J. I. Siepmann and M. Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, The Journal of Chemical Physics, vol.102, issue.1, pp.511-524, 1995.

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nature Materials, vol.11, issue.4, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153072

S. Bi, H. Banda, M. Chen, L. Niu, M. Chen et al., Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes, Nature Materials, vol.19, issue.5, pp.552-558, 2020.

D. T. Limmer, A. P. Willard, P. Madden, and D. Chandler, Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic, Proceedings of the National Academy of Sciences, vol.110, issue.11, pp.4200-4205, 2013.

L. Scalfi, D. T. Limmer, A. Coretti, S. Bonella, P. A. Madden et al., Charge fluctuations from molecular simulations in the constant-potential ensemble, Physical Chemistry Chemical Physics, vol.22, issue.19, pp.10480-10489, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02869879

L. Scalfi, M. Salanne, and B. Rotenberg, Molecular simulation of electrodesolution interfaces, 2020.

A. A. Kornyshev and M. A. Vorotyntsev, Analytic expression for the potential energy of a test charge bounded by solid state plasma, Journal of Physics C: Solid State Physics, vol.11, issue.16, pp.L691-L694, 1978.

A. A. Kornyshev, W. Schmickler, and M. A. Vorotyntsev, Nonlocal electrostatic approach to the problem of a double layer at a metal-electrolyte interface, Physical Review B, vol.25, issue.8, pp.5244-5256, 1982.

N. B. Luque and W. Schmickler, The electric double layer on graphite, Electrochimica Acta, vol.71, pp.82-85, 2012.

A. A. Kornyshev, N. B. Luque, and W. Schmickler, Differential capacitance of ionic liquid interface with graphite: the story of two double layers, Journal of Solid State Electrochemistry, vol.18, issue.5, pp.1345-1349, 2013.

J. Comtet, A. Niguès, V. Kaiser, B. Coasne, L. Bocquet et al., Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening, Nature Materials, vol.16, issue.6, pp.634-639, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01898282

V. Kaiser, J. Comtet, A. Niguès, A. Siria, B. Coasne et al., Electrostatic interactions between ions near Thomas?Fermi substrates and the surface energy of ionic crystals at imperfect metals, Faraday Discussions, vol.199, pp.129-158, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01898333

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, issue.5, pp.542-548, 1927.

. Soc, , vol.23, pp.542-548, 1927.

L. Scalfi, T. Dufils, K. G. Reeves, B. Rotenberg, and M. Salanne, A semiclassical Thomas?Fermi model to tune the metallicity of electrodes in molecular simulations, The Journal of Chemical Physics, vol.153, issue.17, p.174704, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02988148

S. Admin, AIP Publishing: Coronavirus, 2020.

E. Fermi, Un metodo statistico per la determinazione di alcune proprietà dell'atomo, Rend. Accad. Naz. Lincei, vol.6, pp.602-607, 1927.

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, The Journal of Chemical Physics, vol.126, issue.8, p.084704, 2007.

E. Paek, A. J. Pak, and G. S. Hwang, On the influence of polarization effects in predicting the interfacial structure and capacitance of graphene-like electrodes in ionic liquids, The Journal of Chemical Physics, vol.142, issue.2, p.024701, 2015.

R. F. Nalewajski, Electrostatic effects in interactions between hard (soft) acids and bases, Journal of the American Chemical Society, vol.106, issue.4, pp.944-945, 1984.

W. J. Mortier, S. K. Ghosh, and S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules, Journal of the American Chemical Society, vol.108, issue.15, pp.4315-4320, 1986.

A. K. Rappe and W. A. Goddard, Charge equilibration for molecular dynamics simulations, The Journal of Physical Chemistry, vol.95, issue.8, pp.3358-3363, 1991.

N. Onofrio, D. Guzman, and A. Strachan, Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells, Nature Materials, vol.14, issue.4, pp.440-446, 2015.

M. Buraschi, S. Sansotta, and D. Zahn, Polarization Effects in Dynamic Interfaces of Platinum Electrodes and Ionic Liquid Phases: A Molecular Dynamics Study, The Journal of Physical Chemistry C, vol.124, issue.3, pp.2002-2007, 2019.

D. M. York and W. Yang, A chemical potential equalization method for molecular simulations, The Journal of Chemical Physics, vol.104, issue.1, pp.159-172, 1996.

H. Nakano and H. Sato, A chemical potential equalization approach to constant potential polarizable electrodes for electrochemical-cell simulations, The Journal of Chemical Physics, vol.151, issue.16, p.164123, 2019.

L. Pastewka, T. T. Järvi, L. Mayrhofer, and M. Moseler, Charge-transfer model for carbonaceous electrodes in polar environments, Physical Review B, vol.83, issue.16, p.165418, 2011.

N. D. Lang and W. Kohn, Theory of Metal Surfaces: Induced Surface Charge and Image Potential, Physical Review B, vol.7, issue.8, pp.3541-3550, 1973.

N. V. Smith, C. T. Chen, and M. Weinert, Distance of the image plane from metal surfaces, Physical Review B, vol.40, issue.11, pp.7565-7573, 1989.

H. Gerischer, An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level, The Journal of Physical Chemistry, vol.89, issue.20, pp.4249-4251, 1985.

A. J. Pak, E. Paek, and G. S. Hwang, Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid, Phys. Chem. Chem. Phys., vol.15, issue.45, pp.19741-19747, 2013.

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. Taberna et al., Efficient storage mechanisms for building better supercapacitors, Nature Energy, vol.1, issue.6, p.16070, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480941

J. Carrasco, A. Hodgson, and A. Michaelides, A molecular perspective of water at metal interfaces, Nature Materials, vol.11, issue.8, pp.667-674, 2012.

M. V. Fedorov and A. A. Kornyshev, Ionic Liquids at Electrified Interfaces, Chemical Reviews, vol.114, issue.5, pp.2978-3036, 2014.

M. A. Gebbie, M. Valtiner, X. Banquy, E. T. Fox, W. A. Henderson et al., Ionic liquids behave as dilute electrolyte solutions, Proceedings of the National Academy of Sciences, vol.110, issue.24, pp.9674-9679, 2013.

. Israelachvili, Ionic liquids behave as dilute electrolyte solutions, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.9674-9679, 2013.

A. M. Smith, A. A. Lee, and S. Perkin, The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration, The Journal of Physical Chemistry Letters, vol.7, issue.12, pp.2157-2163, 2016.

R. A. Nistor, J. G. Polihronov, M. H. Müser, and N. J. Mosey, A generalization of the charge equilibration method for nonmetallic materials, The Journal of Chemical Physics, vol.125, issue.9, p.094108, 2006.

R. A. Nistor and M. H. Müser, Dielectric properties of solids in the regular and split-charge equilibration formalisms, Physical Review B, vol.79, issue.10, p.104303, 2009.

A. Marin-laflèche, M. Haefele, L. Scalfi, A. Coretti, T. Dufils et al., MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems, Journal of Open Source Software, vol.5, issue.53, p.2373, 2020.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, The Journal of Physical Chemistry, vol.91, issue.24, pp.6269-6271, 1987.

L. X. Dang, Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study, Journal of the American Chemical Society, vol.117, issue.26, pp.6954-6960, 1995.

A. Berg, C. Peter, and K. Johnston, Evaluation and Optimization of Interface Force Fields for Water on Gold Surfaces, Journal of Chemical Theory and Computation, vol.13, issue.11, pp.5610-5623, 2017.