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ABSTRACT
Spurred by the increasing needs in electrochemical energy storage devices, the electrode/electrolyte interface has received a lot of interest in
recent years. Molecular dynamics simulations play a prominent role in this field since they provide a microscopic picture of the mechanisms
involved. The current state-of-the-art consists of treating the electrode as a perfect conductor, precluding the possibility to analyze the effect
of its metallicity on the interfacial properties. Here, we show that the Thomas–Fermi model provides a very convenient framework to account
for the screening of the electric field at the interface and differentiating good metals such as gold from imperfect conductors such as graphite.
All the interfacial properties are modified by screening within the metal: the capacitance decreases significantly and both the structure and
dynamics of the adsorbed electrolyte are affected. The proposed model opens the door for quantitative predictions of the capacitive properties
of materials for energy storage.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0028232., s

I. INTRODUCTION

The development of constant applied potential methods
for simulating electrochemical systems1 has allowed solving
many outstanding problems in physical electrochemistry, rang-
ing from the origin of supercapacitance in nanoporous elec-
trodes made of carbon2 or even of metal organic frameworks3

to the understanding of the dynamic aspects of metal sur-
face hydration.4 These methods are based on the use of an
extended Hamiltonian in which the electrode charges are addi-
tional degrees of freedom that obey a constant potential constraint
at each simulation step.5 They allowed to partly alleviate the main
conceptual difficulty to represent the electrode–electrolyte interface
at the molecular scale, which is the need to account for the elec-
tronic structure on the electrode side, while the electrolyte is usu-
ally better simulated using classical force fields because it requires a
sampling of the configurational space beyond the reach of today’s

capabilities with ab initio calculations (see Ref. 6 for a recent
review of classical molecular simulations of electrode–electrolyte
interfaces).

Despite these successes, the possibility to simulate realistic sys-
tems remains limited by the crudeness of the “electronic structure”
model, since the electrode is treated as a perfect metal. It is, however,
well known that the electronic response of different electrodes (e.g.,
graphite vs gold) to the adsorption of a charge should strongly dif-
fer. This was shown in numerous analytical7,8 or density functional
theory (DFT)-based studies,9,10 but also more recently in an exper-
imental study where strong differences in the confinement-induced
freezing of ionic liquids were shown depending on the nature of the
electrode.11 In the latter study, this effect was interpreted using ana-
lytical developments accounting for the metallicity of the system in
the framework of the Thomas–Fermi (TF) model.12

Here, we build upon these developments to implement a com-
putational Thomas–Fermi electrode. The TF model13,14 is based on
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a local density approximation of the free electron gas, limited to its
kinetic energy, and it accounts for the screening of the electrostatic
potential over a characteristic screening length. We consider model
electrodes with the gold structure and tunable metallicity, separated
by either vacuum or a simple NaCl aqueous electrolyte. We show
that both the total accumulated charge and its distribution within
the electrode are strongly affected. Accounting for screening in the
electrodes radically changes their response to the adsorption of the
electrolyte, which results in noticeable differences in the structure
of the liquid when a voltage is applied. Screening inside the metal
should therefore be accounted for when simulating electrochemi-
cal interfaces in applications ranging from supercapacitors to Li-ion
batteries.

II. THE THOMAS–FERMI ELECTRODE MODEL
We consider an electrode composed of Ns sites (here, these sites

are positioned on the nuclei) with a number density d. Each atom i
has Z valence electrons, and we introduce its partial charge qi as a
dynamical variable accounting for the local excess of electrons. As
shown schematically in Fig. 1, in the currently available method,
the charges fluctuate in time to represent perfect metals. The partial
charges are calculated at each simulation step in order to ensure that
the potential is the same within the whole electrode;15 when such an
electrode is put in contact with an electrolyte, the screening occurs
within a thin layer at the surface only [note that supercapacitors are
often simulated using constant charge setups in which the vector
{qi}i∈[1,Ns] contains prescribed (usually identical) values for all the
atoms of each electrode and does not vary with time, which does not
correspond to a realistic electrode]. Nevertheless, many electrode
materials have a finite density of states available at the Fermi level.
This was sometimes considered in the literature by computing the
so-called quantum capacitance that accounts for the corresponding
screening.10,16

Here, we propose taking these effects into account directly
within classical molecular dynamics simulations by employing the
Thomas–Fermi model. It consists of a local density approximation
of the energy of the valence electrons. The Thomas–Fermi functional
for the kinetic energy reads

FIG. 1. Electrode polarization with different simulation methods. Constant poten-
tial simulations (left) correspond to a perfect screening of the charges, hence to
the behavior of an ideal metal, whereas the Thomas–Fermi model introduces a
screening length to account for the imperfect screening of the charge in a non-ideal
metal.

UTF[n(r)] = ∫
3

10

̵h2

me
(3π2
)

2/3
n(r)5/3dr, (1)

where n(r) is the local number density of electrons, with me being
their mass, and ̵h being Planck’s constant. In order to obtain a prac-
tical description in molecular simulations, we now express n(r) as a
sum over discrete atomic sites i, with local densities ni = d[Z + qi

(−e) ],
with e being the elementary charge. If the perturbation in the num-
ber of free charge carriers is small compared to the number of elec-
trons, i.e., |qi| ≪ Ze, we can expand the kinetic energy to second
order in powers of qi as

UTF =
3
5
NsZEF +

EF
(−e)

Ns

∑

i=1
qi +

l2TFd
2ϵ0

Ns

∑

i=1
q2
i , (2)

where EF = ̵h2k2
F/2me is the Fermi level of a free-electron gas of den-

sity Zd and lTF =
√

ϵ0̵h2π2
/(mee2kF) is the Thomas–Fermi length

of the material, with the corresponding Fermi wavevector defined
by k3

F/3π2
= Zd and ϵ0 being the vacuum permittivity. The zeroth-

order term is the total kinetic energy of an electron gas with NsZ
electrons (the total number of electrons in the system). The first
order corresponds, by definition, to the chemical potential of the
added/removed electrons (depending on the sign of qi). The second
order term that is always positive and reaches its minimum when
all the partial charges vanish corresponds to an energy penalty to
induce non-homogeneous charge distributions.

Our system consists of two electrodes, hereafter named after
their positions in the simulation cell: left (L) and right (R). Their
atom indices range between [1, NL] and [NL + 1, NL + NR], their
Thomas–Fermi energies are denoted as UL

TF and UR
TF , and they are

held at potentials ΨL and ΨR = ΨL + ΔΨ, respectively, where ΔΨ is
the applied voltage. We assume, for simplicity, that the electrodes
are made of the same material, and hence, they have the same Fermi
level at rest. The total energy of the system reads

Etot = K + UC + UvdW + UL
TF + UR

TF −
NL

∑

i=1
ΨLqi −

NL+NR

∑

i=NL+1
ΨRqi, (3)

where K is the kinetic energy of the electrolyte, UC corresponds to
the Coulombic interactions, and UvdW describes the van der Waals
interactions (given by a force field), while the last two terms account
for the reversible work necessary to charge the electrode atoms. UC
reads

UC =
1
2∬

ρ(r)ρ(r′)
4πϵ0∣r − r′∣

drdr′, (4)

where the charge distribution ρ(r) consists of a collection of M
point charges for the electrolyte and N = NL + NR atom-centered
Gaussians (with width η−1) representing the electrodes,

ρ(r) =
M

∑

j=1
qjδ(r − rj) +

N

∑

i=1
qiη3π−3/2e−η

2
∣r−ri ∣2 , (5)

with δ being the Dirac function. Note that in Eq. (4), the only self-
energy to be included is the one due to the Gaussian charges. For
an electrochemical cell in which the two electrodes are made of the
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same material (hence, EF and lTF are equal), by injecting Eq. (2) into
Eq. (3) and introducing ΔΨ, the total energy can be rewritten as

Etot = K + UC + UvdW +
3
5
NZEF +

l2TFd
2ϵ0

N

∑

i=1
q2
i − ΔΨQtot , (6)

where we imposed the electroneutrality constraint ∑N
i=1 qi = 0, as

detailed in Ref. 5, so that the electrodes bear opposite charges and
the corresponding term in the reversible work reduces to the usual
QtotΔΨ, with Qtot being the total charge of the positive electrode. As
in the constant potential method neglecting the quantum nature of
the electrons (corresponding to lTF = 0.0 Å), the charges are treated
as dynamic variables, which are obtained at each time step of the
simulation by enforcing the constant potential constraint ∂Etot/∂qi
= 0.5,15 Compared to this perfect metal case, the modifications of the
algorithm are minimal and virtually do not add any computational
cost.

Our approach, which involves fluctuating charges, may be
related to the charge equilibration model,17–19 particularly to its

extension to electrochemical systems proposed by Onofrio et al.20

This method is based on two main chemical quantities, the elec-
tronegativity χ and the hardness H of each atomic species. The
self-consistent equations to solve are equivalent if we take χ ∼ EF and
H ∼ e2l2TFd/ϵ0. However, these concepts, which are related to those
of electronic affinity and ionization energy,21 are rooted in the
description of the electronic properties of atoms and molecules,
rather than that of bulk materials, which are more naturally
described in terms of the band structure. The issue of starting from
the correct reference state for (electro-)chemical potential equaliza-
tion methods was already pointed out in Ref. 22, where York and
Yang derived a fluctuating charge model from DFT for molecules
and underlined the difference between atomic and molecular ref-
erence states to determine the electronegativities and hardnesses.
More recently, a detailed discussion on the correspondence between
constant potential electrode models and the charge equilibration
approach was provided in Ref. 23. Another physical model of elec-
trodes was proposed24 in which the Hamiltonian is constructed in
the tight-binding approximation.

FIG. 2. Empty Thomas–Fermi capacitor. All results correspond to a (100) gold-like electrode structure with n = 50 atomic planes and L = 300 Å between the electrodes where
not stated otherwise. Charges are computed by applying a voltage ΔΨ = 1 V between the electrodes for different Thomas–Fermi lengths lTF ranging from 0.0 Å to 16.0 Å,
which are represented both by different symbols and by different colors indicated by the color bar. (a) Total charge per plane on the positive electrode as a function of the
position from the surface (k is the index of the atomic plane), normalized by the total electrode charge Qtot (only values for lTF > 0.5 Å are shown). The symbols are simulated
values for different Thomas–Fermi lengths lTF , and the lines are the prediction of Eq. (7). (b) Snapshot of the simulated system and its equivalent circuit representation
corresponding to the capacitance obtained with the continuum theory (see the text). (c) Computed reciprocal capacitance as a function of the analytical predictions for perfect
metals using Lvac = L and (d) for Thomas–Fermi metals using Eq. (8) with Lvac = L − a for varying electrode spacing L (between 10 Å and 200 Å). (e) Effective length leff ,
defined in Eq. (9), as a function of lTF .
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III. EMPTY CAPACITOR
As a first validation of our implementation, we study a

model system composed of two planar (100) gold electrodes sep-
arated by a distance L and held at a constant potential differ-
ence ΔΨ = 1 V. Each electrode consists of n atomic planes with
an inter-spacing a in the z direction. We compare the simulated
results against analytical predictions of the corresponding contin-
uum model where the Poisson equation for the one-dimensional
potential Ψ(z) reads Ψ′′(z) = l−2

TFΨ(z) inside each electrode and
Ψ′′(z) = 0 between them. The total capacitance of the system is given
by C = Qtot/ΔΨ.

Assuming that the width of the material is large compared to
the Thomas–Fermi length, the in-plane charge Qk at z = ka (k ∈ [1,
n]) can be expressed as

Qk

Qtot
= e−(k−1)a/lTF

[1 − e−a/lTF]. (7)

Figure 2(a) shows a very good agreement between Eq. (7) and the
simulation for large lTF values. Small deviations are observed for
large z due to the finite number of planes and for lTF values smaller
than characteristic atomic lengths where the continuum prediction
is not expected to hold. The above exponentially decaying charge
distribution inside the metal, due to the screening over the Thomas–
Fermi length lTF , results according to the continuous model in a
capacitance per unit area,

1
CEC
=

1
Cvac

+
2

CTF
=
Lvac
ϵ0

+
2lTF
ϵ0

, (8)

with Cvac = ϵ0/Lvac being the theoretical capacitance per unit area
for perfect metallic electrodes (lTF = 0.0 Å) separated by a vac-
uum slab of width Lvac and CTF = ϵ0/lTF being that for a sin-
gle Thomas–Fermi electrode. This result can be simply understood
in terms of the equivalent circuit (hence the subscript CEC) illus-
trated in Fig. 2(b), with three capacitors in series (see Sec. S1 of the
supplementary material for a discussion of the continuum descrip-
tions and equivalent circuit models). As shown in Fig. 2(c), the
simulation results are consistent with the prediction of a linear rela-
tion between 1/C and L/ϵ0, where L is the distance between the first

atomic planes on each electrode, with a constant shift that increases
with lTF .

However, the width of the vacuum slab between the elec-
trodes is not exactly the distance between the first atomic planes.
Indeed, each atomic site is surrounded by electrons, and the bound-
ary between the free electron gas inside the electrode and the vac-
uum25 (the so-called “Jellium edge”26) is rather shifted half of the
inter-plane distance away from the electrode. Since this feature is
present on both electrodes, the actual vacuum slab width is more
consistent with Lvac = L − a. Figure 2(d) shows that using this
prescription, Eq. (8) provides a very good description of the sim-
ulated capacitance C over a wide range of distances between the
electrodes and Thomas–Fermi lengths, which confirms the consis-
tency of the present classical model to represent the charge distri-
bution within the metal. The decay length of the charge inside the
electrode coincides with lTF within 1% for all values lTF ≳ a. The
slight deviations from the predictions of the continuous theory can
be analyzed by introducing an effective length leff from the measured
capacitance as

1
C
=
L − a
ϵ0

+
2leff
ϵ0

. (9)

The results obtained for various lTF at fixed L, illustrated in Fig. 2(e),
indicate that this effective length deviates from the Thomas–Fermi
length only when the latter becomes comparable to the atomic
details of the electrodes (interplane and interatomic distances, width
of the Gaussian distributions). An additional test was performed by
adding a single charge at various distances between the electrodes
and comparing the energy of the system to an approximate analyt-
ical expression.12 The results, which are provided in Sec. S2 of the
supplementary material, also show a good agreement over a broad
range of lTF values.

IV. IMPACT OF THE THOMAS–FERMI LENGTH
ON THE ELECTROCHEMICAL INTERFACE PROPERTIES

In order to understand the impact of screening inside the
metal on the properties of electrode/electrolyte interfaces, we study

FIG. 3. The capacitance decreases significantly with the Thomas–Fermi length. (a) Snapshot of the simulated system and its equivalent circuit representation, where Cmetal
stands for the capacitance computed for the perfect metal simulation. (b) Poisson potential across the simulation cell for a system made of two (100) gold-like electrodes in
contact with a NaCl aqueous solution. The applied voltage is 2 V and different lTF values ranging from 0.0 Å to 5.0 Å are represented by different colors indicated in the color
bar. The screening of the potential inside the electrodes increases markedly with lTF . (c) Variation of the capacitance with lTF . The results from the simulations are compared
with the equivalent circuit approximation. Error bars are extracted from the standard error of the charge distribution corrected for sample correlations.
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a system consisting of two (100) gold-like electrodes in contact with
an aqueous solution of NaCl (with concentration 1 mol l−1), illus-
trated in Fig. 3(a). The TF length lTF was systematically varied from
0.0 Å to 5.0 Å in order to switch from a perfect metal to typical
semi-metallic conditions (estimations yield typical values of 0.5 Å
for platinum, 1.5 Å for doped silicon, and 3.4 Å for graphite11). Sim-
ulations were performed for voltages ΔΨ = 0 V, 1 V, and 2 V between
the two electrodes.

As a first illustration of the impact of screening on the electro-
chemical interface, we compute the Poisson potential across the cell.

The results for an applied potential of 2 V are displayed on Fig. 3(b).
We observe a very different pattern inside the electrode depend-
ing on lTF : for the perfect metal, the applied potential is reached at
positions corresponding to the first atomic plane, while for the TF
model, we clearly see the desired effect of field penetration with an
exponential decay inside the electrode. Note also that at the largest
applied voltage, the average atomic charge ranges between 0.02e for
lTF = 0 Å and 0.003e for lTF = 5 Å (with corresponding standard devi-
ations of 0.01e and 0.001e), which validates a posteriori the hypoth-
esis on the number of free charge carriers being smaller than the

FIG. 4. The structure of the electrochemical interface depends on the Thomas–Fermi length at finite voltages. [(a) and (b)] Atomic density profiles for the O, H, Na+, and Cl−

atoms near the electrode at null potential for lTF = 0.0 Å (the profiles are the same for the other lTF values, as shown in Fig. S3 of the supplementary material). Note that in the
case of H atoms, the profile is divided by two to facilitate the comparison with O atoms. [(c) and (d)] Distribution of the orientation of adsorbed water molecules with respect
to the vector normal to the electrode surfaces for an applied potential of 2 V for the whole range of simulated lTF indicated by the color bar; the distribution for 0 V and lTF

= 0.0 Å is also reported (black dashed lines) as a reference. [(e) and (f)] Atomic density profiles for the Na+ and Cl− ions for an applied potential of 2 V for the whole range of
simulated lTF indicated by the color bar. The negative (positive) electrode is located at negative (positive) z.
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number of electrons made in the derivation of the TF electrode
model.

Figure 3(c) shows that the integral capacitance decreases sig-
nificantly with lTF (note that it remains constant between 1 V and
2 V and that the decrease is of similar magnitude for the individ-
ual capacitance of the positive and negative electrodes; see Fig. S2
of the supplementary material). The effect is already non-negligible
for lTF = 0.5 Å (which is representative of many real metals) since
the capacitance is 7% smaller than the one of the perfect metal;
it is even more pronounced in the semi-metallic régime. This can
be understood by noting that the TF length varies as the inverse
square-root of the number of available states at the Fermi level. In
a perfect metal, the number of accessible states is infinite so that
the only resistance to charging arises from the Coulombic energy.
In contrast, the TF model results in an additional energy penalty
for increasing the surface charge, described by the quadratic term
in Eq. (6).

As for the empty capacitor, it is possible to estimate the capac-
itance from the value for the perfect metal Cmetal using the equiva-
lent circuit depicted on Fig. 3(a) (see Sec. S1 of the supplementary
material). This approach, used by Gerischer to interpret experimen-
tal data,27 has been applied in many simulation works where the
additional term due to the screening was computed using DFT
and therefore called “quantum capacitance,” while the perfect
metal capacitance was computed using either a mean-field the-
ory10 or molecular dynamics.28 Nevertheless, it neglects the interplay
between the electronic structure of the electrode and the ionic struc-
ture of the adsorbed electrolyte. This coupling is self-consistently
taken into account in our model, which therefore provides a per-
fect framework to test this approximation. As shown in Fig. 3(c), the
equivalent circuit approximation underestimates rather significantly
the real capacitance (by 20%–30%).

At null voltage, the average structure of the liquid does not vary
significantly with lTF (see Fig. S3 of the supplementary material). As
shown in Figs. 4(a) and 4(b), it is characterized by several adsorption
layers, mainly consisting of water molecules. By computing the dis-
tribution of the angle θ between the vector normal to the surface and
the water dipole [see the black dashed curve in Figs. 4(c) and 4(d)]
or the O–H bonds (see Fig. S4 of the supplementary material) for
molecules in the first adsorbed layer, we observe that they mostly lie
in a plane parallel to the surface or with one H atom pointing away
from the surface. A small population is oriented toward the surface,
which results in a small shoulder on atomic density profiles of the H
atoms.

The ions have different adsorption profiles: the Na+ density is
characterized by a large peak located close to one of the O atoms so
that they can be considered to belong to the first layer, while the Cl−

ions are located further away from the electrode surface. Their pro-
file displays a small pre-peak in the region where the water density
is very low and a peak with a larger intensity located in the sec-
ond hydration layer. Once a potential is applied, the liquid mainly
responds to the two electrodes through (i) a stronger orientation of
the water molecules toward/away from the negative/positive elec-
trode, as shown in Figs. 4(c) and 4(d) and Figs. S4 and S5 of the
supplementary material, and (ii) the appearance of a new adsorption
peak for the Na+ ions near the negative electrode [Fig. 4(e)] and an
increase in the pre-peak intensity in the Cl− density profiles on the
positive electrode side [Fig. 4(f)]. In all cases, the modifications in

FIG. 5. The relaxation of the electrode charge indicates a faster dynamics of the
interfacial electrolyte near screened metals. Normalized auto-correlation function
of the total charge at null potential for varying lTF values ranging from 0.0 Å to
5.0 Å indicated by the color bar.

the structure depend strongly on lTF . This shows that depending on
the type of material, we can expect all the electrochemical double-
layer properties to change markedly with the nature of the chosen
electrode.

Dynamical properties are particularly important for electro-
chemical applications. They control the power delivered by an
energy storage device. The equilibrium fluctuations of the electrode
charge at 0 V, which reflect the linear response to a small applied
voltage, are shown in Fig. 5 for various lTF . An increased screen-
ing yields faster dynamics for the relaxation of the electrochemical
double-layer. Such a difference was somewhat unexpected given that
the systems at null potential have, on average, the same structural
features, but it can be qualitatively understood as the result of weaker
interactions with the more diffuse charges induced within the elec-
trode. This means that the dynamics do not only depend on the
nature of the electrolyte but also depend on the electronic structure
of the electrode material.

V. CONCLUSION
Understanding the electrode/electrolyte interface is a prerequi-

site not only for the design of more efficient energy storage devices29

but also for understanding wetting phenomena involved in lubri-
cation or heterogeneous catalysis.30 Although in the past decades,
molecular simulations have provided much insight into the struc-
ture of the electrochemical double-layer, they still fail at predicting
quantitatively many experimental quantities, such as the variation
of the differential capacitance with the applied voltage.31 This is par-
ticularly true in the case of carbon materials due to their complex
electronic structure properties that deviate largely from the ones
of typical metals. Many intriguing experimental observations, such
as the capillary freezing of ionic liquids confined between metal-
lic surfaces11 and the emergence of longer-than-expected electro-
static screening lengths in concentrated electrolytes,32,33 remain to
be explained quantitatively. The Thomas–Fermi model, by allowing
to tune the metallicity of the electrode using a single parameter (also
without introducing additional computational costs), should lead to
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a more accurate understanding of the interfacial properties of such
electrodes using molecular simulations. The extension of this work
to complex materials such as nanoporous carbons will require addi-
tional efforts in order to take into account the effect of the local
environment of each atom on its electronic response. In that case,
it might be relevant to sacrifice some of the simplicity of the TF
model by including atom-specific or even bond-specific terms in the
energy, following the split charge equilibration approach.34,35 In this
context, the present work suggests that it could be possible to deter-
mine the associated parameters from a simplified representation of
the underlying electronic density.

SUPPLEMENTARY MATERIAL

See the Supplementary material for a discussion on the con-
tinuum description and equivalent circuit models, additional tests
for a single charge between two electrodes, additional results on the
differential capacitances of the two electrodes and their variation
with the Thomas–Fermi length, and additional structural charac-
terizations of the aqueous NaCl electrolyte put in contact with the
gold-like electrodes at 0 V and 2 V.
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APPENDIX: SIMULATION DETAILS
The TF electrode model was implemented in the molecu-

lar dynamics code MetalWalls.36 All simulations were run using
a matrix inversion method5 to enforce both the constant poten-
tial and the electroneutrality constraints on the charges. Electrode
atoms have a Gaussian charge distribution of width η−1 = 0.56 Å
centered on zero, and the Thomas–Fermi length lTF ranges from
0.0 Å to 16.0 Å for the empty capacitor and from 0.0 Å to 5.0 Å
in the presence of an aqueous NaCl electrolyte. Two-dimensional
boundary conditions were used with no periodicity in the z direc-
tion using an accurate 2D Ewald summation method to compute
electrostatic interactions. A cutoff of 17.0 Å was used for both the
short range part of the Coulomb interactions and the intermolecular
interactions. For the latter, we used the truncated shifted Lennard-
Jones potential. The box length in both the x and y directions was
Lx = Ly = 36.630 Å with 162 atoms per atomic plane. The structure

is face-centered cubic with a lattice parameter of 4.07 Å and a sepa-
ration between planes a = 2.035 Å in the (100) direction (the atomic
density d is 0.59 ⋅ 1029 m−3). The empty capacitors have 50 planes
per electrode, whereas the electrochemical cells have 10 (leading to a
total of 1620 atoms per electrode). In the latter case, the electrolyte is
composed of 2160 water molecules, modeled using the SPC/E force
field,37 and 39 NaCl ion pairs. The Lennard-Jones parameters for
Na+ and Cl− were taken from Ref. 38 and the ones for the electrode
atoms from Ref. 39; the Lorentz–Berthelot mixing rules were used.
The simulation boxes were equilibrated at a constant atmospheric
pressure for 500 ps by applying a constant pressure force to the elec-
trodes with lTF = 0.0 Å, and then, the electrode separation was fixed
to the equilibrium value (for which the density in the middle of the
liquid slab is equal to its bulk value) L = 56.8 Å. The simulations were
run at 298 K with a time step of 1 fs. Each system was run for at least
8 ns.

DATA AVAILABILITY

The code used for the simulations and the data that support
the findings of this study are openly available in the repository
https://gitlab.com/ampere2.
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