an	 essential	 role	 in	
Schwann	cell	exclusion	 from	the	CNS	(Garcia-Diaz	et	al.,	2019).	We	showed	that	EphrinB3,	 through	
EphA4	 and	 EphB6	 receptors,	 impairs	 their	 adhesion	 and	 process	 extension	 onto	 myelin,	 and	
modulates	 their	 cellular	 adhesion	 to	 ECM	 such	 as	 fibronectin.	 Of	 relevance,	 expression	 of	 these	
receptors	is	reduced	in	more	immature-like	mutant	Schwann	cells	expressing	low	levels	of	Krox20	(Le	
et	al.,	2005).	This	parallels	with	previous	studies	that	correlated	immature	Schwann	cell-lineage	cells	
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with	a	greater	capacity	of	mingling	and	migration	across	white	matter	(Woodhoo	et	al.,	2007;	Zujovic	
et	al.,	2010).	Nevertheless,	whether	expression	of	the	Eph	receptors	by	Schwann	cells	plays	a	role	in	
the	 PNS/CNS	 segregation	 during	 development,	 and/or	whether	 their	 down-regulation	 occurs	 after	
injury	remains	unknown.		

	

What	facilitates	Schwann	cells	to	conquer	the	injured	CNS?		

Despite	 the	 above-mentioned	 mechanisms	 of	 successful	 maintenance	 of	 the	 PNS-CNS	
compartmentalization,	 the	 presence	 of	 Schwann	 cells	 into	 the	 CNS	 in	 normal	 and	 pathological	
conditions	 is	 unquestionable	 (Adelman	&	 Aronson,	 1972;	 Feigin	&	Ogata,	 1971;	 J.	 D.	 Guest	 et	 al.,	
2005;	 Itoyama	 et	 al.,	 1985;	 Itoyama	 et	 al.,	 1983;	 Raine,	 1976;	 Yamamoto	 et	 al.,	 1991).	 Therefore,	
there	 must	 be	 some	 routes	 that	 enable	 Schwann	 cells	 to	 bypass	 the	 astrocyte	 and	 white	 matter	
inhibitory	 cues	 to	 invade	 the	CNS	under	 certain	 conditions.	 In	 this	 review,	we	will	 discuss	 a	newly	
identified	route	of	migration	used	by	the	Schwann	cells	to	invade	the	CNS:	the	vascular	network.	

The	presence	of	CNS	axons	 remyelinated	by	Schwann	cells,	has	been	 frequently	described	 in	 close	
association	 with	 blood	 vessels	 in	 dysmyelinating	 (reviewed	 in	 (Duncan	 &	 Hoffman,	 1997))	 or	
demyelinating	conditions	(Sims	et	al.,	1998).		PNS	myelin	was	also	found	in	the	perivascular	spaces,	
close	to	vessel	at	the	spinal	cord	surface	in	response	to	spinal	cord	irradiation	(Gilmore	&	Sims,	1993,	
1997).	Moreover,	various	cell	tracing	paradigms	highlighted	the	presence	of	exogenously	introduced	
Schwann	 cells	 restricted	 to	 the	 meninges	 (Langford	 &	 Owens,	 1990),	 and	 more	 precisely,	 the	
subarachnoid	 Virchow-Robin	 perivascular	 spaces	 (Baron-Van	 Evercooren	 et	 al.,	 1996)	 or	 close	 to	
blood	vessels	within	the	brain	parenchyma	(Brook,	Lawrence,	&	Raisman,	1993;	Raisman,	Lawrence,	
&	Brook,	1993).		

Although	these	studies	evidenced	Schwann	cell-blood	vessel	interaction,	they	did	not	investigate	the	
role	of	the	blood	vessel	network	in	Schwann	cells	migration.	To	address	this	issue,	we	grafted	Green	
fluorescent	protein	(GFP)	expressing	Schwann	cells	remotely	form	a	focal	lesion	of	the	spinal	cord	of	
wild-type	mice.	 Tissue	 clarification	allowed	visualization	of	 the	grafted	 cells	en	 route	 to	 the	 lesion,	
that	are	in	close	contact	with	the	blood	vessel	network	(Fig.	1).	The	same	grafting	paradigm	and	ex-
vivo	 live	 imaging	 showed	Schwann	 cells	 sliding	along	each	other	on	 vessels	 and	 jumping	 from	one	
vessel	 to	another	 to	 reach	 the	 lesion.	Furthermore	electron	microscopy	 indicated	 that	perivascular	
Schwann	cells	in	the	CNS	were	localized	between	the	perivascular	end-feet	and	endothelial	cells,	and	
embedded	in	the	perivascular	ECM	without	making	direct	contacts	with	the	endothelial	cells	(Garcia-
Diaz	et	al.,	2019).	Interestingly,	Schwann	cells	also	migrate	along	blood	vessels	in	the	injured	nerve.	
However	 in	 the	 latter	 case,	 they	 migrate	 in	 direct	 contact	 with	 the	 endothelial	 cells	 rather	 than	
within	 the	 perivascular	 ECM	 (Cattin	 et	 al.,	 2015).	 Thus,	 despite	 the	 fact	 that	 Schwann	 cells	 share	
similar	mechanisms	 to	conquer	both	PNS	and	CNS	 injured	nervous	system,	 the	different	molecular	
and	cellular	environment	existing	between	PNS	and	CNS,	including	different	degrees	of	confinement	
are	likely	to	result	in	the	different	migration	modalities.	

Upon	arrival	at	the	 lesion	site,	Schwann	cell	affinity	for	axons	released	their	association	with	blood	
vessels,	 as	a	 first	 step	 towards	myelin	 repair	 (Garcia-Diaz	et	al.,	2019).	While	 the	above	data	were	
obtained	 with	 exogenous	 Schwann	 cells	 grafted	 remotely	 from	 a	 lesion,	 lineage	 specific	 tools	
combined	 with	 cell	 specific	 markers	 provided	 evidence	 that	 such	 a	 mechanism	 is	 shared	 with	
endogenous	Schwann	cells	(Garcia-Diaz	et	al.,	2019).	However,	whether	these	Schwann	cells	have	a	
peripheral	or	central	origin,	or	both,	needs	to	be	addressed	further.	



9	
	

Despite	 the	newly	elucidated	 role	of	 blood	vessels	 as	 Schwann	 cell	 cargos,	whether	 they	passively	
support	 Schwann	 cell	 migration,	 or	 whether	 they	 play	 a	 more	 active	 role	 remains	 to	 be	 solved.	
Launching	 the	 answer	 to	 this	 question,	 we	 provided	 the	 evidence	 first,	 for	 the	 absence	 of	 direct	
contact	between	Schwann	cells	and	blood	vessels	thus	ruling	out	a	potential	mechanical	intervention	
of	blood	vessels	 in	Schwann	cell	migration,	and	second,	for	the	existence	of	vascular	remodeling	 in	
the	demyelinated	area	with	a	concomitant	 increase	 in	ECM	in	response	to	demyelination	(Ulanska-
Poutanen	 et	 al.,	 2018),	 as	 shown	by	 a	 significant	 increase	 of	 collagen	 4	 and	 blood	 vessel	 network	
(Glut1	 positive)	 after	 5	 days	 of	 lysolecithin-induced	 demyelinating	 lesions	 	 (Fig.	 2).	 These	 changes	
may	trigger	Schwann	cells	 to	use	 the	vascular	scaffold	 to	migrate	within	 the	adult	nervous	system.	
Nevertheless,	more	functional	studies	should	be	performed	to	address	this	question.		

	

Conclusion	/perspectives		

Important	 to	 mention,	 numerous	 studies	 have	 shown	 extensive	 intercellular	 communication	 and	
coordinated	interaction	between	the	vascular	and	the	nervous	systems	(Glebova	&	Ginty,	2005;	Park,	
Choi,	Kim,	&	Kim,	2003).	 Elucidating	 in	part	 the	mechanism	 that	opens	Schwann	cell	 access	 to	 the	
damage	 CNS,	 we	 demonstrated	 that	 this	 Schwann	 cell-blood	 vessel	 interaction	 is	 of	 relevance	 to	
their	contribution	to	CNS	repair	(Garcia-Diaz	et	al.,	2019).		

Over	 the	 last	years,	 the	 role	of	angiogenesis	and	vascular	 remodeling	 in	demyelinating	disease	has	
been	 explored	 focusing	 on	 their	 correlation	with	 inflammation,	 neurogenesis,	 and	 oligodendroglia	
maturation	 (Girolamo,	 Coppola,	 Ribatti,	 &	 Trojano,	 2014;	 Kirk,	 Frank,	 &	 Karlik,	 2004;	 Lengfeld,	
Cutforth,	&	Agalliu,	2014;	Roscoe,	Welsh,	Carter,	&	Karlik,	2009).	Other	studies	brought	to	light	the	
importance	 of	 the	 perivascular	 niche	 in	 the	 balance	 of	 Schwann	 cell/oligodendrocyte	 in	 the	
remyelination	of	the	CNS	lesion	(Ulanska-Poutanen	et	al.,	2018).	Our	study	reveals	another	important	
aspect	of	this	response	to	 injury,	 the	role	of	the	vasculature	dynamics	 in	the	repair	of	the	 lesioned	
CNS	by	Schwann	cells	(Garcia-Diaz	et	al.,	2019).		In	spite	of	these	observations,	whether	angiogenesis	
or	remodeling	of	blood	vessels	open	the	astrocytic	barrier	to	free	Schwann	cells	from	the	astrocytic	
confinement	remains	to	be	investigated.		

Moreover,	 the	 formation	of	new	vessels	brings	 to	play	other	components	 such	as	pericytes,	which	
are	 of	 relevance	 for	 CNS	 remyelination	 (De	 La	 Fuente	 et	 al.,	 2017).	 To	 add,	 angiogenesis	 also	
increases	the	blood	vessel	permeability	(Dvorak,	Brown,	Detmar,	&	Dvorak,	1995)	to	new	molecules	
such	 as	 chemokines	 and	 trophic	 factors	 that	will	 change	 the	 lesion	microenvironment	 and	 further	
enhance	 Schwann	 cell	 recruitment	 by	 the	 injured	 site.	 These	 new	 specific	microenvironments	will	
provide	 different	 signals	 for	 cell	 recruitment/trans-differentiation	 in	 the	 lesion,	 or	 supply	
blood/serum	 components	 (cytokines,	 growth	 factors,	 oxygen,	 nutrients,	 etc...).	 Although	 the	
spectrum	of	these	signals	that	 induce	myelinating	cell	 recruitment	or	differentiation	are	still	poorly	
understood,	some	leads	start	to	emerge.	For	example,	TGF-β	produced	by	microglial	cells	and/or	by	
macrophages	and	profusely	present	 in	 lesions,	 is	a	powerful	mitogen	for	Schwann	cells	and	plays	a	
role	in	the	production	of	extracellular	matrix	(reviewed	in	(Li,	Gu,	&	Yi,	2017).	To	add,	a	recent	study	
showed	 that	macrophage	 activation	 boosts	 Schwann	 cell	 infiltration	 and	 remyelination	within	 the	
lysolecithin	lesion	(Church,	Milich,	Lerch,	Popovich,	&	McTigue,	2017).	However,	whether	this	effect	
on	Schwann	cells	is	direct	or	indirect	remains	unsolved	as	macrophage	activation	promoted	also	axon	
survival	and	oligodendrocyte	remyelination.		

Our	study	also	shows	that	EphrinB3	in	myelin	favors	the	adhesion	and	migration	of	these	cells	onto	
ECM	via	 Integrinβ1,	while	Schwann	cell	adhesion	 in	the	absence	of	ECM	is	 impaired	(Garcia-Diaz	et	
al.,	 2019).	This	aspect	elucidates	another	 component	of	 the	balance	between	oligodendrocyte	and	
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Schwann	 cell	 remyelination	 of	 the	 lesioned	 CNS.	 While	 EphrinB3	 impairs	 the	 differentiation	 of	
oligodendrocyte	precursor	cells	into	mature	competent	myelinating	cells	(Syed	et	al.,	2016),	it	favors	
Schwann	cell	mobilization	towards	the	lesion.	

In	 conclusion,	 studies	 over	 the	 recent	 years	 have	 elucidated	 major	 aspects	 of	 Schwann	 cell	
transgression	of	the	PNS-CNS	border	to	repair	the	CNS	(Fig.	3).	 In	spite	of	gaining	a	clearer	view	of	
this	scenario,	several	features	remain	to	be	uncovered.	Are	blood	vessels	the	only	route	of	migration	
across	 the	CNS?	or,	 can	 this	 pathway	be	 extended	 to	 the	 lymphatic	 system?	Are	 these	 routes	 the	
same	regardless	Schwann	cell	peripheral	or	central	origin,	and	are	they	scaffold	for	the	formation	of	
schwannomas	 around	 cranial	 and	 spinal	 nerves	 (Suresh	 et	 al.,	 2003)?	 So	 far	 non-myelinating	 and	
myelinating	Schwann	cells	participate	to	CNS	repair.	Stem	cells	are	also	present	in	the	adult	PNS	and	
namely	 in	 the	 adult	 DRG	 (reviewed	 in	 (Mehrotra,	 Tseropoulos,	 Bronner,	 &	 Andreadis,	 2019)).	 Yet	
their	activation	and	involvement	in	response	to	CNS	injury	remains	to	be	addressed.	 Is	the	stage	of	
Schwann	 cell	 differentiation,	 which	 modulates	 their	 incursion	 during	 injury,	 of	 developmental	
relevance?	How	can	 this	be	 therapeutically	modeled	 to	 favor	 the	CNS	 repair?	Moreover,	 the	 close	
relation	 with	 blood	 vessels	 opens	 up	 an	 easy	 access	 for	 those	 cells	 to	 sense	 different	 local	 and	
systemic	signals,	which	might	influence	their	remyelinating	success	or	failure.	These	are	some	of	the	
questions	 that	 may	 provide	 important	 clues	 for	 the	 future.	 Novel	 lineage	 specific	 tools	 will	 be	
required	to	decipher	these	questions	and	to	design	successful	therapies.		
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Figure	1.	A.	Scheme	of	LPC	lesion	and	SC	graft	targeted	into	the	dorsal	funiculus	of	the	spinal	cord.	B.	
3D	 Z	 stack	 reconstruction	 illustrating	 grafted	 SC	 	 (red)	 around	 blood	 vessels	 	 (green);	 C.	 Clarified	
spinal	cord	showing	grafted	Schwann	cells		(SC,	C1)	expressing	the	Tomato	Cherry	protein		(red)	that	
migrate	along	blood	vessels		(green,	C2).	
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Figure	2.	Vascular	remodelling	in	response	to	lysolecithin-induced	demyelination	of	the	spinal	cord.	
Demyelination	was	 induced	 by	 lysolecithin	 injection	 into	 the	 dorsal	 funiculus	 of	 the	mouse	 spinal	
cord.	 A	 Immunolabeling	 of	 the	 vasculature	 using	 the	 endothelial	 marker	 Glut1	 (red)	 5	 days	 post	
injection	lysolecithin	(5dpi),	shows	that	the	vascular	network	increases	within	the	lesion	site	(dotted	
line)	concomitantly	with	an	increase	in	the	basal	lamina	marker	collagen	4	(red)	in	the	demyelinated	
lesion.	B.	Quantification	of	the	vasculature	dynamics	at	different	time-points	after	LPC	injection	(1,	3,	
5	 and	7	dpi)	 based	on	 the	 ratio	of	Glut1+	area	after	 LPC	over	PBS	at	1dpi.)	Data	 are	expressed	as	
mean	value	±	SD	of	control	(PBS)	(n=15),	1dpi	(n=4),	3dpi	(n=4),	5dpi	(n=4),	7dpi	(n=5).	Kruskal-Wallis	
test	(p=0.001)	followed	by	comparison	between	each	group	with	PBS	group	performed	by	two-tailed	
Mann	Whitney	test	3dpi	(p=0.019);	5dpi	(p=0.0005);	and	7dpi	(p=0.01).		
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Figure	3.	Graphical	abstract	on	Schwann	cell	origins	and	interactions	with	CNS	cell	components.	(1)	
CNS-located	Schwann	cells	 (yellow-brown	cells)	originate	 from	the	peripheral	myelinating	and	non-
myelinating	 Schwann	 cells;	 (2)	 and	 the	 central	 transdifferentiated	 OPC	 (blue-grey	 cell)	 under	
BMP/Wnt	and	STAT3	signaling.		(3)	Schwann	cell	invasion	of	the	CNS	is	impaired	by	astrocyte	(green	
cells)	at	the	 level	of	the	PNS-CNS	transition	zone	(glia	 limitans)	and	the	CNS	 lesion	border	(reactive	
astrocytes).	Schwann	cell-astrocyte	repulsion	is	due	to	different	components	such	as	N-cad,	NCAM,	
and	EphAs	in	Schwann	cells,	and	by	GFAP,	CSPG,	aggrecan,	HSPG,	NCAM	and	EphrinAs	in	astrocytes.		
(4)	Schwann	cell	migration	within	the	CNS,	 is	 inhibited	by	myelin	 (blue),	 through	MAG-p75NTR	and	
EphrinB3-EphA4/B6	 signaling.	 (5)	Myelin–associated	 EphrinB3	modulates	 the	 adhesion	of	 Schwann	
cells	via	upregulaion	of	Integringβ1,	and	thereby,	increasing	their	affinity	for	ECM	(red)	migration	on	
blood	vessels	(Garcia-Diaz	et	al.,	2019).	
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